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Abstract 
 

In this paper, numerical solution of initial and boundary value problems for nonlinear 

fractional differential equations is considered by pseudospectral method.  In order to avoid 

solving systems of nonlinear equations resulting from the method, the residual function of the 

problem is constructed, as well as a suggested unconstrained optimization model solved by 

PSOGSA algorithm. Furthermore, the research inspects and discusses the spectral accuracy 

of Chebyshev polynomials in the approximation theory. The following scheme is tested for a 

number of prominent examples, and the obtained results demonstrate the accuracy and 

efficiency of the proposed method. 
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Fractional differential equations (FDEs) arise in many areas of science, economics and 

engineering, such as biophysics, control theory, finance, bioengineering, electrodynamics of 

complex media, signal processing and viscoelastic materials. (for instance, see Magin (2004), 

Machando (2001), Sabatier et al. (2007), Kilbas et al. (2006), Koller (1984), Podlubny (1999) 

and Sheng et al. (2011))  

 

The existence and uniqueness of solutions for FDEs has been discussed by many authors (for 

example, see Sabatier et al. (2007), Rehman  et al. (2011), Diethelm (2010), Agarwal et al. 

(2010), Agarwal and Ahmad (2011) and Bayor and Torres (2016)). The algorithms for 

solving FDEs has attracted considerable attention, some of these methods are as follows:  

 

Adomian decomposition method (Wang (2006), Momani et al. (2006)), variational iteration 

method (Inc (2008), Odibat and Momani (2006)), homotopy perturbation method (Gupta and 

Singh (2011), Odibat, and Momani (2008)), homotopy analysis method (Hashim et al. 

(2009), Odibat et al. (2010)), collocation method (Rawashdeh (2006)), perturbation Laplace 

method (Khan et al. (2012)) and fractional difference transform method (Erturk et al. (2008), 

Meerscharet and Tadjeran (2006)). Also the wavelet collocation method for the numerical 

solution of a class of FDEs is presented in (Heydari et al. (2012)). Doha et al. (2012) 

presented Jacobi operational matrix of fractional derivatives and used Jacobi collocation 

approximation for nonlinear FDEs. Diethelm et al. (2002) suggested predictor-corrector 

method for numerical solutions of FDEs. A numerical technique based Quasi Newton method 

and simplified reproducing kernel method is used to solve nonlinear FDEs (Jia et al. (2016)). 

Geng and Cui (2012) presented an algorithm based on reproducing kernel method for solving 

nonlocal fractional boundary value problems. Li et al. (2016) used finite difference methods 

with non-uniform meshes for solving nonlinear FDEs. Artificial neural networks is used to 

solve FDEs in (Pakdaman et al. (2017)). Saadatmandi and Dehghan (2010) presented a 

numerical algorithm based on Legendre polynomials to solve FDEs and also generalized 

Legendre operational matrix to fractional calculus.    

 

In this paper, we consider the following class of FDEs: 

1( , , ,..., ),  [ , ].kD u f x u D u D u x a b
                                                                                   (1)  

with the initial conditions, 

         
   i
i dau  , ni ,...,0 ,                                                     (2) 

or the boundary conditions, 

         ( ) ( )( ( ), ( ),..., ( ), ( ), ( ),..., ( )) 0,   0,..., ,n n

kg u a u a u a u b u b u b k n                                             (3) 

where 1 21,  0 ... kn n            , D denotes the Caputo fractional derivative of 

order , and we assume that f and kg are given real nonlinear functions. 

In this paper, pseudospectral method based on Chebyshev polynomials is used for solving the 

above FDEs. Also, by considering residual function of the FDE, an unconstrained 

optimization problem is introduced. We use modified gravitational search algorithm to find 

appropriate coefficients of the Chebyshev series. The efficiency of the proposed method is 

shown by some examples. 

This paper is organized as follows: In section 2, we discuss about Chebyshev polynomials 

and their spectral accuracy in approximation theory. In section 3, we review fractional 
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derivatives. In section 4, we review a summary of modified gravitational search algorithm. 

Then, in section 5, hybrid pseudospectral method and PSOGSA for solving nonlinear FDEs is 

presented. In section 6, we present the results of numerical experiments, and finally in section 

7, we will draw some conclusions based on the numerical analysis.  

 

2. Orthogonal Chebyshev polynomials 

 
It is well known that the eigenfunctions of certain singular Sturm-Lioville problems allow the 

approximation of [ , ]C a b functions, where the truncation error approaches zero faster than 

any negative power of the number of basic functions used in the approximation, as that 

number (the order of truncation N ) tends to infinity (Canuto et al. (1998)). This phenomenon 

is usually referred to as “spectral accuracy” (Gottlieb and Orzag (1979)). Throughout, we will 

use first kind orthogonal Chebyshev polynomials
0{ }k kT 


, which are eigenfunctions of the 

singular Sturm-Liouville problem: 

 

         
2

2

2
( 1 ( )) ( ) 0,            1 1, 0,1,....

1
n n

d d n
z T z T z z n

dz dz z
      


                               (4) 

 

The Chebyshev polynomials are orthogonal with respect to the 2L inner product on the 

interval [ 1,1]  by the weight function
2

1
( )

1
w z

z



, i.e., 

        
1

1
( ) ( ) ( ) ,

2

m
m n mnT z T z w z dz





                                                                                                  (5)  

where mn denotes the Kronecker delta and 

        
2,      0,

1 ,    1.
m

m

m



 


                                                                                                                         

(6)  

The Chebyshev expansion of a function is defined as: 

        
0

( ) ( ).k k

k

u z a T z




                                                                                                              (7)  

The derivative of the above function expanded in Chebyshev polynomials can be represented 

by the following theorem: 

 

Theorem 2.1. (Canuto et al. (1998)). 

 

If
0

( ) ( )k k

k

u z a T z




 , then, the derivative of u can be represented by 

        (1)

0

( ) ( ),k k

k

u z a T z




                                                                                                                        (8)  
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where 

 

        (1)

1
 

2
.k p

p kk
p k odd

a pa




 


                                                                                                                        (9) 

  

Furthermore, we have an efficient way of differentiating a polynomial of degree N in 

Chebyshev space, i.e., since (1) 0ka   for k N , the non-zero coefficients are computed in 

decreasing order by the recurrence relation: 

 

        (1) (1)

2 12( 1) ,               0 1.k k k ka a k a k N                                                                  (10)  

The generalization of this relation is (Canuto et al. (1998)): 

        ( ) ( ) ( 1)

2 12( 1) ,             2,3,....q q q

k k k ka a k a q 

                                                                   (11)  

In the remaining part of this section, we present some theorems about the convergence of 

Chebyshev expansion. 

Theorem 2.2. (Mason and Handscomb (2003)). 

 

If ( )u x is continuous and either is of bounded variation or satisfies a Dini-Lipschitz condition 

on [ 1,1] , then, its Chebyshev series expansion is uniformly convergent.  

 

Theorem 2.3. (Boyd (2000)). 

 

Let   

 

     1,1u C          and       
0

( )( ) ( )
N

N n n

n

P u x a T x


 ,  

where  

 
1

21

( ) ( )2

1

k
k

k

T x u x
a

x 



 .  

 

Then,  

1

( ) | ( ) ( ) | | |T N n

n N

E N u x P u x a


 

    for all ( )u x , all N and all [ 1,1]x  . 

Theorem 2.4. (Mason and Handscomb (2003)). 

  

If ( )u x has 1m  continuous derivatives on [ 1,1]x   and 

0

( )( ) ( )
N

N n n

n

P u x a T x


 ,  

 

where 

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 12 [2017], Iss. 2, Art. 14

https://digitalcommons.pvamu.edu/aam/vol12/iss2/14



 
 
AAM: Intern. J., Vol. 12, Issue 2 (December 2017)    857 

1

21

( ) ( )2

1

n
n

n

T x u x
a

x 



 ,  

 

then  

 

| ( ) ( ) | ( )m

Nu x P u x O N   , for all [ 1,1]x  . 

 

3. Fractional derivatives 
 

In this section, we recall some essential facts of fractional calculus. (Podlubny (1999)). There 

are various definitions for fractional derivatives. However, three definitions of fractional 

derivatives are more applicable than others and are used in modelling the problems in 

different fields of sciences. These definitions are Grunwald-Letnikov, Riemann-Liouville and 

Caputo. Among these fractional derivatives, Riemann-Liouville and Caputo derivatives are 

the most popular fractional derivatives. Riemann-Liouville derivative has a lot of problems in 

modelling real-world phenomena, for example, the derivative of a constant function is not 

zero in Riemann-Liouville approach. But Caputo definition resolves problems of Riemann-

Liuville definitions in modelling real-world phenomena, and so is more practical in science 

and engineering. The main advantage of the Caputo approach is that the initial conditions for 

FDEs is sufficient to prove the uniqueness of the solution, and so we use Caputo derivative in 

this paper.    

 

Caputo derivative has the following properties:  
 

        0,D c  where c is a constant function and, 

 

        

0,                              , ,

( 1)
,     , ,

( 1 )

n

n

n n Z

D x n
x n n Z

n












 

    


  
     

                                                                     (12) 

 

where    is the ceiling function and denotes the smallest integer greater than or equal to   

(Podlubny (1999)). 

 

Definition 3.1. 
 

The Caputo definition for the fractional-order derivatives is defined as 

        
( )

10

1 ( )
( ) ,           0 1 , .

( ) ( )

n
x

n

f t
D f x dt n n n N

n x t






  
     
                                      (13)  

The Caputo’s fractional differentiation is a linear operation, i.e., 

        ( ( ) ( )) ( ) ( ),D f x g x D f x D g x                                                                                 (14) 

where  and  are constants.  
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4. Modified gravitational search algorithm (PSOGSA)  
 

In this section, we review gravitational search algorithm (GSA) and particle swarm 

optimization (PSO) in subsections (4.1) and (4.2) respectively, and a summary of hybrid 

population-based algorithm which combines PSO and GSA (PSOGSA) is presented in next 

subsection.  

 

4.1. Gravitational Search Algorithm 

 

Gravitational search algorithm (GSA) is a recent heuristic population-based method which 

has been introduced by Rashedi et al. (2009). This algorithm is based on the law of gravity 

(Newton (1729)). 

 

GSA consists of a collection of agents that interact with each other through the gravity forces. 

The gravity forces cause a global movement, where each object moves toward other objects 

with heavier masses. 

 

The position of m  agents are initialized randomly. The position of i-th agent in D-

dimensional searching space is defined by 1( ,..., ,...., )d D

i i i iX x x x for 1,...,i m . The force 

from agent j on agent i is defined as (Rashedi et al (2009)): 

        
( ) ( )

( ) ( ) ( ( ) ( )),
( )

pi ajd d d

ij j i

ij

M t M t
F t G t x t x t

R t 
 


                                                                             (15)  

where
ajM and 

piM are active gravitational mass related to agent j , and the passive 

gravitational mass related to agent i  respectively,  is a small positive constant, and 
ijR is the 

Euclidian distance between two agents i  and j , and ( )G t is gravitational constant at time t , 

which is given by: 

        
0

(  / )
( ) ,

t T
G t eG


                                                                                                                     (16) 

where 0G and are initialized at the beginning of the search, t  is the current iteration and T is 

the total number of iterations.  

( )d

iF t is the total force acting on ith  agent in dimension d and calculated as: 

        
1,

( ) ( ),
N

d d

i j ij

j j i

F t rand F t
 

                                                                                                           (17)  

where 
jrand is a random number in the interval [0,1] . 

Acceleration of the agent i  is defined as follows: 

        
( )

( ) ,
( )

d
d i
i

ii

F t
a t

M t
                                                                                                                (18)  

where iiM is the inertial mass of the ith  agent. 
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Velocity and position of each agent at the next iteration are computed by the following 

recursive relations: 

        ( 1) ( ) ( ),i i i iV t rand V t a t                                                                                               (19)  

       ( 1) ( ) ( 1),i i iX t X t V t                                                                                                             (20) 

where irand  is a random number in the interval [0,1] . The process of changing agent’s 

positions will continue until meeting an end criterion. 

 

4.2. Particle Swarm Optimization 

 

Particle swarm optimization (PSO) is a population based stochastic optimization technique 

developed by Kennedy and Eberhart in 1995, inspired by social behavior of bird flocking or 

fish schooling (Eberhart and Kennedy (1995), Kennedy and Eberhart (1995), Kennedy and 

Eberhart (2001)). 

In PSO, each single solution is a bird in the search space, which is called a particle. Each 

particle has a fitness value which is evaluated by the fitness function to be optimized and 

velocities which directed the flying of the particles. 

In PSO, each particle will change its position according to its personal experience and the 

experiences of the whole society. Social sharing information between particles has a series of 

evolutionary advantages, a hypothesis which is the basis of PSO algorithm.  

PSO is initialized with a group of random particles or solutions in search space. In every 

iteration, each particle needs its best fitness which it has achieved so far. This value is called 

Pbest. Also another best value is needed which is the best value, obtained so far by any 

particle in the population. This best value is the global best value and is called Gbest. 

Suppose we have m particles and each particle is treated as a point in D-dimensional 

searching space. We will show the position, velocity and the best position of i-th particle in 

searching space respectively by: 

1 2( , ,..., )
i

D

i i iX x x x , 1 2( , ,..., )D

i i i iV v v v  and 1 2( , ,..., )D

i i i iP p p p  for 1,...,i m ,  

and the global position in searching space by
1 2( , ,..., )D

g g g gP p p p .  

 

The velocity and position of each particle are updated in each time step by the recursive 

relations: 

        
1 1 2 2( 1) ( ) ( ( )) ( ( ))i i i i g iV t wV t c r P X t c r P X t      ,                                                      (21)  

and 

        ( 1) ( ) ( 1)i i iX t X t V t    ,                                                                                             (22)  

where w is a weighting function and, 1c and 2c are learning factors, and the recommended 

choice for them is 2 (Kennedy and Eberhart (1995)) and 1 2,r r  are two random numbers in 
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[0,1] . The process of changing particle’s position will continue until meeting an end 

criterion. 

 
4.3. Modified gravitational search algorithm (PSOGSA) 

 

PSOGSA is a hybrid population-based algorithm which combines particle swarm 

optimization (PSO) and gravitational search algorithm (GSA) (Mirjalili and Mohd Hashim 

(2010)). In order to balance the ability of exploitation and exploration to find global 

optimum, PSOGSA uses the ability of social thinking (Gbest) in PSO and local search ability 

of GSA. In order to combine these algorithms the velocity of each agent in GSA is updated 

by the following relation (Mirjalili and Mohd Hashim (2010)): 

        1 2( 1) ( ) ( ) ( ( )),i i i g iV t wV t c ra t c r P X t                                                                              (23)  

where 1c
 and 2c  are weighting factors, w is a weighting function, r is a random number in 

[0,1] and 
gP is the best solution which has been obtained so far. 

 

5. Hybrid pseudospectral method and PSOGSA for nonlinear FDEs   
 

In this section, the implementation of pseudospectral method for solving nonlinear FDE (1) 

combined with (2) or (3) is presented.  

 

The spectral methods for solving this class of equations is based on the expansion of the 

solution u  for (1) and (2) as a finite sum in terms of smooth basis functions in the form: 

        
0

( ) ( ),
N

i i

i

u x a x


                                                                                                                                                                                          

in which{ }i i represents a family of orthonormal polynomials on [ , ]a b . In this paper, we 

consider the first kind Chebyshev polynomials on [ 1,1] . 

 

Now we should compute the coefficients of the series: 

        
0

( ) ( ),
N

i i

i

u x a T x


                                                                                                                         (24)  

where 
0{ }N

i iT 
are Chebyshev polynomials as mentioned in section 2. By substituting (24) in 

(1) and its initial value conditions we define the residual function: 

        1

0 1

0 0 0 0

( , ,..., , ) ( ) ( , ( ), ( ),..., ( )),k

N N N N

N i i i i i i i i

i i i i

F a a a x D aT x f x aT x D aT x D aT x


   

          (25)  

and the equations:  

        
0

( ) ,         0,..., .
N

j

i i j

i

D aT a d j n


                        (26) 
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In standard pseudospectral method, by considering the residual function and the initial 

conditions, and choosing 
1{ }M

k kx 
as a set of collocation points, we obtain a nonlinear system 

with 1N  equations and 1N  unknown parameters (Hosseini (2007), Hosseini (2006)). Since 

solving a nonlinear system is facing many problems including the choice of a suitable starting 

point, we present a nonlinear unconstrained optimization problem for finding the coefficients 

of the Chebyshev expansion.     

For 
1{ }M

k kx 
as a set of collocation points, we define the general residual function by: 

        2 2

0 11
0 0

1
( , ,..., , ) ( ( ) ) .

n N
M j

N k i i jk
j i

V F a a a x D a T a d
M 

 

                                                 (27)  

And, according to (27), we define the nonlinear unconstrained optimization problem: 

        
min  ,

.   i

V

s t a R
.                                                                                                                                    (28)  

This optimization problem is solved by using PSOGSA algorithm, and the appropriate 

coefficients for the Chebyshev series are found.  

We can use the same technique to solve fractional boundary value problems. 

 

6. Numerical results  
 

In this section, we present some interesting examples and use the proposed method in section 

5 to solve them.  

 

In our study, we choose an initial population for PSOGSA with 30 agents, where each agent 

is a random number for the coefficients in Chebyshev series, and also, we set

1 2 00.5,  2, 1,  =20c c G     and w is a random number in [0,1] . It should be noted that N

is the number of basis functions and M is the number of collocation points. We suppose 

50M  for all examples, and also for all examples, we test the proposed method 20 times. 

  

We define absolute error as 

        ( ) ( ) ( ) ,e t u t u t   

where ( )u t is the exact solution and ( )u t is the approximate solution. 

 

Example 6.1. 

 

Consider the following nonlinear initial FDE (Li (2010)): 

        2 1 232 3

2

2 2

(2) (4 )

a b
aD u bD u cD u eu t t

  




    

  
  

        13 3 3

1

2 1
( ) ,  (0,1).

(4 ) 3

c
t e t t






  
 

                                                                                                (29)  
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For this problem, we should have 10 1  and 21 2  , and the initial conditions are: 

        (0) (0) 0,u u                                                                                                                            (30)  

with the exact solution  

        
31

( ) .
3

u t t                                                                                                                        (31) 

 

We suppose 2 11, 1.234, 0.333a b c e        for solving this problem.  Absolute error 

of mean and the best solution for different number of basis functions which have been 

obtained by the proposed method and Chebyshev wavelet method (Li (2010)) at given points 

and for different number of N are given in table 1. 

 

Table 1. Results of absolute errors for Example 1  

t  Absolute errors of mean 

solution value of the 

proposed method 

Absolute errors of best 

solution value of the 

proposed method 

Absolute errors of (Li (2010)) 

 N=3 N=3 N=24 N=96 N=384 

0.1 125.63 10  131.42 10  58.19 10  65.25 10  73.26 10  

0.2 132.13 10  148.67 10  42.05 10  51.26 10  77.92 10  

0.3 149.43 10  143.89 10  42.95 10  51.85 10  61.15 10  

0.4 158.74 10  152.56 10  43.05 10  51.89 10  61.18 10  

0.5 147.82 10  141.96 10  45.08 10  53.17 10  61.98 10  

0.6 149.59 10  142.33 10  44.29 10  52.69 10  61.68 10  

0.7 142.84 10  155.27 10  46.38 10  53.97 10  62.48 10  

0.8 131.68 10  143.79 10  47.11 10  54.45 10  62.78 10  

0.9 138.73 10  131.10 10  46.02 10  53.74 10  62.34 10  

 

Example 6.2. 

 

Consider the following nonlinear fractional BVP (Li et al. (2016)): 

        5 4 2(6) 36
+ (3 )

(6 ) (5 )
D u t t t   

 

 
  
   

                                                                                                                                                                                       

        
2 5 4 2 23
+( 2 ) ,          (0,1).

4
u t t t t                                                                                      (32) 

Initial conditions for 1 2   are 

        (0) (0) 0.u u                                                                                                                            (33) 

The exact solution of this problem is: 

        
5 4 23

( ) 2 .
4

u t t t t                                                                                                                   (34) 
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We suppose 1.25  . Absolute error of mean and the best solution for different number of 

basis functions which have been obtained by the proposed method and the absolute error 

obtained by methods in (Li et al. (2016)) are shown in table 2.  

 

Table 2. Results of absolute errors at 1t   for example 2  

N  Absolute errors 

of mean solution 

value of the 

proposed 

method 

Absolute errors 

of best solution 

value of the 

proposed method 

N  Absolute errors of 

rectangular scheme 

(Li et al. (2016)) 

Absolute errors of 

trapezoidal 

scheme (Li et al. 

(2016)) 

4 22.29 10  35.76 10  80 24.99 10  48.96 10  

7 55.29 10  69.64 10  160 22.53 10  42.25 10  

10 65.31 10  79.58 10  320 21.28 10  55.65 10  

12 79.51 10  73.59 10  640 36.41 10  51.41 10  

   1280 33.21 10  63.54 10  

   2560 31.61 10  78.85 10  

 

The graphs of the absolute error of the best solution, which is obtained by the proposed 

method and the absolute error of standard pseudospectral method for 12N   are shown in 

Figure 1.  

 
Figure 1. Absolute error of the best solution by the proposed method (-*) and standard 

pseudospectral method (.-) for 12N  , in example 2. 

 

Example 6.3. 

 

Consider the following nonlinear fractional BVP (Jia et al. (2016)): 

        2.5 2 712
,                              [0,1],

t
D u tu t t


                                                                  (35)  
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        (0) (0) 0, (1) 1.u u u                                                                                                              (36) 

 

We solve this example by the proposed method with 3N  . The problem is solved by the 

proposed method and we reach 3( )u t t as the exact solution for the above fractional BVP. 

 

Example 6.4. 

 

Consider the nonlinear boundary FDE (Jia et al. (2016)): 

        1.5 3 0.4 1.9 3(2.9)
( 1) ,                              [0,1],

(1.4)
D u u t t t


    


                                       (37)  

        (0) 1, (1) 0.u u                                                                                                                  (38) 

 

The exact solution is 

        1.9( ) 1.u t t                                                                                                                     (39)  

 

Absolute error of mean and the best solution for different number of basis functions which 

have been obtained by the proposed method and the absolute error obtained by standard 

pseudospectral method are shown in table 3.  

 

Table 3. Results of absolute errors for example 4 

N  Absolute errors of mean 

solution value of the 

proposed method  

Absolute errors of best 

solution value of the 

proposed method 

Absolute errors of 

standard pseudospectral 

method 

5 36.52 10  42.54 10  12.97  

10 55.06 10  68.92 10  8.67  

15 69.08 10  62.34 10  24.20 10  

20 79.38 10  77.21 10  21.42 10  

 

 

Example 6.5. 

 

Consider the following nonlinear FDE (Saeed (2017)): 

 

        2 32cos( ) cos ( ),           1 2,D u u u u u t t                                                           (40) 

        (0) 0,    (0) 1.u u                                                                                                          (41) 

 

The exact solution of above problem when 2  , is  

        ( ) sin( ).u t t                                                                                                                     (42) 

    

The exact solution of the problem and the approximate solutions for different values of   for 

7N  are shown in Figure 2.  
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Figure 2. The exact solution of the example 5 at 2  and the approximate solutions for 

different values of . 

 

As shown in figure 2, by increasing the values of , approximate solutions converge to the 

exact solution at 2  . 

 

The graphs of the absolute error of the best solution which is obtained by the proposed 

method and absolute error of standard pseudospectral method for 7N   are shown in figure 

3.  

 

Figure 3. Absolute error of the best solution by the proposed method (-*) and standard 

pseudospectral method (.-) for 7N  , in example 5. 

 

6. Conclusions 
 

In this paper, we utilized pseudospectral method through the use of Chebyshev polynomials 

in solving nonlinear FDEs. Although, it appears that numerical solutions of nonlinear 

ordinary differential equations by spectral methods based on Chebyshev polynomials is 

arduous, as we must deal with nonlinear systems. To eliminate and overcome this difficulty, 

we define general residual function of the nonlinear FDE, and then, apply an appropriate 

unconstrained optimization model to the problem. Moreover, to solve this optimization 
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problem we use PSOGSA algorithm. The novelty of this paper is to provide the possibility of 

achieving spectral accuracy in solving nonlinear differential equations. Using our method, one can 

easily solve initial and boundary value fractional problems. Finally, the numerical results of 

the above problems illustrate the high accuracy and efficiency of our proposed method. 
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