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Abstract 

 
In this article, a generalization of the new Weibull-Pareto (NWP) distribution is derived. The 

quadratic equation (QRTM rank transmutation map) studied by Shaw and Buckley (2007), has 

been used to develop the generalization. The proposed distribution includes as special cases with 

the new Weibull-Pareto distribution (NWP), transmuted Weibull distribution (TW), transmuted 

Rayleigh (TR) distribution and transmuted exponential (TE) distribution. Various structural 

properties of the new distribution, including of moments, quantiles, moment generating function, 

mean deviations, reliability analysis, order statistics and Renyi entropy are derived. The 

maximum likelihood estimation method has been proposed for the estimation of the parameters 

of the TNWP distribution. The usefulness of the derived model is illustrated using two data sets 

and it is proved that TNWP distribution is a better distribution than other distributions based on 

some goodness of fit measures. Therefore, we conclude that the new model attracts applications 

in several areas such as engineering, survival data, economics and others. 
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1.  Introduction 
 

Several continuous probability distributions have been expansively utilized in literature for 

modeling of real data sets in numerous areas, such as engineering, economics, biomedical studies 

and environmental sciences. However, generalized forms of these probability distributions are 

obviously needed for applied areas. Therefore, in the last few years, several generalized 

distributions have been proposed based on different modification methods. These modification 

methods require the addition of one or more parameters to base model which could provide 

better adaptability in the modeling of real-life data. Numerous generalized families are also 

proposed by authors for the derivation of new generalized distribution. For example, McDonald-

G by McDonald (1984), Marshall–Olkin generated by Marshall and Olkin (1997), beta-G by 

Eugene et al. (2002), transmuted-G by Shaw and Buckley (2007), gamma-G (type I) by Ristić 

and Balakrishnan (2012), Weibull-G by Bourguignon et al. (2014), Logistic-X by Tahir et al. 

(2016), Odd Log-logistic by Cordeiro et al. (2017), Odd Fréchet-G by Haq and Elgarhy (2018) 

and many more (see Tahir and Cordeiro 2016) for the derivation of new models.  

 

Pareto distribution is power law distribution that originally developed by (Vilfredo Pareto). This 

distribution is used in the description of social, scientific, geophysical and actuarial and many 

other types of observable phenomena. Recently some extensions of Pareto distribution are 

considered. For example, Akinsete et al. (2008) introduced beta-Pareto distribution with various 

properties. Shawky and Abu-Zinadah (2009) developed exponentiated Pareto distribution, 

Exponential Pareto Distribution (Al-Kadim and Boshi 2013), Kumaraswamy Pareto by 

Bourguignon et al. (2013), Transmuted Pareto distribution by (Merovci and Puka 2014) and 

Weibull-Pareto by (Tahir et al. 2016). Further, Nasiru and Luguterah (2015) introduced the new 

Weibull-Pareto (NWP) distribution. 

 

The cumulative distribution function (cdf) of NWP distribution is defined as,  
 

𝐺(𝑥) =   1 − ⅇ−δ(
x

θ
)

β

;            θ, β, δ >  0.                               (1) 

 

and its probability density function (pdf) is  

 

g(𝑥) =
βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x

θ
)

β

 ,    θ, β, δ >  0.                                         (2) 

 

The shape parameter is β, whereas θ and δ are scale parameters. 

 

In this study, we derive subject distribution by utilizing the quadratic rank transmutation map 

(QRTM) considered by Shaw and Buckley (2007) and we drive several mathematical properties 

of a new generalized distribution. We refer this new distribution as a transmuted new Weibull-

Pareto distribution (TNWP) distribution. Using this approach various generalized distributions 

were generated. For example, Khan and King (2013) presented transmuted modified Weibull 

distribution. Afify et al. (2014) studied transmuted complementary Weibull geometric 

distribution. Merovci (2013) studied transmuted Rayleigh distribution. Haq (2016) derived 

transmuted exponentiated inverse Rayleigh distribution, Granzotto et al. ( 2014 ) transmuted Log-

Logistic distribution while Tiana et al. (2014) developed the transmuted linear Exponential 
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distribution. Haq et al. (2016) derived and studied transmuted Power function distribution. Aryal 

and Tsokos (2011) introduced another generalization of the Weibull distribution called 

transmuted Weibull distribution and Haq et al. (2017) derived transmuted Weibull Fréchet 

distribution. 

 

For an arbitrary baseline cdf G(𝑥), Shaw and Buckley (2007) defined the TG family with cdf and 

pdf given by 

 

F (𝑥) = (1 + 𝜆) 𝐺 (𝑥) – 𝐺2
 (𝑥), |𝜆| ≤ 1,                          (3) 

 

and 

 

f (𝑥) = 𝑔(𝑥)[1 + 𝜆 − 2𝜆𝐺(𝑥)], |𝜆| ≤ 1,                           (4) 

 

respectively, where |𝜆| ≤ 1,  f(𝑥) and g(x) are the corresponding pdf’s. If we put 𝜆 = 0 in (3) and 

(4) it reduces to the parent model. 

 

Rest of the article is prearranged as follows. Section 2 shows the demonstration of the 

transmuted new Weibull-Pareto (TNWP) distribution and discusses its limiting behavior. In 

Section 3, reliability behavior of the new model is presented. We derive the statistical properties 

in Section 4. Expressions of order statistics are derived in Section 5. In Section 6, maximum 

likelihood method is presented for parameter estimation. To access accuracy of derived 

distribution, real data applications are given in Section 5 and finally, the concluding remarks are 

given in the last section. 

 

2. Transmuted New Weibull-Pareto Distribution 

 
The TNWP distribution derived from incorporating equations (1) & (2) into equations (3) and 

(4). The cdf and pdf of the TNWP are: 

 

𝐹TNWP(𝑥) =  (1 − ⅇ−δ(
x

θ
)

β

)(1 + λⅇ−δ(
x

θ
)

β

) .                              (5) 

 

𝑓TNWP(𝑥) =
βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x

θ
)

β

(1 − λ + 2λⅇ−δ(
x

θ
)

β

) ;   θ, β, δ >  0, |λ|  ≤  1.                    (6) 
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Figure 1: pdf curves for selected values of parameters 

 

The proposed distribution is an extremely adaptable model that approaches to several distinct 

distributions with the different combination of parameters. The new model has 11 submodels 

special cases of widely known and unknown probability models. 

 

Corollary 1.  

 

We get the following special cases if X is a random variable specifying with pdf of TNWP 

 

No. Reduced Model 
Parameters 

Author 
θ 𝜷 δ 𝜆 

1 NWP θ 𝛽 δ 0 Nasiru and Luguterah (2015) 

2 TME θ 1 δ 𝜆 New 

3 TMR θ 2 δ 𝜆 New 

4 ME θ 1 δ 0 New 

5 MR θ 2 δ 0 New 

6 TW θ 𝛽 1 𝜆 Aryal and Tsokos (2011) 

7 W θ 𝛽 1 0 Waloddi Weibull (1951) 

8 TE θ 1 1 𝜆 Shaw et al.(2007) 

9 TR θ 2 1 𝜆 Merovci, F. (2013) 

10 R θ 2 1 0 Lord Rayleigh (1880) 
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Lemma 2.1.   
 

Limiting behavior of pdf of TNWP distribution for x → 0, 
 

lim
x→0

𝑓TNWP(x) = {

∞,                              𝛽 < 1,
βδ

θ
(1 + λ),             𝛽 = 1

0  ,                             𝛽 < 1,

,   

 

and limiting behavior of pdf of TNWP distribution for x → ∞, 
 

limx→∞ 𝑓TNWP(x) = 0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝛽.         
       

3.  Reliability Analysis 

 
In this section, reliability analysis such as survival function (sf) and hazard function (hf) of 

TNWP are studied. 

 

3.1. Survival Function 

 

Survival function is the likelihood that a system will survive beyond a specified time. Reliability 

function of the TNWP denoted by STNWP(x), can be derived as STNWP (x) = 1 − 𝐹TNWP (x), 

 

𝑆(x;  θ, β, δ, λ) =  ⅇ−δ(
x

θ
)

β

(1 − λ + λⅇ−δ(
x

θ
)

β

).                                   (7) 

 

3.2. Hazard Rate Function 

 

Hazard function can be defined as a conditional density, given that the event has not yet occurred 

prior to time t. Hazard function of the TNWP is derived by ℎTNWP(x) = fTNWP (x)/ RTNWP(x), 

 

hTNWP(𝑥)  =
𝛽𝛿

𝜃
 (

𝑥

𝜃
)

𝛽−1 (1−𝜆+2𝜆ⅇ
−𝛿(

𝑥
𝜃

)
𝛽

)

(1−𝜆+𝜆ⅇ
−𝛿(

𝑥
𝜃

)
𝛽

)

.                        (8) 

 

The pattern of hazard function with different values of parameters θ, β, δ and λ is illustrated in 

Figure (2)  
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Figure 2: Hazard curves for selected parameter values 

 

From the above figure of hazard function, the following can be perceived: 

 

1) When 𝛽 > 1, hazard function is an increasing function of 𝑥. So, in this case, TNWP 

is right for modeling the components wears speedier per time t. 

 

2) When 𝛽 < 1, hazard function is a decreasing function of 𝑥, means TNWP is right for 

modeling the components wears slowly per time t. 

 

3) When 𝛽 =1 and 𝜆 = 0, hazard rate function is constant. So, TNWP is also be used for 

modeling the components with constant hazard rate.  
 

4. Some Structural Properties 

 
4.1. Moments 

 

 The 𝑟𝑡ℎ non-central moments of TNWP is defined by: 

 

E(Xr ) =  θrδ
−r

β Γ (
β+r

β
) (1 − λ + λ2

−r

β ).                                           (9) 

 

Proof:  

 

𝐸(Xr ) =  ∫ xr∞

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x

θ
)

β

(1 − λ + 2λⅇ−δ(
x

θ
)

β

) dx. 

            = (1 − 𝜆) ∫ xr∞

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x

θ
)

β

 dx +  𝜆 ∫ 2xr∞

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−2δ(
x

θ
)

β

 dx.      (10) 

 

Consider first integral of (10) 
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  I1 =   ∫ xr
∞

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x
θ

)
β

 dx. 

 

Making substitution 

 

𝑡 = δ (
x

θ
)

β

, 𝑑𝑡 =
βδ

θ
 (

x

θ
)

β−1

dx. 

 

We have 

 

 I1 =  ∫ (θ (
𝑡

δ
)

1

β
)

r
∞

0
ⅇ−tdt. 

 

     =  θrδ
−r

β ∫ (𝑡)
𝑟

𝛽
∞

0
ⅇ−tdt. 

 

     = θr δ
−r

β Γ (
β+r

β
).                                                                          (11) 

 

Similarly, for second integral part of (10)  

 

I2 = ∫ 2xr
∞

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−2δ(
x
θ

)
β

 dx, 

 

making substitution 

 

𝑡 = 2δ (
x

θ
)

β

, 𝑑𝑡 = 2
βδ

θ
 (

x

θ
)

β−1

dx. 

 
We have 

 

 I2 = ∫ (θ (
𝑡

2δ
)

1
β

)

r
∞

0

ⅇ−tdt. 

 

     =  θr(2δ)
−r

β ∫ (𝑡)
𝑟

𝛽
∞

0
ⅇ−tdt. 

 

     = θr(2δ)
−r

β Γ (
β+r

β
).                                                    (12) 

 

Substituting (11) and (12) in (10), we get 

 

𝐸(𝑋𝑟) = 𝜃𝑟𝛿
−𝑟
𝛽 𝛤 (

𝛽 + 𝑟

𝛽
) (1 − 𝜆 + 𝜆2

−𝑟
𝛽 ). 
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When r = 1,  

 

 E(X) = θδ
−1
β Γ (

β + 1

β
) (1 − λ + λ2

−1
β ). 

 

If r = 2,  

 

E(X2) = θ2δ
−2
β Γ (

β + 2

β
) (1 − λ + λ2

−2
β ). 

 

So, the variance is can be presented as  

 

Var(X) = θ2δ
−2
β  [Γ (

β + 2

β
) (1 − λ + λ2

−2
β ) − {Γ (

β + 1

β
) (1 − λ + λ2

−1
β )}

2

]. 

 

 

4.2. Incomplete Moments 

 

For TNWP, 𝑟𝑡ℎ incomplete moment is defined by 

 

𝑀𝑟(𝑧) =  θrδ
−r

β [(1 − λ)γ (
β+r

β
, δ (

z

θ
)

β

) + 𝜆2
−r

β (
β+r

β
, 2 δ (

z

θ
)

β

)].                     (13) 

 

Proof: 
 

  𝑀𝑟(𝑧) = ∫ xr
z

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x
θ

)
β

(1 − λ + 2λⅇ−δ(
x
θ

)
β

) dx .      

             =  (1 − 𝜆) ∫ xrz

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x

θ
)

β

 dx  +  𝜆 ∫ 2xrz

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−2δ(
x

θ
)

β

 dx. 

 

Making substitution 

 

𝑡 = δ (
x

θ
)

β

, 𝑑𝑡 =
βδ

θ
 (

x

θ
)

β−1

dx  and   𝑥 = θ (
𝑡

𝛿
)

1

𝛽
. If 𝑥 = 0, t = 0 and if 𝑥 = 𝑧, t= δ (

z

θ
)

β

, 

 

and further simplifying, we have 

 

𝑀𝑟(𝑧) =  𝜃𝑟𝛿
−𝑟
𝛽 [(1 − 𝜆)𝛾 (

𝛽 + 𝑟

𝛽
, 𝛿 (

𝑧

𝜃
)

𝛽

) + 𝜆2
−𝑟
𝛽  𝛾 (

𝛽 + 𝑟

𝛽
, 2 𝛿 (

𝑧

𝜃
)

𝛽

)]. 

 
4.3 Moment Generating Function 

 

For TNWP, moment generating function (mgf) is defined by 

8
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 Mx(t) =  ∑
ti

i!

∞
i=0  θiδ

−i

β  Γ (
β+i

β
) (1 − λ + λ2

−i

β ).                               (14) 

 

Proof:  

 

By definition 

 

Mx(t)  = 𝐸(ⅇtx ) =  ∫ ⅇtx
∞

0

βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x
θ

)
β

(1 − λ + 2λⅇ−δ(
x
θ

)
β

) dx. 

 

Using Taylor series 

 

Mx(t)  =  ∫ (1 +
𝑡𝑥

1!
+

𝑡2𝑥2

2!
+ ⋯ + 

𝑡𝑛𝑥𝑛

𝑛!
+ ⋯ )

∞

0

f(x)dx =  ∑
𝑡𝑖

𝑖!

∞

𝑖=0

 𝐸(𝑋𝑖). 

 

Mx(t) =  ∑
ti

i!

∞

i=0

 θiδ
−i
β  Γ (

β + i

β
) (1 − λ + λ2

−i
β ). 

 

4.4. Quantile Function and Random Number Generation 

 

By inverting the cumulative distribution function, the quantile function for TNWP is derived as 

 

𝑄(𝜍) =  𝜃 {
1

𝛿
ln (

2𝜆

−(1−λ)+ √(1−λ)2−4𝜆(𝑞−1)
 )}

1

𝛽
.                                 (15) 

 

We will obtain the distribution median by setting ς = 0.5 in (15) 

 

𝑄(0.5) =   𝜃 {
1

𝛿
𝑙𝑛 (

2𝜆

−(1 − 𝜆) +  √1 + 𝜆2
 )}

1
𝛽

. 

 
The random number x of the TNWP(x, θ, β, δ, λ) is defined by the following relation 

 

FTNWP(x) = ζ, where 𝜁~ (0, 1), then 

 

 (1 − ⅇ−δ(
x

θ
)

β

) (1 + λⅇ−δ(
x

θ
)

β

) = ζ . 

 

Solving for x, we have 

 

 𝑋 =  𝜃 {
1

𝛿
ln (

2𝜆

−(1−λ)+ √(1−λ)2−4𝜆(𝑞−1)
 )}

1

𝛽
.                                 (16) 
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4.5.  Mean deviation  

 

For the TNWP, the mean deviation about mean can be defind as 

 

𝐸(|𝑥 − 𝜇|) =  ∫ |𝑥 − 𝜇|𝑓(𝑥)
∞

0

 𝑑𝑥 =  2µ𝐹(µ) − 2 ∫ 𝑥𝑓(𝑥)
µ

0

 𝑑𝑥. 

 

So, we have 

 

𝐸(|𝑥 − 𝜇|) = 2θδ
−1

β [Γ (
β+1

β
) (1 − ⅇ−δ(

µ

θ
)

β

) (1 + λⅇ−δ(
µ

θ
)

β

) (1 − λ + λ2
−1

β ) −

                                           {(1 − λ )γ (
β+1

β
, δ (

µ

θ
)

β

) +  λ(2)
−1

β γ (
β+1

β
, 2 δ (

µ

θ
)

β

)}].                (17) 

 

The mean deviation about median of the distribution is given by 

 

𝐸(|𝑥 − 𝑚|) =  ∫ |𝑥 − 𝑚|𝑓(𝑥)
∞

0

 𝑑𝑥 = 𝜇 −  2 ∫ 𝑥𝑓(𝑥)
𝑚

0

 𝑑𝑥. 

 

= θδ
−1

β [Γ (
β+1

β
) (1 − λ + λ2

−1

β ) −  2 {(1 − λ )γ (
β+1

β
, δ (

𝑚

θ
)

β
) +  λ(2)

−1

β γ (
β+1

β
, 2 δ (

𝑚

θ
)

β
)}] .  (18) 

 

4.6.   Rényi entropy  

 

For TNWP, the Rényi entropy can be obtained using the expression. 

 

𝐼(𝛼) =
1

1 − 𝛼
log [∫ 𝑓𝛼(𝑥)

∞

0

𝑑𝑥] . 

 

where α is the order of the entropy measure 

 

𝑓𝛼(𝑥) = [
βδ

θ
 (

x

θ
)

β−1

ⅇ−δ(
x
θ

)
β

(1 − λ + 2λⅇ−δ(
x
θ

)
β

)]

𝛼

. 

= [(1 − λ)
𝛽𝛿

𝜃
 (

𝑥

𝜃
)

𝛽−1

ⅇ−𝛿(
𝑥
𝜃

)
𝛽

+ 2λ
βδ

θ
 (

x

θ
)

β−1

ⅇ−2δ(
x
θ

)
β

]

𝛼

. 

 

𝑓𝛼(𝑥) = (1 − λ)𝛼 (
𝛽𝛿

𝜃
)

𝛼

 (
𝑥

𝜃
)

𝛼(𝛽−1)

ⅇ−𝛼𝛿(
𝑥
𝜃

)
𝛽

+ (2λ)𝛼 (
𝛽𝛿

𝜃
)

𝛼

 (
x

θ
)

𝛼(𝛽−1)

ⅇ−2αδ(
x
θ

)
β

. 

 

Now, 

 

∫ 𝑓𝛼(𝑥)
∞

0
= [(1 − λ)𝛼 ∫ (

𝑥

𝜃
)

𝛼(𝛽−1)

ⅇ−𝛼𝛿(
𝑥

𝜃
)

𝛽
∞

0
𝑑𝑥   + (2λ)𝛼 ∫ (

𝑥

𝜃
)

𝛼(𝛽−1)

ⅇ−2𝛼𝛿(
𝑥

𝜃
)

𝛽
∞

0
𝑑𝑥] . 
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Making substitution 

 

𝑡 = δ (
x

θ
)

β

, 𝑥 = θ (
𝑡

𝛼𝛿
)

1

𝛽
 and  𝑑𝑥 =

θ

𝛼𝛿β
 (

t

𝛼𝛿
)

1

𝛽
−1

dt. 

 

and get the expression 

 

=  (
𝜃

𝛽𝛿
1
𝛽

)

(1−𝛼)

(
1

𝛼
)

𝛼(1−
1

𝛽
)+

1

𝛽
Γ (𝛼 −

α

𝛽
+

1

𝛽
)   {(1 − λ)𝛼  + (λ)𝛼 (

1

2
)

1

𝛽
(1−𝛼)

}. 

 

So the final expression of renyi entropy is, 

 

𝐼(𝛼) =  
1

1−𝛼
log [(

𝜃

𝛽𝛿
1
𝛽

)

(1−𝛼)

(
1

𝛼
)

𝛼(1−
1

𝛽
)+

1

𝛽
𝛤 (𝛼 −

𝛼

𝛽
+

1

𝛽
) {(1 − 𝜆)𝛼  + (𝜆)𝛼 (

1

2
)

1

𝛽
(1−𝛼)

}].          (19) 

 

5. Order Statistics 

 
Let a random sample of size n, and X1, X2, . . . , X𝑛 from TNWP(x, θ, β, δ, λ) having cumulative 

distribution function and the corresponding probability density function, as in (5) and (6), 

correspondingly. Then random variables X(1), X(2), … , X(𝑛) are refereed the order statistics has 

probability density function of the 𝑟𝑡ℎ order statistic, 𝑋(𝑟), as 

 

𝑓𝑋(𝑟)
(𝑥) =  

𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟 , 

 

for r=1,2,3,…,n. 

 

r𝑡ℎ order statistic pdf for TNWP is 

 

𝑓𝑋(𝑟)
(𝑥) =

  
𝑛!

(𝑟−1)!(𝑛−𝑟)!
ⅇ−δ(

x

θ
)

β

(1 − λ + λⅇ−δ(
x

θ
)

β

) [(1 − ⅇ−δ(
x

θ
)

β

) (1 + λⅇ−δ(
x

θ
)

β

)]

𝑟−1

 [(1 −

λ )ⅇ−δ(
x

θ
)

β

+  𝜆ⅇ−2δ(
x

θ
)

β

]

𝑛−𝑟

.                                                         (20) 

 

Largest order statistic pdf for TNWP is 

 

𝑓𝑋(𝑛)
(𝑥) =  𝑛

βδ

θ
 (

x

θ
)

β−1
ⅇ

−δ(
x

θ
)

β

(1 − λ + λⅇ
−δ(

x

θ
)

β

) [(1 − ⅇ
−δ(

x

θ
)

β

) (1 + λⅇ
−δ(

x

θ
)

β

)]

𝑛−1

,        (21) 

 

and smallest order statistic pdf for TNWP is  
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𝑓𝑋(1)
(𝑥) =  𝑛

βδ

θ
 (

x

θ
)

β−1
ⅇ

−δ(
x

θ
)

β

(1 − λ + 2λⅇ
−δ(

x

θ
)

β

) [(1 −  λ + λⅇ
−δ(

x

θ
)

β

)]

𝑛−1

.                  (22) 

 

6.   Maximum Likelihood Estimation 

 
Consider the random sample 𝑥1, 𝑥2,.., 𝑥𝑛 of size 𝑛 from TNWP)x, θ, β, δ, λ)  with probability 

density function in (6). Let 𝑋~TNWP)x, θ, β, δ, λ)  and let )θ, β, δ, λ)
 T

 is the vector of the 

distribution parameters. The log-likelihood function of TNWP for )θ, β, δ, λ)
 T 

can be defined as  

 

𝐿(x1, x2, … , xn, θ, β, δ, λ) =  ∏ 𝑓TNWP(x, θ, β, δ, λ).

𝑛

𝑖=1

 

 

𝐿 =  
β𝑛δ𝑛

θ𝑛
∏ (

𝑥𝑖

θ
)

β−1
𝑛
𝑖=1 ⅇ−δ ∑ (

𝑥𝑖
θ

)
β

𝑛
𝑖=1 ∏ (1 − λ + 2λⅇ−δ(

𝑥𝑖
θ

)
β

) .𝑛
𝑖=1                               (23) 

 

So, we have log-likelihood function Ł = ln𝐿 
 

Ł =  n(ln 𝛽 +  ln 𝛿 − ln 𝜃) + (𝛽 − 1) ∑ ln (
𝑥𝑖

θ
) − 𝛿 ∑ (

𝑥𝑖

θ
)

𝛽
𝑛
𝑖=1 +𝑛

𝑖=1 ∑ ln (1 − λ +𝑛
𝑖=1

2λⅇ−δ(
𝑥𝑖
θ

)
β

) .                                                                                                                        (24) 

Differentiating equation (21) on θ, 𝛽, δ & λ then equating to zero, MLEs of θ, 𝛽, δ and λ are 

attained  

 

∂Ł

∂θ
 =

−nβ

θ
+

βδ

θ
∑ (

𝑥i

θ
)

β
n
i=1 +

2λβδ

θ
∑

(
𝑥i
θ

)
β

ⅇ
−δ(

𝑥i
θ

)
β

1−λ+2λⅇ
−δ(

𝑥i
θ

)
β

n
i=1 = 0.                                (25) 

 

∂Ł

∂β
 =  

n

β
+ ∑ [1 − 𝛿 (

𝑥𝑖

𝜃
)

β

] ln (
𝑥𝑖

θ
) 𝑛

𝑖=1 −  2λ𝛿 ∑
ⅇ

−δ(
xi
θ

)
β

(
𝑥𝑖
𝜃

)
β

ln(
𝑥𝑖
θ

)

1−λ+2λⅇ
−δ(

𝑥𝑖
θ

)
β

𝑛
𝑖=1 = 0.                  (26)  

 

∂Ł

∂δ
 =

𝑛

𝛿
−  ∑ (

𝑥𝑖

𝜃
)

β

−  2λ ∑
ⅇ

−δ(
xi
θ

)
β

(
𝑥𝑖
𝜃

)
β

1−λ+2λⅇ
−δ(

𝑥𝑖
θ

)
β

𝑛
𝑖=1 = 0.n

i=1                                  (27) 

 

∂Ł

∂λ
 = ∑

2ⅇ
−δ(

xi
θ

)
β

−1

1−λ+2λⅇ
−δ(

𝑥𝑖
θ

)
β

𝑛
𝑖=1 = 0.                                   (28) 

 

The maximum likelihood estimators (𝜃,𝛽̂,𝛿,𝜆̂)
 T

  of TNWP can be found by equating (22) - (25) 

to zero and these equations are not expressed in close form. So, iterative methods must be 

employed to find the value of parameters that “solves" this equation )22) - (25). The solution of 
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these equation will yield the maximum likelihood estimators 𝜃̂, 𝛽,̂ 𝛿 and 𝜆̂ of TNWP. All 

derivatives of second order exist for four parameters of new transmuted Weibull Pareto 

distribution TNWP)x, θ, β, δ, λ) 𝑝𝑑𝑓.  

 

7. Application 

 
We compare our proposed distribution with the new Weibull-Pareto distribution (NWP), the 

Kumaraswamy Pareto distribution (Kw-P), the transmuted Pareto distribution (TP) and the 

Pareto Distribution (P). By utilizing the maximum likelihood method, we estimate distribution 

parameters. The goodness of fit measures including the minus log-likelihood function (-LL), 

Akaike information criterion (AIC), Bayesian information criterion (BIC) and consistent Akaike 

information criterion (CAIC) are calculated to make a comparison among the fitted distributions. 

Generally, the lesser values of the above-mentioned measures, the better and the most 

appropriate fit to the information data set. 

 

Data Set 1: 

 

This data set is based on “exceedances of flood peaks )in m3/s) of the Wheaton River near 

Carcross in Yukon Territory, Canada”. For years 1958–1984. This information set contains 72 

exceedances. Pereira et al. (2012) and Merovcia et al. (2014) analyzed this data.  

 

Data Set 2: 

 

The Floyd River located in James USA is used as a third data set. The Floyd River flood rates for 

years 1935–1973”. The descriptive statistics of both data sets is given in Table 1. 

 

Table 1: Descriptive statistics 

 

 Min. Q1 Median Mean Q3 Max. 

Data-1 0.100 2.125 9.500 12.200 20.12 64.00 

Data-2 318 1590 3570 6771 6725 71500 
 

 

The maximum likelihood estimates and the goodness of fit measures are computed by R software 

which is presented in the table below. 
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Table 2: Comparison of maximum likelihood estimates for Data-1 

Model ML Estimates SE -2LL AIC CAIC BIC 

TNWP 

β = 0.895296 

δ = 0.029834 

θ =0.225537 

λ =-0.032583 

0.110855 

0.072399 

0.629521 

0.383984 

502.991 510.991 511.588 520.097 

NWP 

β = 1.060742 

δ = 0.006776 

θ =0.112524 

0.095007 

0.003732 

0.075207 

506.173 512.173 512.526 519.003 

TP 

a=0.349941 

λ=-0.952412 

x0=min(x)=0.1 

0.031058 

0.047363 

- 

572.402 576.402 576.576 580.955 

Kw-p 

a=2.85531 

b=85.84682 

k=0.05284 

x0=0.1 

0.33710 

60.4210 

0.01850 

- 

542.4 548.4 549.0 555.3 

P 
a=0.243863 

x0=0.1 
0.028739 606.128 608.128 608.185 610.405 

 

 

Table 3: Comparison of maximum likelihood estimates for the Data-2 

Model ML Estimates SE -2LL AIC CAIC BIC 

TNWP 

β = 0.895296 

δ = 0.029834 

θ =0.225537 

λ =-0.032583 

0.110855 

0.072399 

0.629521 

0.383984 

761.194 768.194 768.527 767.521 

NWP 

β = 0.802545 

δ = 0.003573 

θ =5.155509 

0.081194 

0.001284 

4.287028 

764.807 770.807 771.141 772.134 

Kw-p 

a=0.5850 

λ=−0.910 

x0=min(x)=318 

0.072 

0.089 
770.698 776.698 777.014 778.025 

EP 

a=1.504007 

b=66.33311 

k=0.024819 

x0=318 

0.130404 

0.004786 

0.070744 

- 

778.577 784.577 785.262 789.567 

P 
a=0.412 

x0=318 
0.066 785.619 789.619 789.953 792.947 
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Figure 3: Estimated pdfs (data-1) 
Figure 4: Estimated pdfs (data-2) 

 

 

The comparison has been made for TNWP model with NWP, Kw-P, TP and Pareto models in 

Tables (3) and (4). These tables show that our new TNWP having least -2LL, AIC, CAIC and 

BIC values as compared to all other known distributions. So, we can say that TNWP can be 

selected as top distribution for given data sets. Moreover, estimated pdf plots of all fitted 

distributions also show the similar results. Finally, it can be concluded that our new model 

“transmuted new Weibull-Pareto distribution” gives a better fit and hence can be picked as the 

best distribution model for all two sets of data.  

 

8. Conclusion 

 
We proposed and studied a new lifetime distribution. The derived model is flexible with variable 

hazard rate. The Shapes of hazard rate function indicates that the new developed model is a 

competitive model for other probability models having constant, increasing and decreasing 

failure rate. Moreover, TNWP has special cases, which style it of divergent statistical 

significance from other models. We used two real data sets for application purpose. The derived 

model is more flexible and give better fit than well-known existing models. So, we can conclude 

that our new distribution can be used an alternative models for moddling in various areas. For 

example, engineering, failure analysis, survival analysis, weather forecasting, extreme value 

theory, economics (income inequality) and others. 
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