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Abstract 
 

In this paper, the Black-Sholes equation (BS) has been applied successfully with the Cauchy-Euler 

method and the method of separation of variables and new analytical solutions have been found. The 

linear partial differential equation (PDE) transformed to linear ordinary differential equation (ODE) as 

well. We acquired three types of solutions including hyperbolic, trigonometric and rational solutions. 

Descriptions of these methods are given and the obtained results reveal that three methods are tools for 

exploring partial differential models. 

 

Keywords: Black-Sholes equation; Partial differential equation; Ordinary differential equation;                   
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1. Introduction 
 

In this paper, an application of the proposed method to the Black-Scholes partial differential equation is 

illustrated. Recently, the Black-Scholes equation considered by Bohner and Zheng (2009): 
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𝑢𝑡 + 𝑎𝑥2𝑢𝑥𝑥 + 𝑏𝑥𝑢𝑥 − 𝑟𝑢 = 0,   𝑥 > 0,    𝑡 ∈ [0, 𝑇],                                                                     (1) 

 
where 𝑎 = 𝜎2/2 and 𝑏 = 𝑟 − 𝛿,  𝑟 is the risk-free rate,  𝜎 is the volatility,  𝛿 is the dividend yield, and 

𝑢(𝑥, 𝑡) is the value of the option for a market price 𝑥 at time 𝑡 before the expiry time 𝑇,  together with 

the terminal condition, 

 

𝑢(𝑥, 𝑡) = 𝑔(𝑥),                                                                                                                                 (2) 

 

where 𝑔(𝑥) is assumed to have derivatives of all orders. It is clear that solutions to the nonlinear partial 

differential equation (1) would be of great interest to the financial world. Equation (1) may satisfy also 

other kinds of options, like the barrier option. A barrier option can be considered an exotic option and as 

such has features that makes it more complex than the ”vanilla” option, O'Hara (2011), Kwok (2008) 

and O'Hara et al. (2013). The complete group classification of a generalization of the Black-Scholes-

Merton model is carried out by making use of the underlying equivalence and additional equivalence 

transformations by Bozhkov and Dimas (2014). A theoretical analysis for the Black-Scholes equation 

together applying the decomposition method has been presented by Lesnic (2006). Moreover, Chanane 

(2011) obtained the solutions of a class of partial differential equations and its application to the Black-

Scholes equation. Edelstein and Govinder (2009) focused on classical point symmetries and also 

potential symmetries and obtained new abundant exact solutions to the Black-Scholes equation. 

Company et al. used the numerical solution of Black-Scholes option pricing partial differential 

equations by means of semi-discretization technique Company et al. (2008). Likewise, in Bohner and 

Zheng (2009) a theoretical analysis for the Black-Scholes equation has been presented and the 

analytical solution of the Black-Scholes equation is obtained by using the Adomian approximate 

decomposition technique. 

  

Partial differential equations (PDEs) find special applicability within many scientific and mathematical 

disciplines. These play an important role in the fields of applied mathematics and engineering such as 

mechanics, physics, chemistry, potential theory, dynamics, ecology etc. So instead of using current 

models of partial differential equations, we can transform PDEs to ordinary differential equations. 

Hence there occurs a need to use solitary wave variable that would appropriately transform PDEs to 

ODEs and solve them. Sometimes, when these equations are generally difficult to solve analytically; 

thereby, a numerical method is needed. However, several analytical methods exists for finding exact 

solutions of PDEs. Many research papers dealing with analytical methods exist in open literature and 

some of them are reviewed and cited here for better understanding of the physical problems. The 

research of traveling wave solutions of some nonlinear evolution equations derived from such fields 

played an important role in the analysis of some phenomena, such as the homotopy perturbation method 

Dehghan and Manafian (2009), the variational iteration method Dehghan et al. (2010a),  the homotopy 

analysis method Dehghan et al. (2010b), the Adomian decomposition method Luo (2006), the tanh-coth 

method Manafian and Lakestani (2016a), the Exp-function method (Dehghan et al. (2011); Manafian 

and Lakestani (2015a); Manafian (2015)), the G′/G-expansion method (Manafian and Lakestani 

(2015b); Manafian et al. (2016a)), the homogeneous balance method Zhao (2006), the formal 

linearization method Mirzazadeh and Eslami (2015), the improved tan(ϕ(ξ))-expansion method 

(Manafian and Lakestani (2016a); Manafian and Lakestani (2016b); Manafian 2016; Manafian et al. 

(2016c); Manafian and Lakestani (2015c); Manafian et al. (2016b); Aghdaei and Manafian(2016); 

Manafian and Lakestani (2016c); Manafian and Lakestani (2016d); Manafian and Lakestani (2016e)) 

and so on.  
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In this paper, we have two goals. First, we introduce Cauchy-Euler method for solving Black-Sholes 

equation, which is an analytical method. Next, we obtain the exact solutions of the BS equation with the 

method of separation of variables. 

 

The outline of this paper is organized as follows: In Section 2, we investigate applications of the BS 

equation with the Cauchy-Euler method and the method of separation of variables. Also, conclusion is 

given in Section 3. 

 

2. Applications of the BS Equation 
 
In this section, we apply the Cauchy-Euler method and the method of separation of variables for 

searching exact solution of the Black-Sholes equation. 
 

2.1. Solving the BS Equation by Cauchy-Euler Method 
 

Consider the Black-Scholes equation (1) together with the terminal condition (2). Let 𝑦 = ln(𝑥) or 𝑥 =

 and 𝐷 =
𝑑

𝑑𝑦
 and by denoting 𝑣(𝑦, 𝑡) = 𝑢(𝑥, 𝑡) we get to, 

 

𝑥
𝜕𝑢

𝜕𝑥
= 𝐷𝑣,     𝑥2 𝜕2𝑢

𝜕𝑥2 = 𝐷(𝐷 − 1)𝑣,     𝑥𝑘 𝜕𝑘𝑢

𝜕𝑥𝑘 = 𝐷(𝐷 − 1) … (𝑑 − 𝑘 + 1)𝑣.                              (3) 

 

Then, equation (1) becomes 

 

𝑣𝑡 + 𝑎𝑣𝑦𝑦 + (𝑏 − 𝑎)𝑣𝑦 − 𝑟𝑣 = 0,   𝑦 > 0,    𝑡 ∈ [0, 𝑇],                                                                  (4) 

 

while the final condition becomes 

 

𝑣(𝑦, 𝑇) = 𝑧(𝑦),                                                                                                                                 (5) 
 

where 𝑧(𝑦) = 𝑔( ). By considering wave variable 𝜉 = 𝑘𝑥 + 𝑐𝑡, the equation (4) gets transformed to 

the following ordinary differential equation, 
 

𝑐𝑣′ + 𝑎𝑘2𝑣′′ + (𝑏 − 𝑎)𝑘𝑣′ − 𝑟𝑣 = 0,                                                                                            (6) 
 

or 

 

𝑎𝑘2𝑣′′ + (𝑐 + 𝑘(𝑏 − 𝑎))𝑣′ − 𝑟𝑣 = 0.                                                                                            (7) 
 

From above equation, we would expect this general solution to be of the form 
 

𝑣(𝜉) = 𝑐1𝑣1(𝜉) + 𝑐2𝑣2(𝜉) + 𝑣𝑝(𝜉),                                                                                                (8) 

 

where 𝑐1, 𝑐2, 𝑣1, 𝑣2 are constant coefficients and common solutions, respectively, to ODE and 𝑣𝑝 is 

personal solution. 

 

Remark 1:  

 

The functions 𝑣1(𝜉) and 𝑣2(𝜉) are linearly independent on an interval 𝐼, if the only solution of 
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𝑐1𝑣1(𝜉) + 𝑐2𝑣2(𝜉) = 0, for all 𝜉 ∈ 𝐼, is 𝑐1 = 𝑐2 = 0. 

 

By considering 𝑒𝑚𝜉  for homogenous case to equation (7), we obtain the quadratic formula in the 

following form; 

 

𝑎𝑘2𝑚2 + (𝑐 + 𝑘(𝑏 − 𝑎))𝑚 − 𝑟 = 0.                                                                                              (9) 

 

Using the quadratic formula, the solutions of (9) are given by 

 

𝑚 =
−𝐵+√∆

2𝐴
,    ∆= 𝐵2 − 4𝐴𝐶 = (𝑐 + 𝑘(𝑏 − 𝑎))2 + 4𝑎𝑟𝑘2,                                                          (10) 

 

where 𝐴 = 𝑎𝑘2,    𝐵 = 𝑐 + 𝑘(𝑏 − 𝑎) and 𝐶 = −𝑟. We have three types of exact solutions of (7) as 

follows: 

 

Case I:  

 

When ∆> 0, we obtain the hyperbolic function solution 

 

𝑣(𝑦, 𝑇) = 𝑐1𝑒
−𝑐−𝑘(𝑏−𝑎)+√(𝑐+𝑘(𝑏−𝑎))2+4𝑎𝑟𝑘2

2𝑎𝑘2 (𝑘𝑦+𝑐𝑡)
+ 𝑐2𝑒

−𝑐−𝑘(𝑏−𝑎)−√(𝑐+𝑘(𝑏−𝑎))2+4𝑎𝑟𝑘2

2𝑎𝑘2 (𝑘𝑦+𝑐𝑡)
,                (11) 

 

and by using the final condition (5), then solution of equation (1) becomes 

 

𝑢(𝑥, 𝑡) =     𝑔(𝑥)𝑒
−𝑐−𝑘(𝑏−𝑎)+√(𝑐+𝑘(𝑏−𝑎))2+4𝑎𝑟𝑘2

2𝑎𝑘2 (𝑡−𝑇)
 

   
          
      +𝑐2

[𝑒
−𝑐−𝑘(𝑏−𝑎)−√(𝑐+𝑘(  𝑏−𝑎))2+4𝑎𝑟𝑘2

2𝑎𝑘2 (𝑘 ln(𝑥)+𝑐𝑡)
−𝑒

−𝑐−𝑘(𝑏−𝑎)+√(𝑐+𝑘(𝑏−𝑎))2+4𝑎𝑟𝑘2

2𝑎𝑘2 (−𝑘 ln(𝑥)+𝑐(𝑡−2𝑇))
].        (12) 

 

Case II:  

 

When ∆< 0, we have the trigonometric function solution 

 

𝑣(𝑦, 𝑇) = 𝑐1 cos (
−𝑐 − 𝑘(𝑏 − 𝑎) + √(𝑐 + 𝑘(𝑏 − 𝑎))2 + 4𝑎𝑟𝑘2

2𝑎𝑘2
(𝑘𝑦 + 𝑐𝑡)) 

 

                       + 𝑐2 sin (
−𝑐−𝑘(𝑏−𝑎)+√(𝑐+𝑘(𝑏−𝑎))2+4𝑎𝑟𝑘2

2𝑎𝑘2 (𝑘𝑦 + 𝑐𝑡)),           (13) 

 

and by using the final condition (5), then solution of the (1) becomes 
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𝑢(𝑥, 𝑡) =  𝑔(𝑥)

cos (
−𝑐 − 𝑘(𝑏 − 𝑎) + √(𝑐 + 𝑘(𝑏 − 𝑎))2 + 4𝑎𝑟𝑘2

2𝑎𝑘2 (𝑘 ln(𝑥) + 𝑐𝑡))

cos (
−𝑐 − 𝑘(𝑏 − 𝑎) + √(𝑐 + 𝑘(𝑏 − 𝑎))2 + 4𝑎𝑟𝑘2

2𝑎𝑘2 (𝑘 ln(𝑥) + 𝑐𝑇))

 

                          +𝑐2 sin (
−𝑐 − 𝑘(𝑏 − 𝑎) + √(𝑐 + 𝑘(𝑏 − 𝑎))2 + 4𝑎𝑟𝑘2

2𝑎𝑘2
(ln(𝑥) + 𝑐𝑡)) 

 

                       −𝑐2 tan (
−𝑐 − 𝑘(𝑏 − 𝑎) + √(𝑐 + 𝑘(𝑏 − 𝑎))2 + 4𝑎𝑟𝑘2

2𝑎𝑘2
(𝑘 ln(𝑥) + 𝑐𝑇)) 

                         × cos (
−𝑐−𝑘(𝑏−𝑎)+√(𝑐+𝑘(𝑏−𝑎))2+4𝑎𝑟𝑘2

2𝑎𝑘2
(𝑘 ln(𝑥) + 𝑐𝑡)) .                                       (14) 

 

 

Case III: When ∆= 0, we have the rational function solution 

 

𝑣(𝑦, 𝑇) = 𝑒
−𝑐−𝑘(𝑏−𝑎)

2𝑎𝑘2 (𝑘𝑦+𝑐𝑡)[𝑐1 + 𝑐1(𝑘𝑦 + 𝑐𝑡)],                                                                             (15) 

 

and by using the final condition (5), then solution of the (1) becomes 

 

       𝑢(𝑥, 𝑡) = 𝑒
−𝑐−𝑘(𝑏−𝑎)

2𝑎𝑘2 (𝑘 ln(𝑥)+𝑐𝑡)
{𝑔(𝑥)𝑒

−𝑐+𝑘(𝑏−𝑎)

2𝑎𝑘2 (𝑘 ln(𝑥)+𝑐𝑇)
+ 𝑐2𝑐(𝑡 − 𝑇)}.                                     (16) 

 

 

2.2. The Method of Separation of Variables for BS Equation 

 

In this section, by using the separation of variables, the following function 

 

𝑢(𝑥, 𝑡) = ∅(𝑥)𝜓(𝑡),                                                                                                                       (17) 

 

will be a solution to a linear homogeneous partial differential equation in 𝑥 and 𝑡. By substituting (17) 

in equation (1) we get the form 

 

 
𝜓′(𝑡)

𝜓(𝑡)
+ 𝑟 = 𝑎𝑥2 ∅′′(𝑥)

∅(𝑥)
+ 𝑏𝑥

∅′(𝑥)

∅(𝑥)
.                                                                                                   (18) 

 

It follows that there exists a constant λ such that 

 

 
𝜓′(𝑡)

𝜓(𝑡)
+ 𝑟 = 𝑎𝑥2 ∅′′(𝑥)

∅(𝑥)
+ 𝑏𝑥

∅′(𝑥)

∅(𝑥)
= 𝜆,                                                                                            (19) 

 

where the λ is called the separation constant and is arbitrary. Then, we have 

 

𝑎𝑥2∅′′(𝑥) + 𝑏𝑥∅′(𝑥) − 𝜆∅(𝑥) = 0,                                                                                             (20) 
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𝜓′(𝑡) = (𝑟 − 𝜆)𝜓(𝑡).                                                                                                                    (21) 

 

We have already written the general solutions of the ODE (20): 

 

I. If ∆= (𝑏 − 𝑎)2 + 4𝑎𝜆 < 0, then ∅(𝑥) = 𝑥
𝑎−𝑏

2𝑎 [𝛼 cos (
√∆

2𝑎
ln(𝑥)) + 𝛽 sin (

√∆

2𝑎
ln(𝑥))]. 

 

II. If ∆= 0, then ∅(𝑥) = 𝑥
𝑎−𝑏

2𝑎 [𝛼 + 𝛽 ln(𝑥)]. 
 

III. If ∆=> 0, then ∅(𝑥) = 𝑥
𝑎−𝑏

2𝑎 [𝛼𝑥
√∆

2𝑎 + 𝛽𝑥−
√∆

2𝑎]. 

 

where 𝛼 and 𝛽 are arbitrary real numbers. Also, we have the following solution of the ODE (21); 

 

𝜓(𝑡) = 𝑐𝑒(𝑟−𝜆)𝑡, where 𝑐 is an arbitrary real number. By applying above conditions, we get to exact 

solution 𝑢(𝑥, 𝑡) of equation (1) as: 

 

Case I: 

𝑢(𝑥, 𝑡) = 𝑐𝑒(𝑟−𝜆)𝑡𝑥
𝑎−𝑏

2𝑎 [𝛼 cos (
√∆

2𝑎
ln(𝑥)) + 𝛽 sin (

√∆

2𝑎
ln(𝑥))].                                                     (22) 

 

Case II: 

𝑢(𝑥, 𝑡) = 𝑐𝑒(𝑟−𝜆)𝑡𝑥
𝑎−𝑏

2𝑎 [𝛼 + 𝛽 ln(𝑥)].                                                                                            (23) 

 

Case III: 

 

𝑢(𝑥, 𝑡) = 𝑐𝑒(𝑟−𝜆)𝑡𝑥
𝑎−𝑏

2𝑎 [𝛼𝑥
√∆

2𝑎 + 𝛽𝑥−
√∆

2𝑎],                                                                                       (24) 

 

where 𝛼, 𝛽 and 𝑐 are arbitrary real numbers. 

 

Remark 2:  

 

In general, consider the semi-linear partial differential equation as 

 

𝑢𝑡(𝑥, 𝑡) + 𝐹(𝑢(𝑥, 𝑡)) = 0,                                                                                                             (25) 

 

where 

 

𝐹(𝑢(𝑥, 𝑡)) = ∑ 𝑎𝑘𝑥𝑘 𝜕𝑘𝑢(𝑥,𝑡)

𝜕𝑥𝑘
𝑚
𝑘=0 ,                                                                                                   (26) 

 

𝑦 = ln(𝑥) or 𝑥 =  and 𝐷 =
𝑑

𝑑𝑦
 and by denoting 𝑣(𝑦, 𝑡) = 𝑢(𝑥, 𝑡) we get to 

 

𝐹(𝑣(𝑦, 𝑡)) = ∑ 𝑎𝑘𝐷(𝐷 − 1) … (𝑑 − 𝑘 + 1)𝑣(𝑦, 𝑡)𝑚
𝑘=0 .                                                                (27) 

 

Now, the equation (25) will be as 
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       𝑣𝑡(𝑦, 𝑡) + ∑ 𝑎𝑘𝐷(𝐷 − 1) … (𝑑 − 𝑘 + 1)𝑣(𝑦, 𝑡)𝑚
𝑘=0 = 0,                                                              (28) 

 

or  

𝑣𝑡(𝑦, 𝑡) + 𝑎0𝑣(𝑦, 𝑡) + 𝑣𝑦(𝑦, 𝑡)(𝑎1 − 𝑎2 + 2𝑎3 − 6𝑎4 + 24𝑎5 − 120𝑎6 + ⋯ ) 

+𝑣𝑦𝑦(𝑦, 𝑡)(𝑎2 − 3𝑎3 + 11𝑎4 − 50𝑎5 + 274𝑎6 − 1764𝑎7 + ⋯ ) 

+ 𝑣𝑦𝑦𝑦(𝑦, 𝑡)(𝑎3 − 6𝑎4 + 35𝑎5 − 225𝑎6 + 1624𝑎7 − 13132𝑎8 + ⋯ ) 

+ ⋯ + 𝑣(𝑚−1)(𝑦, 𝑡) (𝑎𝑚−1 −
𝑚(𝑚−1)

2
𝑎𝑚) + 𝑣(𝑚)(𝑦, 𝑡)𝑎𝑚 = 0.                                                  (29) 

 

By considering wave variable = 𝑘𝑥 + 𝑐𝑡, the equation (29) transformed to the following mth order 

ordinary differential equation, 

 

𝑐𝑣′ + 𝑎0𝑣 + 𝐴1𝑣′ + 𝐴2𝑣′′ + ⋯ + 𝐴𝑚−1𝑣(𝑚−1) + 𝐴𝑚𝑣(𝑚) = 0,                                                 (30) 

 

or 

 

𝑎0𝑣 + (𝑐 + 𝐴1)𝑣′ + 𝐴2𝑣′′ + ⋯ + 𝐴𝑚−1𝑣(𝑚−1) + 𝐴𝑚𝑣(𝑚) = 0,                                                  (31) 

 

where equation (31) is an mth order linear ordinary differential equation. Likewise, the coefficients of 

equation (31) are as 
 

𝐴1 = ∑ (−1)𝑘𝑚
𝑘=0 (𝑘 − 1)! 𝑎𝑘,                                                                                                       (32) 

       𝐴2 = 𝑎2 − 3𝑎3 + 11𝑎4 − 50𝑎5 + 274𝑎6 − 1764𝑎7 + ⋯,                

 

       𝐴3 = 𝑎3 − 6𝑎4 + 35𝑎5 − 225𝑎6 + 1624𝑎7 − 13132𝑎8 + ⋯,                

                                    … 

                                    … 

 

       𝐴𝑚−1 = 𝑎𝑚−1 −
𝑚(𝑚−1)

2
𝑎𝑚, 

       𝐴𝑚 = 𝑎𝑚. 
 

By considering 𝑒𝜆𝜉  for homogenous case to equation (7), we obtain the 𝑚th order formula in the 

following form 

 

𝐴𝑚𝜆𝑚 + 𝐴𝑚−1𝜆𝑚−1 + ⋯ + 𝐴2𝜆2 + (𝑐 + 𝐴1)𝜆 + 𝑎0 = 0.                                                             (33) 

 

By solving the (33), based on numerical or analytical methods, we can obtain solutions for the equation 

(31). For example, consider 𝑚 = 3 in (33), therefore 

 

𝐴3𝜆3 + 𝐴2𝜆2 + (𝑐 + 𝐴1)𝜆 + 𝑎0 = 0,                                                                                            (34) 

    

include solutions as 

 

𝜆1 =

1

6𝐴3
√36𝑐𝐴2𝐴3+36𝐴1𝐴2𝐴3−108𝑎0𝐴3

2−8𝐴2
3+12𝐴3√3𝛴

3
−

2

3
(3𝑐𝐴3+3𝐴1𝐴3−𝐴2

2)

𝐴3 √36𝑐𝐴2𝐴3+36𝐴1𝐴2𝐴3−108𝑎0𝐴3
2−8𝐴2

3+12𝐴3√3𝛴
3

−
𝐴2

3𝐴3
,                             (35) 
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 𝜆2 =

−1

12𝐴3
√36𝑐𝐴2𝐴3+36𝐴1𝐴2𝐴3−108𝑎0𝐴3

2−8𝐴2
3+12𝐴3√3𝛴

3
+

1

3
(3𝑐𝐴3+3𝐴1𝐴3−𝐴2

2)

𝐴3 √36𝑐𝐴2𝐴3+36𝐴1𝐴2𝐴3−108𝑎0𝐴3
2−8𝐴2

3+12𝐴3√3𝛴
3

−
𝐴2

3𝐴3
   

±
√−3

2

1
6𝐴3

√36𝑐𝐴2𝐴3 + 36𝐴1𝐴2𝐴3 − 108𝑎0𝐴3
2 − 8𝐴2

3 + 12𝐴3√3𝛴
3

+
2
3 (3𝑐𝐴3 + 3𝐴1𝐴3 − 𝐴2

2)

𝐴3 √36𝑐𝐴2𝐴3 + 36𝐴1𝐴2𝐴3 − 108𝑎0𝐴3
2 − 8𝐴2

3 + 12𝐴3√3𝛴
3

, 

 

where 

 

𝛴 = 27𝑎0
2𝐴3

2 + 4𝑐3𝐴3 + 4𝑎0𝐴2
3 − 𝐴2(𝑐2𝐴2 + 18𝑎0𝐴1𝐴3 + 18𝑐𝑎0𝐴3) 

               −𝐴1𝐴2
2(𝐴1 + 2𝑐) + 4𝐴1𝐴3. 

 

Thus, equation (25) for 𝑚 = 3 will be as 

 

𝑢(𝑥, 𝑡) = 𝐶1𝑒𝜆1(𝑘 ln(𝑥)+𝑐𝑡) + 𝐶2𝑒𝜆2(𝑘 ln(𝑥)+𝑐𝑡) + 𝐶3𝑒𝜆3(𝑘 ln(𝑥)+𝑐𝑡). 
 

Note 

 

All the obtained results have been checked with Maple 13 by putting them back into the original 

equation and found to be correct. 

 

4. Conclusion 
 

In this paper, the Black-Sholes equation has been applied successfully with the Cauchy-Euler method 

and the method of separation of variables and new analytical solutions have been found. The linear 

partial differential equation (PDE) transformed to linear ordinary differential equation (ODE) as well. 

We acquired three types of solutions including hyperbolic, trigonometric and rational solutions. 

Descriptions of these methods are given and the obtained results reveal that three methods are tools for 

exploring partial differential models. Therefore, these methods can be applied to study many other 

linear and nonlinear partial differential equations which frequently arise in engineering and 

mathematical physics. 
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