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Abstract

We consider the problem of nonparametric estimation of the kernel type estimators for the
conditional cumulative distribution function and the successive derivatives of the conditional
density for spatial data. More precisely, given a strictly stationary random field Z = (X, Y ), we
investigate a kernel estimate of the conditional hazard function of univariate response variable
Y given the functional variable X . The principal aim of this paper is to give the mean squared
convergence rate of the proposed estimator. Finally, we apply these theoretical results to the
estimation of the conditional hazard function where we give the mean squared convergence rate
of the proposed estimator.
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1. Introduction

The statistical problems involved in the modelization of spatial data have received an increasing
interest in the literature. The infatuation for this topic is linked with many fields of applications
in which the data are collected in the spatial order. Key references on spatial statistic are Ripley
(1981) or Cressie (1991). The nonparametric treatment of such data is relatively recent. The first
results have been obtained by Tran (1990). For relevant works on the nonparametric modelization
of spatial data, see Lu and Chen (2004), Biau and Cadre (2004), Carbon et al. (2007), or Li et al.
(2009) (for a list of references). In this paper, we are interested in the nonparametric estimation
of the conditional hazard function when the covariates are of functional nature.

The nonparametric estimation of the hazard and/or the conditional hazard function is quite
important in a variety of fields including medicine, reliability, survival analysis, or in seismology.
The literature on this model in multivariate statistics is abundant. Historically, the hazard estimate
was introduced by Watson and Leadbetter (1964). Since then, several results have been added; for
example, see Roussas (1989) for previous works, and see Li and Tran (2007) for recent advances
and references.

The literature is strictly limited in the case where the data is of functional nature (a curve).
The first result in this context was given by Ferraty et al. (2008). They established the almost
complete convergence of the kernel estimate of the conditional hazard function in the i.i.d. case.
Their results have been extended to the dependent case by Quintetla (2008). The latter has stated,
under α-mixing condition, the almost couplet convergence, the mean quadratic convergence,
and the asymptotic normality of this estimate. Recently, Laksaci and Mechab (2010) consider
the spatial case. They studied the almost complete convergence of an adapted estimate of this
model. More recently Bouchentouf et al. (2014) give the uniform version of the almost complete
convergence rate in the i.i.d. case from a model to a single-index functional. Djebouri et al. (2015)
studied the mean quadratic convergence and asymptotic normality under α-mixing condition of
this estimate. In practice, the interest of our study comes mainly from the fact that the main fields
of application of functional statistical methods related to the analysis of continuously indexed
spatial processes. It should be noted that the modelization of the functional spatial data has been
selected by Ramsay (2008). Among the recent papers on the functional statistic of spatial data,
we refer to Dabo-Niang et al. (2011).

The main aim of this paper is to study, under general conditions, the asymptotic proprieties of the
functional spatial kernel estimate of the conditional hazard function introduced by Laksaci and
Mechab (2010). More precisely, we treat the L2-convergence rate by giving the exact expression
involved in the leading terms of the quadratic error of the construct estimator. We point out that
our asymptotic results are useful in some statistical problems such as in risk analysis. The present
work extends to the spatial case the result of Quintela (2008), given in the functional time series
case. We note that one of the main difficulties that arise in the analysis of spatial data comes
from the fact that points in the N -dimensional space do not have a linear order. Thus, extending
classical nonparametric statistic results for functional random fields is far from being trivial.
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2. The Model

Consider Zi = (Xi, Yi), i ∈ NN , N ≥ 1, a F × R-valued measurable strictly stationary process,
defined on a probability space (Ω,A,P), where, (F , d) is a semi-metric space. A point i denotes
an element of NN , and we shall use the notation i = (i1, . . . , iN). We define the rectangular region
In by In =

{
i ∈ NN , 1 ≤ ik ≤ nk, k = 1, . . . , N}, for n = (n1, . . . , nN) ∈ NN . We assume

that the process under study Zi is observed on In. We set 1 = (1, . . . , 1), n̂ = n1 . . . nN , and we
write n→∞ if min{nk} → ∞ and |nj

nk
| < C for a constant 0 < C <∞ for all 1 ≤ j, k ≤ N .

In the following, x will be a fixed point in F and Nx will denote a fixed neighborhood of x. We
assume that the regular version of the conditional probability of Y given X exists. Moreover, we
suppose that for all z ∈ Nx the conditional distribution function of Y given X = z, F z(·), is j-
times continuously differentiable with respect to y on SR and we denote by f(·|z) = F (1)(·|z) its
conditional density with respect to (w.r.t.) Lebesgue’s measure over R. In this paper, we consider
the problem of the nonparametric estimation of the successive derivatives of the conditional
distribution and the conditional hazard function. Our aim is to build nonparametric estimates of
several functions related with the conditional probability distribution (cond-cdf) of Y given X .
For x ∈ F , we will denote the cond-cdf of Y given X = x by

∀y ∈ R, F (y|x) = P(Y ≤ y|X = x).

If this distribution is absolutely continuous with respect to the Lebesgues measure on R, then
we will denote by f(·|x) = F (·|x)(1) (resp. f(·|x)(j) = F (·|x)(j+1)) the conditional density (resp.
its jth order derivative) of Y given X = x. In the following, any real function with an integer
in brackets as exponent denotes its derivative with the corresponding order. In Section 3, we
will give almost complete convergence results (with rates) for nonparametric estimates of both
functions F x and fx(j). Since fx = fx(0), we will deduce immediately the convergence of the
conditional density estimate from the general results concerning fx(j).

In this work, we will assume that the function random field (Zi, i ∈ NN) satisfies the following
mixing condition:


There exists a function ϕ (t) ↓ 0 as t→∞, such that

∀E, E ′ subsets of NN with finite cardinals
α
(
B (E) , B

(
E
′))

= sup
B∈B(E), C∈B(E′)

|IP (B ∩ C)− IP (B) IP (C)|

≤ ψ
(
Card (E) ,Card

(
E
′))

ϕ
(
dist

(
E,E

′))
,

(1)

where, B (E) (resp. B
(
E
′)) denotes the Borel σ-field generated by (Zi, i ∈ E) (resp.

(
Zi, i ∈ E ′

)
),

Card(E) (resp. Card
(
E
′)) the cardinality of E (resp. E ′), dist

(
E,E

′) the Euclidean distance
between E and E

′ , and ψ : Z2 → R+ is a symmetric positive function nondecreasing in each
variable such that

3
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ψ (n,m) ≤ C min (n,m) , ∀n,m ∈ N, (2)

for some C > 0,. We assume also that the process satisfies the following mixing condition

∞∑
i=1

iδϕ(i) <∞, δ > 0. (3)

Note that condition (2) and (3) are the same as the mixing conditions used by Tran (1990)
and Carbon et al. (1996) and are satisfied by many spatial models (see Guyon (1987) for some
examples). It should be noted that if ψ = 1, then Zi is called strongly mixing (see Doukhan et
al. (1994) for discussion on mixing and examples).

In the following x will be a fixed point in F , Nx will denote a fixed neighborhood of x. Assume
that the Zi’s have the same distribution as (X, Y ) and there exists a regular version of the
conditional probability of Y given X . Let F (·|x) be the conditional distribution of the variable
Y given X = x and we assume that there is some compact subset SR := [αx, βx].

The purpose is to estimate the cond-cdf F (·|x). We introduce a kernel type estimator F̂ (·|x) of
F (·|x) as follows:

F̂ (y|x) =

∑
i∈In K(h−1K d(x,Xi))H(h−1H (y − Yi))∑

i∈In K(h−1K d(x,Xi))
, ∀y ∈ R, (4)

where K is a kernel, H is a cdf, and hK = hK,n (resp. hH = hH,n) is a sequence of positive real
numbers. Note that if N = 1, the same estimators are obtained by Ferraty et al. (2005).

A natural and usual estimator of the jth (resp. (j − 1)th order derivative of the conditional
distribution F (j)(·|x) (resp. conditional density f (j−1)(·|x)) of Y given X = x. We propose to
define the estimator F̂ (·|x)(j) of F (j)(·|x) (resp. f̂ (j−1)(·|x) of f (j−1)(·|x)) as follows for j ≥ 1:

f̂ (j−1)(y|x) = F̂ (j)(y|x) =
h−jH

∑
i∈In K(h−1K d(x,Xi))H

(j)(h−1H (y − Yi))∑
i∈In K(h−1K d(x,Xi))

, ∀y ∈ R. (5)

3. Main Results

All along the paper, when no confusion is possible, we will denote by C and C ′ some strictly
positive generic constants, and we will denote for all i ∈ In, Ki = K

(
h−1K d(x,Xi)

)
, Hi(y) =

H
(
h−1H (y − Yi)

)
, H(j)

i (y) = H(j)
(
h−1H (y − Yi)

)
and B(x, h) = {x′ ∈ F : /d(x, x′) < h}.

In order to establish our asymptotic results we need the following hypotheses:

(H1) ∀r > 0, IP(X ∈ B(x, r)) =: φx(r) > 0.

4
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(H2) ∀i 6= j,

0 < sup
i6=j

P [(Xi, Xj) ∈ B(x, hK)×B(x, hK)] ≤ C(φx(hK))(a+1)/a, for some 1 < a < δN−1.

(H3) The successive derivatives of the conditional cumulative distribution function F (j)(y|x)

satisfies the Hölder condition, that is: ∀(x1, x2) ∈ Nx ×Nx, ∀(y1, y2) ∈ S2
R,

|F (j)(y1|x1)− F (j)(y2|x2)| ≤ C
(
db1(x1, x2) + |y1 − y2|b2

)
, b1 > 0, b2 > 0,

where, for any positive integer l, F (l)(z|x) denotes its l− th derivative (i.e.,
∂lF (y|x)

∂yl

∣∣∣∣
y=z

).

(H4) K is a function with compact support (0, 1) such that 0 < C < K(t) < C ′ <∞.
(H5) H is a bounded continuous Lipschitz function, such that the first derivative H(1) verifies∫

|t|b2H(1)(t)dt <∞.

(H6) The support of H(1) is compact and ∀l ≥ j, H(l) exists and is bounded with Lipschitz’s
condition.

(H7) There exists 0 < α < (δ − 5N)/3N and η0 > 0, such that

lim
n→∞

n̂α hH =∞ and Cn̂
(5+3α)N−δ

δ
+η0 ≤ hHφx(h), where, n̂ = n1 . . . nN .

Our assumptions are fairly standard, since the conditions H1-H7 are very similar to those used
by Ferraty et al. (2005).

Theorem 3.1.

Under the hypotheses (H1)-(H7), we have

sup
y∈SR
|F̂ (j)(y|x)− F (j)(y|x)| = O

(
hb1K + hb2H

)
+Oa.co.

((
log n̂

n̂h2j−1H φx(hK)

) 1
2

)
. (6)

Proof:

Let, F̂ x
N(y) (resp. F̂ x

D) be defined as

F̂D(x) :=
1

n̂EK1

(x)
∑
i∈In

K(h−1K d(x,Xi)), K1(x) = K(h−1K d(x,X1))

F̂
(j)
N (y|x) :=

h−jH
n̂EK1

(x)
∑
i∈In

K(h−1K d(x,Xi))H
(j)(h−1H (y − Yi)).

This proof is based on the decomposition

5
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F̂ (j)(y|x)− F (j)(y|x) =
1

F̂D(x)

{(
F̂

(j)
N (y|x)− EF̂ (j)

N (y|x)
)

−
(
F (j)(y|x)− EF̂ (j)

N (y|x)
)}

+
F (j)(y|x)

F̂D(x)

{
EF̂D(x)− F̂D(x)

}
, (7)

and on the following intermediate results.

Lemma 3.2.

Under the hypotheses (H1)-(H2), (H4) and (H7), we have

F̂D(x)− EF̂D(x) = Oa.co.

((
log n̂

n̂φ(hK)

) 1
2

)
and

∑
n∈NN

P
(
F̂D(x) < 1/2

)
<∞. (8)

Lemma 3.3.

Under the hypotheses (H1), (H3)-(H7), we have

sup
y∈SR
|F (j)(y|x)− EF̂ (j)

N (y|x)| = O
(
hb1K
)

+O
(
hb2H
)
. (9)

Lemma 3.4.

Under the hypotheses of Theorem 3.1, we have

sup
y∈SR
|F̂ (j)
N (y|x)− EF̂ (j)

N (y|x)| = Oa.co

(√
log n̂

n̂h2j−1H φx(hK)

)
. (10)

2

The proofs of Lemma 3.3 and Lemma 3.4 are postponed to Section 5.

Now, let F̂ (·|x) = F̂ (0)(·|x) and f̂(·|x) = f̂ (1)(·|x); it is obvious that the previous theorem allows
us to get the two following corollaries.

Corollary 3.5.

Suppose that hypothesis (H3) are verified for j = 0 and under the assumptions (H1)-(H2), (H4)-
(H5) and (H7), we have

sup
y∈SR
|F̂ (y|x)− F (y|x)| = O

(
hb1K + hb2H

)
+Oa.co.

((
log n̂

n̂φx(hK)

) 1
2

)
. (11)

6
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Corollary 3.6

Suppose that hypothesis (H3) is verified for j = 1. Then, if the hypotheses of Corollary 3.1. are
satisfied, we have

sup
y∈SR
|f̂(y|x)− f(y|x)| = O

(
hb1K + hb2H

)
+Oa.co.

((
log n̂

n̂hHφx(hK)

) 1
2

)
. (12)

Remark 3.7.

In this section, we have obtained a rate of convergence of the form

O
(
hb1K + hb2H

)
+Oa.co.

((
log n̂

n̂h2j−1H φx(hK)

) 1
2

)
,

where O
(
hb1K + hb2H

)
is the rate of the bias of the estimator which only depends on the regularity

of F (j). Note that, by using the same approach as in this paper, one can easily show that if F (j)

satisfies a Lipschitz condition:

∀(x1, x2) ∈ Nx ×Nx, ∀(y1, y2) ∈ R2,

|F (j)(y1|x1)− F (j)(y2|x2)| ≤ C (d(x1, x2) + |y1 − y2|) ,

for some C > 0, then the rate of convergence is the following:

O (hK + hH) +Oa.co.

((
log n̂

n̂h2j−1H φx(hK)

) 1
2

)
.

A. Mean squared convergence

The first result concerns the L2-consistency of F̂ (j)(y|x) and ĥ′
x
(y). In order to establish our

asymptotic results we need the following hypotheses.

(H8) For l ∈ {0, 2}, the functions Ψl(s) = E
(
∂lF (y|X)

∂yl
− ∂lF (y|x)

∂yl

∣∣∣d(x,X) = s
)
, and

Φl(s) = E
(
∂lf(y|X)
∂yl

− ∂lf(y|x)
∂yl

∣∣∣d(x,X) = s
)
,

are derivable at s = 0.
(H9) The bandwidth hK satisfies:

hK ↓ 0, ∀t ∈ [0, 1] lim
hK→0

φx(thK)

φx(hK)
= βx(t) and n̂hHφx(hK)→∞ as n→∞.

7
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(H10) The kernel K from R into R+ is a differentiable function supported on [0, 1]. Its derivative K ′

exists and is such that there exist two constants C and C ′ with −∞ < C < K ′(t) < C ′ < 0

for 0 ≤ t ≤ 1.

These conditions are very standard in this context. Indeed, assumptions (H8) are a regularity
condition which characterize the functional space of our model and are needed to evaluate the
bias. The hypotheses (H9) and (H10) are technical conditions and are also similar to those
considered in Ferraty and Vieu (2006) for the regression case.

Theorem 3.8.

Under the hypotheses (H1)-(H2), (H5) and (H8)-(H10), we have

E
(
F̂ (j)(y|x)− F (j)(y|x)

)2
= B2(H,F (j))h4H +B2(K,F )h2K +

VHK(x, y)

n̂h2j−1H φ(hK)

+o(h4H) + o(h2K) + o

(
1

n̂h2j−1H φ(hK)

)
, (13)

with

B(H,F (j)) =
1

2

∂2F (j)(y|x)

∂y2

∫
t2H ′(t)dt,

B(K,F ) = hKΨ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) ,

and

VHK(x, y) =
β2F

(j)(y|x)(1− F (j)(y|x))

(β2
1(1− F x(y)))

(with βj = Kj(1)−
∫ 1

0

(Kj)′(s)βx(s)ds, for j = 1, 2).

Proof:

By using the same decomposition used in Theorem 3.1 and Theorem 3.2 in Rabhi et al. (2013),
pp. 409, we show that the proof of Theorem 3.8 can be deduced from the following intermediate
results:

Lemma 3.9.

Under the hypotheses of Theorem 3.8, we have

E
(
F̂

(j)
N (y|x)

)
− F (j)(y|x) = B(H,F (j))h2H +B(K,F (j))hK + o(h2H) + o(hK).

8
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Remark 3.10.

Observe that the result of this lemma permits to write

(
EF̂ (j)

N (y|x)− F (j)(y|x)
)

= O(h2H) +O(hK).

Lemma 3.11.

Under the hypotheses of Theorem 3.8, we have

V ar
(
F̂

(j)
N (y|x)

]
=

σ2
F (j)(x, y)

n̂h2j−1H φx(hK)
+ o

(
1

n̂h2j−1H φx(hK)

)
,

and

V ar
(
F̂D(x)

)
= o

(
1

n̂hHφx(hK)

)
,

where σ2
F (j)(x, y) := F (j)(y|x)(1− F (j)(y|x))

∫
H ′

2
(t)dt.

Lemma 3.12.

Under the hypotheses of Theorem 3.8, we have

Cov
(
F̂

(j)
N (y|x), F̂D(x)

)
= o

(
1

n̂h2j−1H φx(hK)

)
.

Remark 3.13.

It is clear that the results of Lemma 3.9 and Lemma 3.12 allow us to write

V ar
[
F̂D(x)− F̂ (j)

N (y|x)
]

= o

(
1

n̂h2j−1H φx(hK)

)
.

2

Now, let F̂ (·|x) = F̂ (0)(·|x) and f̂(·|x) = F̂ (1)(·|x). It is obvious that the previous theorem allows
us to get the two following corollaries.

Corollary 3.14.

Under the hypotheses of Theorem 3.8, we have

E
(
f̂N(y|x)

)
− f(y|x) = Bf

H(x, y)h2H +Bf
K(x, y)hK + o(h2H) + o(hK),

and

9
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E
(
F̂N(y|x)

)
− F (y|x) = BF

H(x, y)h2H +BF
K(x, y)hK + o(h2H) + o(hK).

Remark 3.15.

Observe that the result of this lemma permits us to write

(
EF̂N(y|x)− F (y|x)

)
= O(h2H) +O(hK),

and

(
Ef̂N(y|x)− f(y|x)

)
= O(h2H) +O(hK).

Corollary 3.16.

Under the hypotheses of Theorem 3.8, we have

V ar
(
f̂N(y|x)

)
=

σ2
f (x, y)

n̂hHφx(hK)
+ o

(
1

n̂hHφx(hK)

)
,

where σ2
f (x, y) := f(y|x)

∫
H ′

2
(t)dt.

Corollary 3.17.

Under the hypotheses of Theorem 3.8, we have

Cov
(
f̂N(y|x), F̂D(x)

)
= o

(
1

n̂hHφx(hK)

)
,

and

Cov
(
f̂N(y|x), F̂N(y|x)

)
= o

(
1

n̂hHφx(hK)

)
.

Remark 3.18.

It is clear that the results of Corollary 3.16 and Corollary 3.17 allow us to write

V ar
(
F̂D(x)− F̂N(y|x)

)
= o

(
1

n̂hHφx(hK)

)
.

Theorem 3.19.

Under assumptions (H1)-(H2), (H5) and (H8)-(H10) we have

10
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E
[
ĥ′
x
(y)− h′x(y)

]2
= B2

n(x, y) +
σ2
h′(x, y)

n̂h3Hφx(hK)
+ o(h4H + hK) + o

(
1

n̂h3Hφx(hK)

)
,

where

Bn(x, y) =
(Bf ′

H − h
′x(y)BF

H)h2H + (Bf ′

K − h
′x(y)BF

K)hK
1− F x(y)

,

with

Bf ′

H (x, y) =
1

2

∂2fx(y)

∂y2

∫
t2H

′′
(t)dt,

Bf ′

K (x, y) = hKΦ′0(0)

(
K(1)−

∫ 1

0
(sK ′(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′′s)βx(s)ds

) ,

BF
H(x, y) =

1

2

∂2F x(y)

∂y2

∫
t2H ′(t)dt,

BF
K(x, y) = hKΨ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) ,

and

σ2
h′(x, y) =

β2h
x(y)

(β2
1(1− F x(y)))

∫
(H ′′(t))2dt (βj = Kj(1)−

∫ 1

0

(Kj)′′(s)βx(s)ds, for, j = 1, 2).

Proof:

By using the same decomposition used in (Theorem 3.1 Rabhi et al. (2013); pp. 408), we show
that the proof of Theorem 3.19 can be deduced from the following intermediate results:

Lemma 3.20.

Under the hypotheses of Theorem 3.19, we have

E
[
f̂ ′
x

N(y)
]
− f ′x(y) = Bf ′

H (x, y)h2H +Bf ′

K (x, y)hK + o(h4H) + o(hK),

and

E
[
F̂ x
N(y)

]
− F x(y) = BF

H(x, y)h2H +BF
K(x, y)hK + o(h2H) + o(hK).

11
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Remark 3.21.

Observe that, the result of this lemma permits to write

[
Ef̂ ′

x

N(y)− f ′x(y)
]

= O(h4H + hK).

Lemma 3.22.

Under the hypotheses of Theorem 3.19, we have

V ar
[
f̂ ′
x

N(y)
]

=
σ2
f ′(x, y)

n̂h3Hφx(hK)
+ o

(
1

n̂h3Hφx(hK)

)
,

V ar
[
F̂ x
N(y)

]
= o

(
1

n̂hHφx(hK)

)
,

and

V ar
[
F̂ x
D

]
= o

(
1

n̂hHφx(hK)

)
,

where σ2
f ′(x, y) := fx(y)

∫
(H

′′
(t))2dt.

Lemma 3.23.

Under the hypotheses of Theorem 3.19, we have

Cov(f̂ ′
x

N(y), F̂ x
D)o

(
1

n̂h3Hφx(hK)

)
,

Cov(f̂ ′
x

N(y), F̂ x
N(y)) = o

(
1

n̂h3Hφx(hK)

)
,

and

Cov(F̂ x
D, F̂

x
N(y)) = o

(
1

n̂hHφx(hK)

)
.

2

Remark 3.24.

1. Notes on non-parametric model. In this paper, we chose a condition of derivability as our
goal is to find an expression for the rate of convergence explicitly, asymptotically exact and keeps
the usual form of the squared error (see Vieu (1991)). However, if one proceeds by a Lipschitz
condition for example the conditional density of type:

12
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∀(y1, y2) ∈ Ny ×Ny,∀(x1, x2) ∈ Nx ×Nx,

|fx1(y1)− fx2(y2)| ≤ Ax((d(x1, x2)
2) + |y1 − y2|2),

which is less restrictive, we obtain a result for the conditional distribution and conditional density
respectively for example of type

E
[
(F̂X

Y (x, y)− FX
Y (x, y))2

]
= O(h4H + h4K) +O

(
1

nφ(hk)

)
,

E
[
(f̂XY (x, y)− fXY (x, y))2

]
= O(h4H + h4K) +O

(
1

nhHφ(hk)

)
.

But for such an expression (implicitly) the rate of convergence will not allow us to properly
determine the smoothing parameter. In other words, this condition of differentiability is a good
compromise to obtain an explicit expression for the rate of convergence. Note that this condition
is often taken in the case of finite dimension.

2. Notes on the squared error. The “dimensionality” of the observations (resp. model) is used
in the expression of the rate of convergence (13). We find the “dimensionality” of the model in
the way, while the “dimensionality” of the variable in the functional dispersion bias the property
of concentration of the probability measure of the functional variable which is closely related
to the topological structure of the functional space of the explanatory variable. Our asymptotic
results highlight the importance of the concentration properties on small balls of the probability
measure of the underlying functional variable. This highlights the role of semi-metric the quality
of our estimate. A suitable choice of this parameter allows us to an interesting solution to the
problem of the curse of dimensionality (see Rabhi et al. (2013). Another argument has a dramatic
effect in our estimation. This is the smoothing parameter hK (resp. hH). The term of our rate of
convergence, decomposed into two main parts, part bias proportional to hK (resp. hH), and part
dispersion inversely proportional to hK (resp. hH)(φ is an increasing function depending on the
hK), makes this relatively easy choice minimizing the main part of this expression to determine
this parameter.

4. Applications

In this section we emphasize the potential impact of our work by studying its practical interest in
some important statistical problems. Moreover, in order to show the easy implementation of our
approach on a concrete case, we discuss in the second part of this section the practical utilization
of our model in risk analysis.

The choice of the smoothing parameter has paramount importance in estimating the kernel
method. The rate of convergence given in the previous theorem allows us to make an optimal
choice of this parameter. Indeed, just choose a smoothing parameter that minimizes the error
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mean square given by the above theorem (see Youndjé (1993) for the real case in mean of order
p). We can also use another method of selection such as cross-validation.

Remember that the choice of the smoothing parameter for estimating the hazard function in
the functional framework remains an open question, thus the use of optimal parameters of the
conditional density and without theoretical validity, but it is justified by the close relationship
between the conditional density, conditional distribution function and the conditional hazard
function. Contrary to the statistical vector, the performance of estimation of the hazard function
in functional statistics also depends on another additional argument that is the metric of the
functional space of the explanatory variable. In practice the appropriate choice of this object plays
a crucial role for the effectiveness of the model. Of the same as the smoothing parameter, the
optimal choice of this factor is still an open question in this context of the statistic nonparametric
functional. However, the choice from the family of semi-metric are used to sense if the curves
are very smooth. The semi-metrics defined by the derivatives can be used. On the other hand,
if the curves present a discontinuity, we make a call to the metric of the functional ACP. We
refer to the package NFDA in R for codes of these semi-metrics. In our case, it is clear that the
second family from the semi-metric is the most appropriate.

The bounds obtained here allow us to derive the same optimal rates of convergence as in the
i.i.d case only if the space F is of finite dimension (for example Rd ). In the case of infinite
dimensional space, as in the spatial case, finding an optimal rate is far from being proved (we
refer for example Ferraty and Vieu (2006) for more discussion about this question).

A. Some derivatives

• On the choices of the bandwidths parameters. As all smoothing by a kernel method, the choice
of bandwidths parameters has a crucial role in determining the performance of the estimators. The
mean quadratic error given in Theorem 3.19 is a basic ingredient to solve this problem. Usually,
the ideal theoretical choices are obtained by minimizing this error. Here, we have explicated its
leading term which is

B2
n(x, y) +

σ2
h′(x, y)

n̂h3Hφx(hK)
.

Then the smoothing parameters minimizing this leading term are asymptotically optimal with
respect the L2-error. However the practical utilization of this criterium requires some additional
computational efforts. More precisely, it requires the estimation of the unknown quantities Ψ′0, Φ′0,
f
′x(y) and F x(y). Clearly, all these estimations can be obtained by using pilots estimators of the

conditional distribution function F x(y) and of the conditional density f
′x(y). Such estimations

are possible by using the kernel methods, with a separate choice of the bandwidths parameters
between both models. More preciously, for the conditional density, we propose to adopt, to the
functional case, the bandwidths selectors studied by Bouraine et al. (2010) by considering the
following criterion

14
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CV PDF =
1

n̂

∑
i∈In

W1(Xi)

∫
f̂ ′
X−i2

i (y)W2(y)dy − 2

n̂

∑
i∈In

f̂ ′
X−i

i (Yi)W1(Xi)W2(Yi), (14)

while for the the conditional distribution function we can use the cross-validation rule proposed
by De Gooijer and Gannoun (2000) (in vectorial case)

CV CDF =
1

n̂

∑
k,l∈In

[
1IYk≤Yl − F̂X−k

k (Yl)
]2
W (Xk),

where W1, W2 and W are some suitable trimming functions and

F̂X−k
k (Yl) =

∑
i∈Ik,ln,ςn

K(h−1K d(Xk, Xi))H(h−1H (Yl − Yi))∑
i∈Ik,ln,ςn

K(h−1K d(Xk, Xi))
,

and

f̂ ′
X−i

i (y) =
h−2H

∑
j∈Iin,ςn

K(h−1K d(Xi, Xj))H
′′
(h−1H (y − Yj))∑

j∈Iin,ςn
K(h−1K d(Xi, Xj))

,

with

Ik,ln,ςn = {i such that ‖i− k‖ ≥ ςn and ‖i− l‖ ≥ ςn} and I in,ςn = {j such that ‖j− i‖ ≥ ςn }.

Of course, we can also adopt another selection method such that the parametric bootstrap method,
proposed by Hall et al. (1999) and Hyndman et al. (1996), respectively, for the conditional cumu-
lative distribution function and the conditional density in the finite dimensional case. Nevertheless,
a data-driven method allows to overcome this additional computation is very important in practice
and is one of the natural prospects of the present work.

• Confidence intervals. The main application from the result of asymptotic normality is to build
confidence band for the true value of h′x(y).

Similar to the previous application, the practical utilization of our result in this topic requires
the estimation of the quantity σ2

h′(x, y). A plug-in estimate for the asymptotic standard deviation
σ2
h′(x, y) can be obtained by using the estimators f̂ ′x(y) and F̂ x(y) of f ′x(y) and F x(y). Then

we get

σ̂2
h′(x, y) :=

β̂2f̂
′x(y)(

β̂1
2
(1− F̂ x(y))2

) ,
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where


β̂1 =

1

n̂φx(hK)

∑
i∈In

K(h−1K d(x,Xi))

and β̂2 =
1

n̂φx(hK)

∑
i∈In

K2(h−1K d(x,Xi)).

Clearly the function φx(·) does not appear in the calculation of the confidence interval by
simplification. More precisely, we obtain the following approximate (1− ζ) confidence band
for h

′x(y)

ĥ
′x(y)± t1−ζ/2 ×

(
σ̂2
h′(x, y)

n̂h3Hφx(hK)

)1/2

,

where t1−ζ/2 denotes the 1− ζ/2 quantile of the standard normal distribution.

B. Application to continuously indexed random fields

Clearly, a continuously indexed random filed (Zt, t ∈ RN) is one of the important examples of
functional spatial data.

Indeed, let (Zt, t ∈ RN) be a R-valued strictly stationary random spatial process assumed to be
bounded and observed over some subset I ⊂ RN . Then our approach can be used to predict
the value Zs0 at an unobserved location s0 ∈ I by taking into account the observed part of
the process (Zt, t ∈ RN) in its continuous form. For this, we suppose that the value of Zs0
depends only on the values of the process (Zt) in a bounded neighborhood Vs0 ⊂ I of s0.
From Zt we may construct m functional spatial random variables as follows: Consider some grid
Gn = {ti = (ti,1, . . . , ti,N) ∈ I, 1 ≤ ti,j ≤ nj, j = 1, . . . , N, i = 1, . . . ,m} such that

∀i = 1, . . . ,m, min
1≤j≤N−1

(ti,j+1 − ti,j) ≥ C > 0 for some constant C,

and we define

∀i = 1, . . . ,m, Xti = (Zt, t ∈ Vti),

where Vti = V + tti , V = Vs0 − s0, which does not contain 0. So the predictor that we proposed
(see Biau and Cadre (2004) and Dabo-Niang and Yao (2007) for the finite dimension mean
regression case) aims to evaluate a real characteristic denoted Ys0 = Zs0 , at a site s0, given
Xs0 = (Zt, t ∈ Vs0).

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 2, Art. 3

https://digitalcommons.pvamu.edu/aam/vol11/iss2/3



AAM: Intern. J., Vol. 11, Issue 2 (December 2016) 543

5. Proofs of Technical Lemmas

In the following, we will denote ∀i

Ki = K(h−1H d(x,Xi)), Hi = H(h−1H (y−Yi), H ′i = H ′(h−1H (y−Yi) and H
′′

i = H
′′
(h−1H (y−Yi).

First of all, we state the following lemmas which are due to Carbon et al. (1997). They are
needed for the convergence of our estimates. There proofs will then be omitted.

Lemma 6.1.

Suppose E1, . . . , Er are sets containing m sites each with dist(Ei, Ej) ≥ γ for all i 6= j where
1 ≤ i ≤ r and 1 ≤ j ≤ r. Suppose Z1, . . . , Zr is a sequence of real-valued r.v.’s measurable
with respect to B(E1), . . . ,B(Er), respectively, and Zi takes values in [a, b]. Then there exists a
sequence of independent r.v.’s Z∗1 , . . . , Z

∗
r independent of Z1, . . . , Zr such that Z∗i has the same

distribution as Zi and satisfies

r∑
i=1

E|Zi − Z∗i | ≤ 2r(b− a)ψ((r − 1)m,m)ϕ(γ).

Lemma 6.2.

(i) Suppose that (1) holds. Denote by Lr(F) the class of F−measurable r.v.’s X satisfying
‖X‖r = (E|X|r)1/r < ∞. Suppose X ∈ Lr(B(E)) and Y ∈ Ls(B(E ′)). Assume also that
1 ≤ r, s, t <∞ and r−1 + s−1 + t−1 = 1. Then,

|EXY − EXEY | ≤ C‖X‖r‖Y ‖s{ψ(Card(E), Card(E ′))ϕ(dist(E,E ′))}1/t. (15)

(ii) For r.v.’s bounded with probability 1, the right-hand side of (15) can be replaced by

Cψ(Card(E), Card(E ′))ϕ(dist(E,E ′)).

We also need the following lemma due to Nakhapeytyan (1987).

Lemma 6.3.

Let, Z1 . . . Zn be a random vector such that

∣∣∣∣∣IE
n∏
s=i

Zs

∣∣∣∣∣ < ∞, i = 1, . . . , n − 1, |Zi| ≤ C,

i = 1, . . . , n. Then,

∣∣∣∣∣IE
n∏
s=1

Zs −
n∏
s=1

IEZs

∣∣∣∣∣ ≤
n−1∑
i=1

n∑
j=i+1

∣∣∣∣∣IE(Zi − 1)(Zj − 1)
n∏

s=j+1

Zs − IE(Zi − 1)IE(Zj − 1)
n∏

s=j+1

Zs

∣∣∣∣∣ .
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Proof of Lemma 3.3:

Let H(j)
i (y) = H(j)

(
h−1H (y − Yi)

)
and ∀ y ∈ SR, we have

∣∣∣EF̂ (j)
N (y|x)− F (j)(y|x)

∣∣∣ =
∣∣∣ h−jH
E (K1(x))

E
{
K
(
h−1K d(x,X1)

)
E
(
H(j)

(
h−1H (y − Y1)|X1

))}
−F (j)(y|x)

∣∣∣
=

1

hjHE (K1(x))

∣∣∣E{K1(x)1IB(x,hK)(X)
(
E
(
H

(j)
1 (y)|X

)
−F (j)(y|x)

)}∣∣∣. (16)

Moreover, we have

E
(
H

(j)
1 (y)|X1

)
=

∫
R
H(j)

(
h−1H (y − v)

)
f(v|X1)dv,

and integrating by parts, we obtain that

E
(
H

(j)
1 (y)|X1

)
= −

j∑
l=1

hlH
[
H(j−l) (h−1H (y − v)

)
F (l)(v|X1)

]+∞
−∞

+ hj−1H

∫
R
H(1)

(
h−1H (y − v)

)
F (j)(v|X1)dv. (17)

Condition (H6) allows us to cancel the first term in the right side of (17) and considering the
usual change of variable t = y−v

hH
, we can write:

∣∣∣E(H(j)
1 (y)|X1

)
− hjHF

(j)(y|x)
∣∣∣ ≤ hjH

∫
R
H(1)(t)

∣∣F (j)(y − hHt|X1)− F (j)(y|x)
∣∣ dt.

Finally, (H3) allows to write ∀y ∈ SR

1IB(x,hK)(X)
∣∣∣E(H(j)

1 (y)|X
)
− hjHF

(j)(y|x)
∣∣∣ ≤ ChjH

∫
R
H(1)(t)

(
hb1K + |t|b2hb2H

)
dt. (18)

The use of (H5), (16) and Lemma 3.2 achieve the proof of Lemma 3.3. 2

Proof of Lemma 3.4:

Using the compactness of SR, we can write that SR ⊂
zn⋃
k=1

(tk − ln, tk + ln). Take k(y) =

arg min
k∈{1,2,...,zn}

|y − tk|, zn ≤ n̂
3
2
α+ 1

2 . Thus, we obtain this decomposition
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∣∣∣F̂ (j)
N (y|x)− EF̂ (j)

N (y|x)
∣∣∣ ≤ ∣∣∣F̂ (j)

N (y|x)− F̂ (j)
N (tk(y)|x)

∣∣∣︸ ︷︷ ︸
T1

+
∣∣∣F̂ (j)

N (tk(y)|x)− EF̂ (j)
N (tk(y)|x)

∣∣∣︸ ︷︷ ︸
T2

+
∣∣∣EF̂ (j)

N (tk(y)|x)− EF̂ (j)
N (y|x)

∣∣∣︸ ︷︷ ︸
T3

. (19)

• Concerning (T1):

∣∣∣F̂ (j)
N (y|x)− F̂ (j)

N (tk(y)|x)
∣∣∣ ≤ 1

n̂hjHE (K1(x))

∑
i∈In

Ki(x)
∣∣∣H(j)

i (y)−H(j)
i (tk(y))

∣∣∣
≤ C

h−jH
n̂E (K1(x))

∑
i∈In

Ki(x)
∣∣∣H(j)

i (y)−H(j)
i (tk(y))

∣∣∣
≤

Ch−jH |y − tk(y)|
hH

n̂E [K1(x)]
∑
i∈In

Ki(x)

≤ C
h−jH ln
hH

F̂D(x)

≤ C
h−jH ln
hH

. (20)

The second inequality is obtained by considering a Lipschitz argument whereas the last one
comes from the definition of F̂D(x).

Take now ln = n̂−
3α
2
− 1

2 and note that, because of (H7), we have
ln

hj+1
H

= o

(√
log n̂

n̂h2j−1H φ(hK)

)
.

Thus the almost complete convergence of F̂D(x), we can write

∣∣∣F̂ (j)
N (y|x)− F̂ (j)

N (tk(y)|x)
∣∣∣ = oa.co.

(√
log n̂

n̂h2j−1H φ(hK)

)
. (21)

• Concerning (T2): The proof is based on ideas similar to those used by Carbon et al. (1997).

We have ∀η > 0

19
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P

(
sup
y∈SR

∣∣∣F̂ (j)
N (tk(y)|x)− EF̂ (j)

N (tk(y)|x)
∣∣∣ > η

√
log n̂

n̂h2j−1H φ(hK)

)

= P

(
max

k∈{1,2,...,zn}

∣∣∣F̂ (j)
N (tk|xk)− EF̂ (j)

N (tk|xk)
∣∣∣ > η

√
log n̂

n̂h2j−1H φ(hK)

)

≤ zn max
k∈{1,2,...,zn}

P

(∣∣∣F̂ (j)
N (tk|xk)− EF̂ (j)

N (tk|xk)
∣∣∣ > η

√
log n̂

n̂h2j−1H φ(hK)

)
.

Let, Γ
(j)
i (x, tk) = Ki(x)H

(j)
i (tk)− E

[
Ki(x)H

(j)
i (tk)

]
, then

F̂
(j)
N (tk|x)− EF̂ (j)

N (tk|x) =
h−jH

n̂E (K1(x))

∑
i∈In

Γ
(j)
i (x, tk).

Consider, the spatial block decomposition on the random variables Γ
(j)
i (x, tk) = Ki(x)H

(j)
i (tk)−

E
[
Ki(x)H

(j)
i (tk)

]
for fixed integer pn, (depending on n) as follows

U(1,n, x, tk,m) =
∑2mkpn+pn

ik=2mkpn+1
k=1,...,N

Γ
(j)
i (x, tk),

U(2,n, x, tk,m) =

2mkpn+pn∑
ik=2mkpn+1
k=1,...,N−1

2(mN+1)pn∑
iN=2mNpn+pn+1

Γ
(j)
i (x, tk),

U(3,n, x, tk,m) =

2mkpn+pn∑
ik=2mkpn+1
k=1,...,N−2

2(mN−1+1)pn∑
iN−1=2mN−1pn+pn+1

2mNpn+pn∑
iN=2mNpn+1

Γ
(j)
i (x, tk),

U(4,n, x, tk,m) =

2mkpn∑
ik=2mkpn+1
k=1,...,N−2

2(mN−1+1)pn∑
iN−1=2mN−1pn+pn+1

2(mN+1)pn∑
iN=2mNpn+pn+1

Γ
(j)
i (x, tk),

and so an. Finally,

U(2N−1,n, x, tk,m) =

2(mk+1)pn∑
ik=2mkpn+pn+1
k=1,...,N−1

2mNpn+pn∑
iN=2mNpn+1

Γ
(j)
i (x, tk),

U(2N ,n, x, tk,m) =

2(mk+1)pn∑
ik=2mkpn+pn+1

k=1,...,N

Γ
(j)
i (x, tk).

This blocking scheme is similar to that used in Tran (1990).
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Now, for M = {0, . . . , r1 − 1} × . . .× {0, . . . , rN − 1} where, ri = 2−1nip
−1
n , i = 1, . . . , N , we

define

T (n, x, tk, i) =
∑
m∈M

U(i,n, x, tk, j),

and we write,

F̂
(j)
N (tk|xk)− EF̂ (j)

N (tk|xk) =
h−jH

n̂E [K1(x)]

2N∑
i=1

T (n, x, tk, i). (22)

Note that, as raised by Biau and Cadre (2004), if one does not have the equalities ni = 2ripn,
the term, say T (n, x, tk, 2

N + 1) (which contains the Γ
(j)
i (x, tk)’s at the ends not included in the

blocks above) can be added. This will not change the proof a lot.

Now, under the last equation (22), we can say that, for all η > 0

P
(∣∣∣F̂ (j)

N (tk|xk)− EF̂ (j)
N (tk|xk)

∣∣∣ ≥ η
)
≤ 2N max

i=1,...
P
(
T (n, x, tk, i) ≥ ηn̂hjHE [K1(x)]

)
.

Finally, the desired result follows from the evaluation of the following quantities:

P
(
T (n, x, tk, i) ≥ ηn̂hjHE [K1(x)]

)
, for all i = 1, . . . , 2N .

Without loss of generality, we will only consider the case i = 1. For this case, we enumerate
the variable (U(1,n, x, tk,m); m ∈ M) and we apply Lemma 4.5 of Carbon et al. (1997) on
variables enumerated. The variables with the new enumeration will be noted Z1, . . . ZL where
L =

∏N
k=1 rk = 2−N n̂p−Nn ≤ n̂p−Nn . Thus for each Zd there exists a certain mm in M such that

Zd =
∑

i∈I(1,n,x,mm)

Γ
(j)
i (x),

where I(1,n, x,mm) = {i : 2mkmpn + 1 ≤ ik ≤ 2mkmpn + pn ; k = 1, . . . , N}. Clearly the sets
I(1,n, x,mm) contain pNn sites and are separated by a distance of at least pn. So, according to
Lemma 4.5 of Carbon et al. (1997), one can find independent random variables Z∗1 , . . . Z

∗
L having

the same law as (Zd)d=1,...L, such that

L∑
d=1

E|Zd − Z∗d | ≤ 2CLpNn ψ
(
(L− 1)pNn , p

N
n

)
ϕ(pn).

Therefore, by the Bernstein and Markov inequalities we have:
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P
(
T (n, x, i) ≥ ηn̂hjHE [K1(x)]

)
≤ B1 +B2,

where

B1 = P

(∣∣∣∣∣
L∑
d=1

Z∗d

∣∣∣∣∣ ≥ Lηn̂hjHE [K1(x)]

2L

)
≤ 2 exp

(
− (ηn̂hjHE [K1(x)])2

LV ar [Z∗1 ] + CpNn ηn̂h
j
HE [K1(x)]

)
,

and

B2 = P

(
L∑
d=1

|Zd − Z∗d | ≥
ηn̂hjHE [K1(x)]

2

)

≤ 1

ηn̂hjHE [K1(x)]

L∑
d=1

E|Zd − Z∗d |

≤ 2LpNn (ηn̂hjHE [K1(x)])−1ψ
(
(L− 1)pNn , p

N
n

)
ϕ(pn).

Since, n̂ = 2NLpNn and ψ
(
(L− 1)pNn , p

N
n

)
≤ pNn we get for η = η0

√
log n̂

n̂h2j−1H φx(hK)
,

B2 ≤ n̂pNn (log n̂)−1/2
(
n̂h2j−1H φx(hK)

)−1/2
ϕ(pn),

with, pn = C
(

n̂h2j−1
H φx(hK)

log n̂

)1/2N
, we can write

B2 ≤ (log n̂)−1 n̂ϕ(pn). (23)

Consequently, from (H7), we have

∑
n∈In

n̂ϕ(pn) <∞.

Let us focus now on B1. For this, let us evaluate asymptotically V ar [Z∗1 ]. Indeed,

V ar [Z∗1 ] = V ar

 ∑
i∈I(1,n,x,1)

Γ
(j)
i (x)

 =
∑

i,i′∈I(1,n,x,1)

∣∣∣Cov(Γ
(j)
i (x),Γ

(j)
i′ (x))

∣∣∣ .
Let, Qn =

∑
i∈I(1,n,x,1)

V ar
[
Γ
(j)
i (x)

]
and Rn =

∑
i6=i′∈I(1,n,x,1)

∣∣∣Cov(Γ
(j)
i (x),Γ

(j)
i′ (x))

∣∣∣.
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It is clear that under assumption (H6), we have

V ar[Γ
(j)
i (x)] ≤ hjHV ar[∆i(x)].

As well as by assumptions (H1) and (H2), we have

V ar[Γ
(j)
i (x)] = O

(
hjHφx(hK)

)
,

therefore,

Qn = O
(
pNn h

j
Hφx(hK)

)
.

Concerning Rn, we introduce the followings sets:

S1 = {i, j ∈ I(1,n, x,1) : 0 < ‖i− j‖ ≤ cn}, S2 = {i, j ∈ I(1,n, x,1) : ‖i− j‖ > cn},

where cn is a real sequence that converges to +∞ and will be made precise later. Split Rn into
two separate summations over sites in S1 and S2:

Rn =
∑

(i,j′)∈S1

∣∣∣Cov (Γ
(j)
i (x),Γ

(j)
i′ (x)

)∣∣∣+
∑

(i,j)∈S2

∣∣∣Cov (Γ
(j)
i (x),Γ

(j)
i′ (x)

)∣∣∣
= R1

n +R2
n.

Note that (H6) and for j = 1 the conditional density of (Yi, Yi′) given (Xi, Xi′) is continuous at
(tk, tk) allow to show that

E
(
H(j)(h−1H (tk − Yi))H(j)(h−1H (tk − Yi′))|(Xi, Xi′)

)
= O(h2H),

while (H1) and (H3) imply that

E
(
H(j)(h−1H (tk − Yi))|Xi

)
= O(hH).

Moreover, on one hand, we have:

R1
n =

∑
(i,j)∈S1

∣∣∣E [Ki(x)H
(j)
i (tk)Kj′(x)H

(j)
i′ (tk)

]
− E

[
Ki(x)H

(j)
i (tk)

]
E
[
Ki′(x)H

(j)
i′ (tk)

]∣∣∣
≤ CpNn c

N
n h

2
Hφx(hK)

(
(φx(hK))1/a + hHφx(hK)

)
≤ CpNn c

N
n h

2
Hφx(hK)(a+1)/a.
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On the other hand, as the random variables Ki and (x)H
(j)
i are bounded, from Lemma 2.1(ii) of

Tran (1990), we deduce

|Cov (∆i(x),∆i′(x))| ≤ Cϕ (‖i− i′‖) ,

then,

R2
n ≤ C

∑
(i,i′)∈S2

ϕ (‖i− i′‖) ≤ CpNn
∑

i:‖i‖≥cn

ϕ (‖i‖)

≤ CpNn c
−Na
n

∑
i:‖i‖≥cn

‖i‖Na ϕ (‖i‖) .

Let cn = (hHφx(hK))−1/Na, then, we have

R2
n ≤ CpNn c

−Na
n

∑
i:‖i‖≥cn

‖i‖Na ϕ (‖i‖)

≤ CpNn hHφx(hK)
∑

i:‖i‖≥cn

‖i‖Na ϕ (‖i‖) .

Because of (3) and (H2), we get R2
n ≤ CpNn hHφx(hK). Furthermore, under this choice of cn we

have R1
n ≤ CpNn hHφx(hK). Hence

V ar [Z∗1 ] = O
(
pNn hHφx(hK)

)
.

By using this last result, together with the definitions of pn, L and η, we get

B1 ≤ exp (−Cη0 log n̂) .

Consequently, an appropriate choice of η0 completes the proof of the first part of this lemma.

• Concerning (T3): because of (20) we have:

sup
y∈SR

∣∣∣EF̂ (j)
N (y|x)− EF̂ (j)

N (tk(y)|x)
∣∣∣ ≤ C

ln

hj+1
H

.

Using analogous arguments as for T1, we can show for n large enough:

P

(
sup
y∈SR

∣∣∣EF̂ (j)
N (y|x)− EF̂ (j)

N (tk(y)|x)
∣∣∣ > η

√
log n

nh2j−1H φx(hK)

)
= 0. (24)

2
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Proof of Lemma 3.20:

First, for E[f̂ ′
x

N(y)], we start by writing

E[f̂ ′
x

N(y)] =
E
[
K1E[h−2H H

′′
1 |X]

]
E[K1]

with, h−2H E
[
H
′′

1 |X
]

=

∫
R
H
′′
(t)fX(y − hHt)dt.

The latter can be rewritten, by using a Taylor expansion under (H8), as follows

h−2H E[H
′′

1 |X] = fx(y) +
h2H
2

(∫
t2H

′′
(t)dt

)
∂2fx(y)

∂2y
+ o(h2H).

Thus we get

E
[
f̂ ′
x

N(y)
]

=
1

E[K1]

(
E
[
h2H
2
K1

∂2fx(y)

∂2y

] ∫
t2H

′′
(t)dt

)
+

1

E[K1]

(
E
[
K1f

X(y)
]

+ o(h2H)
)
.

Let, ψl(·, y) := ∂lf ·(y)
∂ly

for l ∈ {0, 2}. Since Φl(0) = 0, we have

E [K1ψl(X, y)] = ψl(x, y)E[K1] + E [K1 (ψl(X, y)− ψl(x, y))]

= ψl(x, y)E[K1] + E [K1 (Φl(d(x,X))]

= ψl(x, y)E[K1] + Φ′l(0)E [d(x,X)K1] + o(E [d(x,X)K1]).

So,

E
[
f̂ ′
x

N(y)
]

= fx(y) +
h2H
2

∂2fx(y)

∂y2

∫
t2H

′′
(t)dt+ o

(
h2H

E [d(x,X)K1]

E[K1]

)
+Φ′0(0)

E [d(x,X)K1]

E[K1]
+ o

(
E [d(x,X)K1]

E[K1]

)
.

Similarly to Ferraty et al. (2007); we show that

1

φx(hK)
E [d(x,X)K1] = hK

(
K(1)−

∫ 1

0

(sK(s))′βx(s)ds+ o(1)

)
,

and

1

φx(hK)
E [K1] = K(1)−

∫ 1

0

K ′(s)βx(s)ds+ o(1).
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Hence,

E
[
f̂ ′
x

N(y)
]

= fx(y) +
h2H
2

∂2fx(y)

∂y2

∫
t2H

′′
(t)dt

+hKΦ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) + o(h2H) + o(hK).

Second, concerning E[F̂ x
N(y)], we write by an integration by parts

E[F̂ x
N(y)] =

1

E[K1]
E [K1E[H1|X]] with E [H1|X] =

∫
R
H ′(t)FX(y − hHt)dt.

The same steps used to study E[f̂xN(y)] can be followed to prove that

E
[
F̂ x
N(y)

]
= F x(y) +

h2H
2

∂2F x(y)

∂y2

∫
t2H ′(t)dt

+hKΨ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) + o(h2H) + o(hK).

2

Proof of Lemma 3.22:

For the first quantity V ar[f̂ ′
x

N(y)], we have

s2n = V ar[f̂ ′
x

N(y)] =
1

(n̂h2HE [K1(x)])2
V ar

[∑
i∈In

Γi(x)

]
,

where

Γi(x) = Ki(x)H
′′

i (y)− E
[
Ki(x)H

′′

i (y)
]
.

Thus,

V ar[f̂xN(y)] =
1

(n̂h2HE [K1])2

∑
i6=j

Cov (Γi(x),Γj(x))︸ ︷︷ ︸
scovn

+
∑
i∈In

V ar (Γi(x))︸ ︷︷ ︸
svarn

=
V ar [Γ1]

n̂(h2HE [K1])2
+

1

(n̂h2HE [K1])2

∑
i6=j

Cov(Γi,Γj).
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Let us calculate the quantity V ar [Γ1(x)]. We have

V ar [Γ1(x)] = E
[
K2

1(x)H
′′2
1 (y)

]
−
(
E
[
K1(x)H

′′

1 (y)
])2

= E
[
K2

1(x)
] E [K2

1(x)H
′′2
1 (y)

]
E [K2

1(x)]

−(E [K1(x)])2
(
E [K1(x)H ′1(y)]

E [K1(x)]

)2

.

So, by using the same arguments as those used in previous lemma, we get

1

φx(hK)
E
[
K2

1(x)
]

= K2(1)−
∫ 1

0

(K2(s))′βx(s)ds+ o(1)

E
[
K2

1(x)H
′′2
1 (y)

]
E [K2

1(x)]
= h2Hf

x(y)

∫
H
′′2

(t)dt+ o(h2H)

E[K1(x)H
′′
1 (y)]

E [K1(x)]
= h2Hf

x(y) + o(h2H),

which implies that

V ar [Γi(x)] = h2Hφx(hK)fx(y)

∫
H
′′2

(t)dt

(
K2(1)−

∫ 1

0

(K2(s))′βx(s))ds

)
+o
(
h2Hφx(hK)

)
. (25)

Now let us focus on the covariance term. To do that, we define

E1 = {i, j ∈ In : 0 < ‖i− j‖ ≤ cn} and E2 = {i, j ∈ In : ‖i− j‖ > cn}.

For all (i, j) ∈ E2
1 , we write

Cov (Γi(x),Γj(x)) = E
[
Ki(x)Kj(x)H

′′

i (y)H
′′

j (y)
]
−
(
E
[
Ki(x)H

′′

i (y)
])2

,

and we use the fact that

E
[
H
′′

i (y)H
′′

j (y)|(Xi, Xj)
]

= O(h4H); ∀i 6= j, E
[
H
′′

i (y)|Xi

]
= O(h2H), ∀i.

Under (H2) and (H10), we get

E
[
KiKjH

′′

i H
′′

j

]
≤ Ch4HP [(Xi, Xj) ∈ B(x, hK)×B(x, hK)] ,
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and

E
[
Ki(x)H

′′

i (y)
]
≤ Ch2HP (Xi ∈ B(x, hK)) .

It follows that the hypotheses (H1), (H2), and (H10) imply that

Cov (Γi(x),Γj(x)) ≤ Ch2Hφx(hK)
(
φx(hK) + (φx(hK))1/a

)
.

So,

∑
E1

Cov (Γi(x),Γj(x)) ≤ C
(
n̂cNn h

4
H (φx(hK))1+

1
a

)
.

On the other hand, Lemma 6.2 and |Γi| ≤ C permit us to write that (i, j) ∈ E2
2

|Cov (Γi(x),Γj(x))| ≤ Cϕ (‖i− j‖) ,

and

∑
E2

Cov (Γi(x),Γj(x)) ≤ C
∑
E2

ϕ (‖i− j‖)

≤ Cn̂
∑

i:‖i‖>cn

ϕ (‖i‖)

≤ Cn̂c−Nan

∑
i:‖i‖>cn

‖i‖Naϕ (‖i‖) .

Finally, we have:

∑
i6=j

Cov(Di, Dj) ≤

Cn̂cNn h
4
Hφ

1+ 1
a

x (hK) + Cn̂c−Nan

∑
i:‖i‖>cn

‖i‖Naϕ (‖i‖)

 .

Let cn = (h
4/(a+1)
H φ

1/a
x (hK))−1/N . Then we obtain that

∑
Cov (Γi(x),Γj(x)) = o

(
n̂h2Hφx(hK)

)
.

In conclusion, we have
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V ar[f̂ ′
x

N(y)] =
fx(y)

n̂h4Hφx(hK)

(∫
H
′′2

(t)dt

)
(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

)2


+o

(
1

n̂h2Hφx(hK)

)
. (26)

Now, for F̂ x
N(y), (resp. F̂ x

D) we replace H ′′i (y) by Hi(y) (resp. by 1) and we follow the same
ideas, under the fact that H ≤ 1

V ar[F̂ x
N(y)] =

F x(y)

n̂φx(hK)

(∫
H ′

2

(t)dt

)
(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

)2


+o

(
1

n̂φx(hK)

)
,

and

V ar[F̂ x
D] =

1

n̂φx(hK)


(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

)2
+ o

(
1

n̂φx(hK)

)
.

This yields the proof. 2

Proof of Lemma 3.23:

The proof of this lemma follows the same steps as the previous Lemma. For this, we keep the
same notation and we write

Cov(f̂ ′
x

N(y), F̂ x
N(y)) =

1

n̂h2H(E [K1(x)])2
Cov (Γ1(x),∆1(x))

+
1

n̂2h2H(E [K1(x)])2

∑
i6=j

Cov(Γi(x),∆j(x)),

where,

∆i(x) = Ki(x)Hi(y)− E [Ki(x)Hi(y)] .

For the first term, we have under (H9)
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Cov (Γ1(x),∆1(x)) = E[K2
1(x)H1(y)H

′′

1 (y)]− E[K1(x)H1(y)]E[K1(x)H
′′

1 (y)]

= O(h2Hφx(hK)) +O(h2Hφ
2
x(hK))

= O(h2Hφx(hK)).

Therefore,

1

n̂h2H(E [K1(x)])2
Cov (Γ1(x),∆1(x)) = O

(
1

n̂φx(hK)

)
= o

(
1

n̂h2Hφx(hK)

)
. (27)

Furthermore, for the covariance term we split the sum over the two subsets E1 and E2 defined
with, cn = (h

2/(a+1)
H φ

1/a
x (hK))−1/N and we use once again the boundedness of K and H , and

the fact that (1) and (H5) imply that E
(
H
′′

i (y)|Xi

)
= O(h2H), ∀; i to get over ∀i, j ∈ E1 that

Cov (Di,∆j) ≤ Ch2Hφx(hK)(φx(hK) + φ
1
a
x (hK)).

While over E2 we apply Lemma 6.2 to write that

|Cov (Γi(x),∆j(x))| ≤ Cϕ (‖i− j‖) .

Consequently, because of the definition of cn, we have

∑
i6=j

Cov(Γi(x),∆j(x)) =
∑
E1

Cov (Γi(x),∆j(x)) +
∑
E2

Cov (Γi(x),∆j(x)) = o (n̂φx(hK)) .

(28)

From (27) and (28), we deduce that

Cov(f̂ ′
x

N(y), F̂ x
N(y)) = o

(
1

n̂h2Hφx(hK)

)
.

The same arguments can be used to shows that

Cov(f̂ ′
x

N(y), F̂ x
D) = o

(
1

n̂h2Hφx(hK)

)
,

and
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Cov(F̂ x
N(y), F̂ x

D) = o

(
1

n̂φx(hK)

)
.
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