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Abstract

The aim of this paper is first to investigate the stability of the zero solution to a new Liénard
type equation with multiple variable delays by two different methods. The methods to be used
in the proofs involve the Lyapunov-Krasovskii functional approach and the fixed point
technique under an exponentially weighted metric, respectively. We make a comparison
between the applications of these methods with the established conditions on the same
stability problems. Then, we obtain three new results for uniformly stability and boundedness/
uniformly boundedness of the solutions to the considered equation by the Lyapunov-
Krasovskii functional approach. An example is given to verify the results obtained by the
Lyapunov-Krasovskii functional approach. Our results complement and improve some recent
ones in the literature.

Keywords: Functional differential equation; second order; multiple variable delays,;
Lyapunov-Krasovskii functional; stability; fixed points

2010 Mathematics Subject Classifications: 34K20, 34K40

1. Introduction

In the past years, many researchers claimed that the fixed point theory has an important
advantage over the Lyapunov’s direct method. Because, while the Lyapunov ‘s direct method
usually requires pointwise conditions, fixed point theory needs average conditions, (see
Burton (2005), Burton (2006) and Burton and Furumochi (2001)). In 2001, Burton and
Furumochi (2001) observed some difficulties that occur in studying the stability theory of
ordinary and functional differential equations by the Lyapunov's second (direct) method.
Rather than invent new modifications of the standard Lyapunov function(al) method to
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overcome the difficulties, the authors demonstrate by various examples that the contraction
mapping principle can do the magic in many circumstances. It should be noted that, by using
the fixed point theory, Burton (2001) considered the Liénard type equation with constant
delay, L (> 0):

%+ T (t, x, X)X +b(t)g(x(t — L)) = 0.

The author obtained conditions for each solution x(t) to satisfy (x(t), x'(t)) — (0,0) as t = .

After that, Pi (2011) investigated the stability of functional Liénard type equation with
variable delay

X+ (X, X)X+b)g(x(t—z(t))) =0.
By the fixed point theory, under an exponentially weighted metric, the author gave proper
interesting sufficient conditions for the stability and asymptotically stability of the zero

solution.

Meanwhile, Tun¢ and Bicer (2014) considered the Liénard type equation with multiple
variable delays

K+ f (X, X)X+ Xb; (1)g; (X(t—7; (1)) = 0.
j=1

The authors studied the stability of the zero solution of this equation by the fixed point
technique under an exponentially weighted metric.

Further, by means of the Lyapunov’s function or functional approach, Korkmaz and Tung
(2015), Tunc (2010), Tun¢ (2011a), Tung (2011b), Tung (2013a), Tun¢ (2013b), Tung (2014),
and Tung¢ and Yazgan (2013) discussed some problems on the stability, boundedness,
uniform-boundedness and existence of periodic solutions of certain nonlinear differential
equations of second order without and with delay.

In this paper, we consider the following Liénard type equation with multiple variable delays:

X+ ag () F(t, X, X)X +ay (1) f; (X) + a, (1) g(x) + éb,— (1) g; (Xt —7; 1)) = p(t), )

where teR’, R =[0,x), ay,ay,a,,b; 1R —(0,00) are continuous  functions,
fIR xRN >N, f, g, 9, R>N, (0=0 9(0)=0, g,;(0)=0, p:R" >N,
and 7;:R" >R areall continuous functions with t—7; (t)>0.

We can write equation (1) in the system form as follows:
x'=y,
y' ==, ft. X Y)Y —a,® f,(v) —a,®)g(x)

~$0,09,09+ 8,00 19} (x(s))y(s)ds + p(b). )
= =

t*Tl‘ (t)
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The continuity of 5, a,, a,,b;, . ., 9, g and z, is a sufficient condition for existence of

the solution of equation (1). Further, it is assumed as basic that f, fl, J and g; satisfy a
Lipschitz condition. Hence, the uniqueness of solutions of equation (1) is guaranteed.
df,
X'
and are continuous, and throughout the paper x(t) and x’(t) are abbreviated as X and x/,
respectively.

Finally, we assume that the derivatives ay (1), b’ v), = (v, f,(x) and oijg_,- = g/ (x) exist
X

Define

fl(y), yio’

Fl(Y) =
fl'(O), y = O

2. Preliminaries

Consider the general non-autonomous delay differential system

X=G(t,%), X =x({t+6), -r<o<o, t=0, (3)

where G:[0,0)xC,, —R" is a continuous mapping, G(t,0) =0, and we suppose that G
takes closed bounded sets into bounded sets of %:". Here (C,|||) is the Banach space of

continuous function ¢I[—f,0] —R" with supremum norm; r >0, CH is the open H -ball
inc; C, ={¢eC([-r,0], R"):|4| < H}. Standard existence theory, see Burton [2], shows
that if ¢€CH and t > 0, then there is at least one continuous solution X(t,t0,¢) such that on
[t,. t, + @) satisfying equation (3) for t>t;, X, (t,4) =¢ and & is a positive constant. If
there is a closed subset B C CH such that the solution remains in B, then & =0. Further, the
symbol || will denote a convenient norm in SR with |X|= MaX,..,|X;|. Let us assume that
c)={¢: [t-a, ] >9R" | ¢ is continuous} and @, denotes the ¢ in the particular C(t), and
that || | =max,_, .

¢(t)|. It can be seen that equation (1) is a particular case of (3).
Definition 1. [Burton (2006)]
10) A continuous positive definite function W:R" > [0,00) is called a wedge.

20) A continuous function W :[0,o) — [0,0) With W (0) =0, W(s)>0 if s>0, and W

strictly increasing is a wedge. (We denote wedges by W or W, where i is an integer.)

Published by Digital Commons @PVAMU, 2017
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Definition 2. [Burton (2006)]

Let D be an open set in 93" with 0e D. A function V :[0,)x D — [0, ) is called positive
definite if v (t,0)=0 and if there is a wedge W, with V(t,X)2W1(|X|), and is called

decrescent if there is a wedge W, with V (t,x) <W, (|x|).

Theorem 1. [Burton (2006)]

Let V(t, Xt) be a differentiable scalar functional defined when X:[a,1t] —R" is continuous
and bounded by some D <. If

(A) V(t,0) =0, W1(|X(t)|)SV(t,Xt), (where W,(I) is a wedge),
(A2) V(t,x) <oO.

Then, the zero solution of equation (3) is stable.

Theorem 2. [Burton (2006)]

Assume that there exists a Lyapunov-Krasovskii functional for (3) and wedges satisfying;
B1) W, () <V (t,p) <W,(|¢]), (where W,(r) and W,(r) are wedges),

B2V (t,) <0.

Then, the zero solution of equation (3) is uniformly stable.

Theorem 3. [Yoshizawa (1966)]

Suppose that there exists a continuous Lyapunov-Krasovskii functional V (t,¢) defined for all

te®* and @ €S, which satisfies the following conditions;
cy a(e)) <V (t,p) < by (p(0)) +by (e,

where a(r), bl(l’), bz(l‘) eCl, (C1 denotes the families of continuous increasing functions),

and are positive for r>H and a(r)—b,(r) > © as r > o,

(C2) \/(t,go) <0.

https://digitalcommons.pvamu.edu/aam/vol12/iss2/12
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Then, the solutions of equation (3) are uniformly bounded.

3. Stability and boundedness by the Lyapunov-Krasovskii functional
approach

First, we prove three new theorems by the Lyapunov-Krasovskii functional approach (see
Krasovskii (1963)).

Let p(t) =0 inequation (1).

The first main result of this paper is the following theorem.

Theorem 4.

We assume that there exist positive constants L, L, and a continuous function a(t) such that
the following conditions hold:

(D) t—7;(t) is strictly increasing, lim(t -7 (1) = oo;

(D2) a,, (a, =1), and p are positive and decreasing functions and dy and a, are positive
and increasing functions such that

1 n
a, (t) f (t, X, y)+a1(t)F1(y)2a(t)ZEZLj (b; () +1)z;(t) =0,
j=1
b, (t) <1—7(t);
(D3) £,(0) =0, yf,(y) =0, g(0) =0, xg(x) > 0, (x = 0), [9'(X)| > L,

g,(0) =0, xg; () >0, (x=0), |¢}(N|<Lj, (j=12,....n).

Then, the zero solution of equation (1) is stable.
Proof:

Define the Lyapunov-Krasovskii functional v =V (t) by
t n X X
Vv =exp(-2[le(s)|ds) x {_Zlb (1] 9;(s)ds+a,(t)[ g(s)ds +% y?+1
0 i= 0 0

v3a [ [yRo)das) (4)

=L () tes

Published by Digital Commons @PVAMU, 2017
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where 4; are positive constants which will be determined later and e(t) is a continuous

function on R =[0,0) and where [e()| L'(0,%), L'(0,0) is space of Lebesgue integrable

functions, that is, j|e(s)|ds < o0, 58y J'|e(s)|ds =K, K e, K >0. Then, it follows that
0 0

exp(—20(f|e(s)|ds) ‘ {éb J. (t)i g, (s)ds +a, (t)z 9(s)ds

+Llogs T2 <V
SV LA [ Ty"(6)ddds} = V.

=L (1) t+s

Hence, in view of assumptions of Theorem 4, it may be seen that

%exp(—zK)(sz Y <Vt X, Y)
so that
%exp(—zK)w £y SV (X, Y,

where Ly =min{l, L}. Thus, one can easily show that assumption (A1) of Theorem 1 holds,
that is, V (t,0) = 0, V/(t, %) =W, ([x(t))).

Calculating the time derivative of the Lyapunov-Krasovskii functional V along system (2),
we get

V =—2le(t) exp(-2e(s)|ds)

n 0 t
>4; [ [y*(6)déds}

=L —r(t) ts

x{éb j (t)Ig [(s)ds +a, (t)z o)+ Ly v1e
_ exp(—2£|e(8)|d8) s{ag (t) T (t, X, y) +a, (t)F, (y) — J_ﬁ_l;t 0
+ exp(-2(})|e(s)|ds) x{j%b] (t)i g,(s)ds+ay (t)i o(s)ds
+exp(-2][e(s)ds)

<Ay, ) Tg',-(x(s»y(s)ds—ji:lzj{l—rga)} Ty2(s)ds}.

t*Tj (t) t*Tj (t)
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By the assumptions of Theorem 4 and the estimate 2|ab| <a’+b?, it follows that

az(t)jg(s)dszjg(s)ds >0
0 0
so that

~2e(t)|exp(-2 j le(s)|ds) x a, (t) j g(s)ds < j g(s)ds <0,

since a,, (a, >1), 9(0) =0, xg(x) >0, (x = 0), and

. by )
b; 1)y [9](x(s))y(s)ds < [

t—z;(t) t—z;(t)
b, (t) t
L2 T (y? @) + y2(s))ds

2 )
b7 L;b, (1)

g (X(S)|(y* () + y*(s))ds

<

[y2(s)ds.

t—z; (1)

O+
Hence, in view of the assumptions of Theorem 4, we get
V < —exp(—2(j)|e(s)|d5) w{ay (1) F (t, X, y) +a, () F (y) - J_ﬁ_lﬂ,-r  O3y?
+ exp(—2j;|e(s)|ds) x{y ji:lb j (t)t_jj ICONCE
_ jﬁ_lﬂ. -7 (t)}”}j X)Z (s)ds}

t
< _{a(t) - 34,7, (t) —% S L b, (M7 (O}Fy? x exp(—2£|e(s)|d5)
i i

1 t n t
+2 exp(—2 (j) le(s)[ds) x __zl{[L (b (1) —22;A—7} )] [y (s)ds}.

t—‘l'j (t)

Let A =%_ Then, we have
. l n t
V < _{a() -3 _zle (b; (t) +Dz; (O} exp(—2_f|e(s)|ds)y2
)= 0

4 % J_i_l{L b, () —-7 ()] [y (s)ds}x exp(—2i|e(s)|ds) <0,

t*‘l'j (t)
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by the assumptions of Theorem 4. This estimate completes the proof of Theorem 4 (see
Theorem 1).

Let p(t) =0 inequation (1).

The second main result of this paper is the following theorem.

Theorem 5.

We assume that assumptions (D1)—(D3) of Theorem 4 hold. Then, the zero solution of
equation (1) is uniformly stable.

Proof:

In the light of the assumptions of Theorem 5, it can be easily completed the proof. Therefore,
we omit the details of the proof (see Theorem 2).

The third main result of this paper is the following theorem.

Let p(t) = 0 inequation (1).

Theorem 6.

We assume that assumptions (D1) — (D3) of Theorem 4 and the following assumption hold:
(D4) [pM)[<q(t),

where ( € Ll(O,OO), Ll(O,OO) is space of Lebesgue integrable functions. Then there exists a
positive constant K such that the solution x(t) of equation (1) defined by the initial function

x(t) = p(t), X't)=¢'@t), L 7T <1<,
satisfies the estimates

X <K, Xt <K,
forall t2t), where , < ci(rt, — 2, t,1,9%).

Proof:

Since |e()| € L'(0,), we can assume that

e><I0(—2T|e($)|ds) =K,, where K, e R, K, >0.
0

https://digitalcommons.pvamu.edu/aam/vol12/iss2/12
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Then, it is clear to see that

V>K1{Zb (t)Jg (s)ds+a2(t)jg(s)ds+ y* +1+ 2/1 I }y (0)d s}

=L T () tes
In the light of the assumptions of Theorem 6, we can get
V < p(t) exp(—2i|e(s)|ds)y
<I¥lac®)
<la®)]+ Kja)V,

where K, =2K ",

Integrating the last estimate from O to t, (t>0), and using the Gronwall inequality, we can
conclude that all solutions of equation (1) are bounded.

Remark

If the assumptions of Theorem 6 hold, then by Theorem 3, we conclude that all solutions of
equation (1) are uniformly bounded (see Theorem 3).

Example

As a special case of equation (1), we consider the following nonlinear differential equation of

second order with two variable delays, z,(t) = % 7,{t)=—, t>0:
X"+ (L+exp(t))(3+ % + X2+ X)X + A+ t)X + (2+exp(—1) (X3 + X)

1 1 t sint
>X[ ] <2+m>x@-m-

We write this equation in system form as

+(1+

’

X =Y,

y' =— (1+ exp(t))(3+%+ X*+y)y—([@A+t?)y —(2+exp(-=)(x* + x)

=) f y(s)ds

4

Published by Digital Commons @PVAMU, 2017
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1 1 1 1 t sint
s X 4 (= + .
(2 t2+1) +(2+t2+1)jy(s)ds e

When we compare this system with system (2), it can be seen the existence of the following
relations:

(E1)t—rl(t)=§, t—z,(t) =

, t>0,
4

N |~

N—r

t-7,(t) and t—7,(t) are strictly increasing functions,

lim (t=7,(6) = o0, lim(t—r, (1)) = =;
(E2) 8, (1) =1+exp(t), t >0, & is a positive and increasing function,
_ t 2 2
f(t,x,y)—3+5+x +Vy°,
a,t)ftxy) =@+ exp(t))(3+%+ x2+y?)

22(3+%+x2+y2)26+t;

(E3) () =1+t%, ¢> 0, a, isa positive and increasing function,
f
L=y, ai(t)Fl(y)=(1+t2)%:(1+t2)%:1+t2,

a,(®) f(t,x, y) +aOFR(y) =t* +t+7 =a(t);
(E4) a,(t) =2+exp(-t)), t >0, a, isapositive and decreasing function,
b (t) = 1+ﬁ, b, isa positive and decreasing function, and
_|_

1

b, (t) = 1, ———, b, isa positive and decreasing function;
2 t°+1

230,07, 0= 5 LB, D70+ L 6,0+ D, 0

1 t 3 1 t

=1+ —+(—+ —

( 2t2+2)4 (4 2t2+2)2
5t 3t
= — 4 X
8 8t°+8

https://digitalcommons.pvamu.edu/aam/vol12/iss2/12 10
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E5) §(X) =X +X%, g0) =0, Xg(X) =X +X* >0, (x = 0),

9'(x)=3x" +1,

g’(X)| >1=1L,
9,(X) =9g,(x) =X, 9,(0) =g,(0) =0,
xg,(X) = x> > 0, xg,(X) = X* >0, (x = 0),

9,(xX) =9g5(x) =1,

i <L =1 (i=1, 2);
(EB) a, (1) f(t,x,y)+a, (t)F (y) =a(t) > % _ﬁll_j (b; () +1)7;(t) =0,
J=

that is,

trt+72at)22 3 foran tso,
8 8t°+8

where the choice of the function a(t) can be performed easily;

sint 1

sint
= t: S = t,
(E7) p(t) l+t2,||o()| el S -0
Tq(s)ds:]o ! ds =7 <o,
0 o 1+ 2

Finally, in view of the former choice of the functions for the special case of equation (1) and
a proper and suitable choice of function e(t), we can also reach the results of Theorems 1-3 by

means of the Lyapunov-Krasovskii functional V. . We omit here the details of the
mathematical operations. Thus, all the assumptions of Theorem 4 and 5 and Theorem 6 hold,
when p(t) =0 and p(t) = 0, respectively. The above discussion implies that the zero solution

of the above equation is stable and uniformly stable when p(t) =0 and all solutions of the
same equation are bounded and uniformly bounded when p(t) = 0.

4. Stability by the fixed point theory

Finally, we prove a new result by the fixed point theory. Let p(t) = 0 in equation (1). We can
write equation (1) in the system form,

X.:yl

y=—-ftxy)y-a®fi(y)-a,[0g(x) - j%lbj ®g; (x(t—7;(1))). ®)

Published by Digital Commons @PVAMU, 2017
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For each 1, 20, we define M(ty) = inf{s—7,(8),....s—7,(s) : s>y} and C(t;) =

C([m(ty),to],R)  with the continuous function norm ||, where
v = supdw (s) : m(te) < s <to}.

It will cause no confusion even if we use |¢| as the supremum on [M(t;), ). It can be seen
from [2] that for a given continuous function ¢ and a number Y, there exists a solution of

system (5) on an interval [t,,T), and, if the solution remains bounded, then T = oo.
We introduce some basic assumptions:
(A) Let t—z;(t) is strictly increasing and tlm(t_fj(t)):oo' The inverse of t—z;(t)

exists, denoted by p (), 0<a,(t) <My, and o<b;()=<M;, j=12..n Let
M =max{M;,...,M}. Hence, 0<b;(t) <M.

Now, instead of the Lyapunov-Krasovskii functional approach, we use the fixed point
technique under an exponentially weighted metric to discuss the stability of zero solution of
equation (1).

Before giving our fourth main result, we introduce some auxiliary results.

Lemma 1.

Let ¥ :[M(ty),t;]] >R be a given continuous function. If (x(t), y(t)) is the solution of

system (5) on [ty, Ty) satisfying x(t) = w(t), t €[M(to).to] and Y(tg) = X'(ty), then x(t) is the
solution of the following integral equation

ij(S)ds t 7j' K(s)ds

X(t) = y(t,)e © +je »  B(u)du

t

t —}K(s)ds

—tje u D(u)g(x(u))du + }E(u, s)g(x(s))ds

t u —}K(s)ds

—tf [tf E(u,s)g(x(s))ds]e * K(s)du
hot K

+ j§1 tfe ‘ D; (W)[x(u) — g (x(u))]du

https://digitalcommons.pvamu.edu/aam/vol12/iss2/12

12



Tung: On the qualitative behaviors of a functional differential equation
AAM: Intern. J., Vol 12, Issue 2 (December 2017) 825

SK()Es g,

5 ID (s)g; (X(S))dS—Ze ° [D;(s)g; (x(s))ds

=1t () to—7; (to)

- K (s)ds

3 I[ D, i(8)gj(x(s))dsle ©  K(u)du

=ty u—r; (u)

£y I E;(t.;s)g;(x(s—7;(s)))ds

_]_ tO

- K (s)ds

3 I [IE (U,s)g;(x(s—7;(s))dske ©  K(u)du. (6)

=ty tg

Conversely, if the continuous function x(t) = w(t) , t €[M(ty),te] is the solution of equation
(1) on [t5.T,], then (x(t), y(t)) is the solution of system (5) on [t, T, 1]
Proof:

Let f(t, x(t), y(t)) +a, (t)F, (y(t)) = A(t). Since we assume that p(t) =0, then equation (1)
can be written as the following system:

X=y,

y=-Al)y-a,(t)g(x) - éb,- ®g; (x(t—7; (D). ()
Therefore,

y+ Ay +a,(t)g(x)+ ji_lb,- (0g; (x(t—7;(1)) =0. (8)

t
A(s)ds

Multiplying both sides of Eq. (8) by e® and then integrating from {, to t, we obtain

t t
- [A(s)ds t IAG)ds

y(t) = y(to)e ~Je " a,(u)g(x(u)du

t
t —[A(s)ds

St 29 (XU, W)y

Hence,

Published by Digital Commons @PVAMU, 2017
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t
SIAGE L [AGs)ds

X(t) = X(tp)e -le’ ey Wgxu)dy

t
t —[A(s)ds

-le’ 2b; g (-7 W)

If we choose x(t,) exp(—j' A(s)ds) = B(t), then,

to

t
t —JA(s)ds

x(t) = B(t)—tfe T a(u)g(x(u))du

t —} A(s)ds

_é tje " b, (u)g;(x(u -z (u))du,

by (9). Let

t
—JA(s)ds
u

e a, (u) = C(t,u),

[C(u+t—t,,t)du =D(t) >0

o

JC(U+5—ty,5)du = E(t,s) >0,

to +t—s

n —EA(s)ds n

j=1

S [C;u+t-to,t)du=3D; (1),
=1t j=1

and

S [ Cju+s—ty,s)du= JilEj(t,s)zo.

=l ty+t-s

In view of the mentioned estimates, it can be written from (10) that

https://digitalcommons.pvamu.edu/aam/vol12/iss2/12
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X(t) = B(t) — g(x(t))jC(u +t—t,,t)du +—jE(t s)g(x(s))ds

to

_ jilg [(X(t-7, (t))):fC [ (U+t—to,t)du
ndt
+ Elat{ E;(t,s)g;(x(s—7;(s)))ds

d t
= BO - g(x)D® + - [E(t.s)g(x(s))ds

to

—jilgj(x(t 7;(1))D; (t)+Z IE (t,s)g;(x(s—7;(s))ds

d t
=B(O - g(x®)DM) + [E(t,s)g(x(s))ds

to

—ZD (p;()9; (X(t))+2— ID (p;(8))g; (x(s))ds

tz't

n gt
+ Elat{Ej (t,8)g;(X(s—7;(s))ds

d t
= B(t) — g(x(t))D(t) +E [E(t,s)g(x(s))ds

to

t .
- ZD Ox() + ZD (OIx(®) —g; (x(1)] +Za JD;j(s)g;(x(s))ds

t—z;(t)

ndt
+ Elat{ E;(t,s)g; (X(s—7;(s)))ds.

Let Z D. () =K() and sup D(t) <sup D j(t). Then,

t=0 tZO
d t
X+ KOX(®) =BO) - g(x(0)DO + [E(t,s)g(x(s))ds
to

+ zD O[X() — g (XA + ; g ID (s)g; (x(s))ds

2 2 I E;(6,8)g;(X(s —7;(s)))ds. (11)
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t
Multiplying both sides of (11) by exp([ K (s)ds) and then integrating from t, 0 T, we get

to

f}K(s)ds t 7}K(s)ds t —}K(s)ds
X(t) =w(ty)e © + e B(u)du — [e " D(u)g(x(u))du
to to

t —}K(s)ds R

£ Jer D, (U)IXU) - g; (x(u)]du

=1t
t —}K(s)ds du
+fev [— [E(u,s)g(x(s))ds]du
t du t
n t —}K(s)ds d u .
+Y Je'  [— [D;(s)g;(x(s))dsldu
=t Uu—rj(u)

t —}K(s)ds u

£y Jev [y JE1 @99 (=7 ()il

it

Applying the integration by parts formula for the last three terms, we have

t

—J'K(s)ds t _‘K(S)ds t —}K(s)ds
x®)=y(t)e® +fer  Budu-Je*  Du)g(x(u)du
)

to

t tu —}K(s)ds
+ [E(u,8)g(x(s))ds — [[[E(u,s)g(x(s))ds]e *  K(s)du

to to to

t 7}K(s)ds R

£3 Jer D (U)IXU) - g, (x(u)]du

=t

—}K(s)ds t

SR LIOUHCOL S EE R IO ENCOE

=l g to—7; (to)

—} K (s)ds

2300 15,90, ()dsk b K(u)du

1=ty u=rj(u)

£y }Ej(t,s)gj(x(s—fj(s)))ds

=ty
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—}K(s)ds

~ 3 (1€, W99, (xs—7;(s))dsk * KU

1= 1 1
Conversely, we assume that a continuous function x(t) =y (t) for t€[M(t;),to] and satisfies

the integral equation on t €[ty,T,]. Then, it is differentiable on [ty,T,]. Hence, it is only

needed to differentiate the integral equation. When we differentiate the integral equation, we
can conclude the desired result.

Let (C,||.[) be the Banach space of bounded continuous functions on [M(ty), %) with the
supremum norm [¢] =sup{lg(t)] :t € [M(ty), )} for pecC. Let p denote the supremum

metric and p(dy,4,) = ¢ — &, where ¢;,8, €C. Next, let ¥ :[M(ty),tg] = R be a given
continuous initial function.

Define the set S — C by:

S ={p:[M(to),») = Rg € C, (1) =y (t),t e [M(ty), 1 I}
and its subset

S ={:[m(tg). ) - Hlp € C. () =y (t).t € [mlto).t] and [p(t)] <1t > m(ty)}.

where ¥ :[M(ty),t;] = [-1.1] is a given initial function, | is a positive constant. Define the
mapping P:S"— S’ by

(PaY) =w (), if te[m(ty)t],
and if t>1;,then

—jK(S)ds t —j K (s)ds

PHAO=w(t)e ™  +[e’  Bu)du

to

t —}K(s)ds t
—Jer  D(u)g(¢u))du + [E(u,s)g(g(s))ds

)

—} K(s)ds

T E,9)9((s)dsle

to to

K(s)du

t
—[K(s)ds

+3 Je’ DWW - g, (Hu)du

=l g,
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k(a1

n to. n ~
+3  JDj(s)g;(g(s))ds—Xe © [D;(s)g;(w(s))ds
= t—ry(t) = to—7; (to)

0ot ntou 1K (s)ds
+2 JE;j(t,5)g;(#(s)ds— X [[ [D;(s)g;(4(s))ds]e K(u)du

=1ty =ty u-7;(u)

—} K(s)ds

3 IITE, (W9)g, (s -7, (9)dske

=t t

K (u)du.

Since g(x) and ¢, (x) satisfy the Lipschitz condition, let Lo, Lyl 1 < L,, denote the
common Lipschitz constants for g(x), g, (x and x— g, ().

It is also clear that

t

t —} K(s)ds —}K(s)ds —}K(s)ds
Je Ku)du=e * =1l-e?® ~1 for large t.
t

But, since g(x) and g, (x) are non-linear, then Ly and L, may not be small enough. Hence,

P may not be a contracting mapping. We can solve this problem by giving an exponentially
weight metric via the next lemma.

Lemma 2.

We suppose that there exist a constant | > 0 such that g(x) and g, () satisfy the Lipschitz
condition on [-I,1]. Then there exists a metricon S’ such that

(F1) the metric space (S’,d) is complete,

(F2) P isa contraction mappingon (s’,d) if P maps S’ into itself.
Proof:

(F1) We change the supremum norm to an exponentially weighted norm |¢|, , which is

defined on S'. Let X be the space of all continuous functions ¢ :[M(t;),0) = R such that

¢, =sup{g®]e ™ :tem(ty), )} < o0,

https://digitalcommons.pvamu.edu/aam/vol12/iss2/12 18
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t . t .
where h(t) = kL, [[D(s) + D(s)Ids +kiLj [[Dj(s)+D;(s)lds, k is a constant, Ly and L,
to I

are the common Lipschitz constants for g(x), x—g,(x) and g, (x). Then (X,|.|h) is a

Banach space. Thus (X,d) is a complete metric space with d(¢,§0)=|¢—¢|h, where

#, @ 'S . Under this metric, the space S’ is a closed subset of X. Thus, the metric space
(S’,d) is complete.

(F2)Let P:S"— S". ltisclearthat D(t) >0, E(t,s) >0, ilﬁj(t)zo and ,—%Ej(t’s)zo'

=1

Then, for ¢, € S’, we can get
—h(t) t —}K(s)ds —h(t)
(PA)(t) - (Po)()e™" < tI e D(u)|g(#(u)) - g(p(u))e ™ du

B 900 - glp)e"ds

tu —}K(s)ds
+ B s)g(@(s) - g(p(s)e "Wdsle ©  K(s)du
nt —EK(s)ds )
+Xfe”  Djgu)-g;@u)l-lo) - g; (pu)le " du

=1,

+ 3 E;(t,9)|9; (#(s) — g (¢(s)e "ds

=1,

> }81 (5)|9; (#(s)) - 9 (e(s))e "Vds

J=1t71'j

nt u . —}K(s)ds
+ X[ ] Dj(s)ds|g;(#(s) - gj(e(s)e "Vdsk * K(u)du

1=l u—z;(u)

ntu *K(s)ds
+ 2 [[JE;Us)|g; @G -7;N -9 (p(s—7; (s "dsk *  K(u)du.

1=ty ty
For u <t, since D(t)>0 and p, (t) > o, we have

h(u) = h(t) = —kLOE[f)(s) +D(s)]ds — kéL J. }[f) ;(s)+D;(s)ds
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< —kLo} D(s)ds,
h(u)=h(t) = -kLoff)(s)ds,
h(u) = h(t) < -k Ji:lL j ID (s)ds
and
h(u) = h(t) = —kLolt{[f)(s) +D(s)lds —k Ji:lL j i[f) ;(s)+D;(s)ds
< J_%1(—k)|_ ju} D, (s)ds.
Further for s <t, it can be seen that

n t
h(s —z,(s)) —h(t) < _Zl(—k)Lj [Dj(u)du.
1= s
Since E;(t,s)>0, then we have

i TCj(u+s—t0,s)du

1=y +t—s

SE;(ts) =
j=1

< iTCj(U+S—tO,S)dU = iDj(s).
J=ltg =

Hence,
t
t —kLg/D(s)ds

(PAH®) ~(P)(t)e™" <|¢ -, ><{|—otfe * D(u)du

t
+ Lo [E(t,5)e"®"Mds
t

t u h h 7}K(s)ds
+ Lo J[JE(u,s)e"® " ds]e K (u)du]

to to

n t —}K(s)ds n h(u)-h(t)
+XLfev D;(u)e du

J =1 to

https://digitalcommons.pvamu.edu/aam/vol12/iss2/12
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+ ZL ]E (t,5)e"® Vs

_]_ to

to.
+zL [D;(s)e""ds
=t

i (s)ds
+zL j[ jD (s)en®)- h(t)ds]e 5 K (u)du

= Tty u—j(t)

K(s)ds

+ zL j[ jE (u,s)e"C T I Ogete w K (u)du}.
I
Therefore, in view of the above discussion, it follows that
t

t t —kLy [ D(s)ds
L, [E(t,5)e"®"Wds<L,[D(s)e *  ds< 1

to t, K

}K( )d

t - S)ds
Lyfe*  Du)e"®"du< 1,

t k

u K (s)ds 1
Lo [[JE(u,5)e"®"Odse v K(u)du] <=,

to to k
n t —j.K(s)ds . 7zjoj(s)ds 5
ZLjIe u D; (u)e" " Vdu = ZL J.e = D; (u)e""du
=t to

nt,
-3 (D ,—(s)d
n te ™ (u)
< Zij
S M KL; jD (s)ds
eJ’ u

t Z(kL +1)jD (s)ds _
_ZLjeJl u D; (u)du

i1

t
n 1 72 (kL; +1)jD (s)ds
< .ZLJ' . _° o
=Y (kL +1)
i=1
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n

L h(s)-h(t n.ot Z(—k)L,»}Dj(s)ds
ZijEj(t,s)e (s)- ()dS SZLjJ‘Dj(S)ejzl s ds
= to j=1 to

n t t
-2 KL;[Dj(s)ds

) g it v sl.
k

<2bj
YKL

= to

Similarly, it can be easily obtained that

-

t .
YL, [D;(s)e"®"Ods < =

=L tr(t)

K(s)ds 1

toou ]
i Lj IT T Dj (S)eh(s)*h(t)ds]e u K(u)du < K

=Lty u-r(t)

and

tu o K (s)ds
S L JI[E;(u,s)e" MO gg]e & K(u)dus%.

[ A
Thus, we have

(PH® - PAOE™ < Zp-d|,, b

For te[m(t,)t]. (Pt = (Po)(t) = o(t). Thus,

d(P¢,Py) s%dw—q)), (k > 8).

Therefore, P is contraction mapping on (S’,d).

The fourth and last main result of this paper is the following theorem.
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Theorem 7.

We suppose that the assumption (A) holds. Moreover, we assume the following:

(G1) There exists a positive constant | such that g and 9, satisfy the Lipschitz condition on
[-1,1]and g and g, are odd and they are strictly increasing on [-I,1], and x—g(x) and
— g, (x) are non-decreasing on [, 1];

(G2) There existan «, s < (0,2, and a continuous function a(t) : [0,0) — [0,0) such that

f(t, x(t), y(t) +a, ()R (y®) = a(t) for t>0, xe R, yeR,

u+s
o — a(v)dv

jj b, (s)duds < 3

and
Pi(Dw —Ia(v)dv t o —W+Sa(v)dv
2sup I je : b; (s)dwds + Zsup_[_[e : b, (s)dwds < a;;
t>0 t 0 = 0t-s

(G3) There exist constants 8, >0 and Q > 0 such that for each t > 0, if J >Q, then

t+J

J'a(v)dv >a,J.
t

Then, there exists & e (0,1) such that for each initial function ¥ :[M(t;).t;] >R and X(t,)
satisfying [X(t,)| +[w| < &, there is a unique continuous function X:[M(ty),%0) =R satisfying

x(t) = w(t), which is a solution of equation (1) on [ty,0). Moreover, the zero solution of
equation (1) is stable.

Proof:

Choosing ¥ :[M(t;).t;] = Rand X(ty) such that

e % Q

(Q+ =) [X(to)| + 5 + Zg () ID (s)ds

o to—7j (to)
<R-(g+a, +...+ an)]_zlgj .
J=

In view of the assumptions of Theorem 7, g(0)=0and g, (0) = o, it follows that g(1) <1.
and g,y <1. Since g(x) and g, (x) satisfy Lipschitz condition on [-1,1], g(x) and g, (x)
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are continuous function on [-I,1]. Then, there exists a constant & such that 6 <. Thus, we
can get

Uikl -TAGS)E
(PHW|<o+fer |tk ®  du
)

t —}K(s)ds t
+[ev D(u)g(l)du + [E(u,s)g(l)ds

t to

tu —}K(s)ds
+[[JE(u,s)g(l)ds]e ©  K(s)du

to to

nt —}K(s)ds

+xJer  DjU)I-g;()du

j:ltg
n t . nt u . —}K(s)ds

+% [Dj(s)g;(Nds+X [[ [Dj(s)g;(Nds K(u)du
== () 1=ty u—rj(u)

£y | D(s)g;(S)ds+ i}Ej(t,s)gju)ds

=lty—7; (o) =k,

—} K (s)ds

+SIITE Ws)g,Mdsk *  K(u)du,

1=ty ty
In view of the assumptions, it also follows that
t
t —[K(s)ds

tfe * D(u)g(ldu<g(h),

}E(t,s)g(l)ds = g(l)} TC(u +S—1t,,S)duds

to toto+t—s
t 7U+SI_X)(v)dv t o —uﬁﬁ\(v)dv
=g()j Je = b(s)duds =g(I)[ Je = b(s)duds.
toto+t—s tot—s

t o — [a(v)dv
<g(l)sup| [e * b(s)duds.

20 tot-s

Similarly, we have
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e, s)g(l)ds]e_”K(S)dsK(s)du <g()sup [ e O (s)duds,

ty 1o 0 tot-s

- K (s)ds

j[jE(u s)g(l)ds]e “ K(s)du < g(l)}[tjj E(u, s)ds]du

o to toto

ZjE(t s)ds = Zj JC (u+s—ty,s)duds

=1t J=ltg tg+t-s
u+s—tg
nt o — [A(v)dv nto - IA(V)dV
=>[ Je = b;(s)duds =X | je = b; (s)duds
=gty +t—s i=ltyt-s
u+s u+s
t o — [a(v)dv t oo — [a(v)dv

<sup| fe s b, (s)duds +...+sup|[ [e ° b, (s)duds,

t>0 0t-s

0 0t-s
> JD (s)ds =3 ID (P;(s))ds
=l (t) =l (1)
n t D;(P (s)) n Pi®
= —————ds= D (s)ds
g J.(t) 1-7° (S) jgl ‘t[ J()
n PJ (t s} —W+S V)dV
= | Je : b; (s)dwds
=t oo
Pi(t) o —W+;(v)dv Pt — j;(v)dv
< sup j Je * b,(s)dwds +...+sup [ [e °
>0 % >0 t 0
From assumption (G2) , we have
- K(s)ds
lIE (t,s)g;(Ids + ZI[ ID (s)g;(l)dsk K(u)du
j=lt,

=ty u—r; (u)

55 ID (s)g;(Dds

=tz (1)

- K (s)ds

+ ZI[IE (u,s)g;(Ndse *  K(u)du

J _1t0 tO
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fufsa(v)dv t o :T;(v)dv
< Zg (I){Zsupj j e > by(s)duds+...+2supf [e = b,(s)duds
t>0 0t-s t>0 0t-s
R (t) oo fwf;(v)dv P, (t) 7Wj+;(v)dv
+2sup | [e ¢ b, (s)dwds +...+2sup | [e b, (s)dwds}
t0 t O >0 t 0

<(op+a,+..+a )Zg .
J_

Hence,

|(P¢)(t)|é5+9(|)+élgj(5) ID(S)dS+Z(l g9; ()

to—7;j (to)

+289(1) + (o + +...+an)égj 0

¢ —jK(s)ds - [As)ds
+ e X(tp)e ©  du
fy

<§+g(l)+Zg ©) ID(S)dS+Z(l g;(1)

to—7j (to)

7jA(s)ds
+289(1) + (o + ey +.. +a>29 (I)+I|x(to)|e o du

Using condition (G3) of the theorem, we get

t —j.A(s)ds to+Q —.TA(s)ds t —]{A(s)ds -a,.Q
_[e“’ du:J'e'0 du+je‘° du<Q+
to to to+Q 0
Thus,
(Po)®)] <5 +g(1)+ _Zlg i (6) I(D) j(s)ds +Z(l g;())
1= to—7j(to
n . e_aO'Q
+2ﬁg(|)+(a1+a2+...+an)_zlgj(|)+|x(t0)|(Q+ )
1= 0
and so

(PA®)| < @+28) + 1.
j=1
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It is obvious that if t €[M(ty),tx], then (P@)(t) = w(t). Moreover, for t€[m(ty), ), we get
[(Po)(®)| < @+28)1 + 1. Therefore, Pg:S’—s'". Since P is a contraction mapping, then
j=1

P has unique fixed point x(t) such that x(t) < @+28)1 + §|_
j=1

From equation (6), we have

t —[A(s)ds
|y @) < [*(t)| + tI e’ a,(u)g(x(u)du

nt —} A(s)ds

+xfer by(u)g;(x(u-r;(u)du.

i =1t0

Since for t e[0,o0), 058, (1) <Mg, 0 <, 1y < ™, then

t —[A(s)ds

|y(t)|£|>'<(t0)|+MOje“ |x(u)|du+z|v| je“ [X(u—7;(u))|du

t —}A(s)ds t —IA(s)ds
<IM,fe du+2|(1+M je u du)

ty

<MlQ+& )+ z|[1+|v| Q-+ _aOQ)]
0 0
Hence,
-a9Q —aoQ
X+ ]y )] < @+ 281 + MI(Q+ 5 " )+ YI2+M; (Q+Z—)].
8y 1—1 a9

If we replace & by 1, then we can conclude that the zero solution of equation (1) is stable.

5. Discussion

A Liénard type equation with multiple variable delays, equation (1), is considered. First, the
stability/uniformly stability when p(t) =0 and the boundedness/uniformly boundedness of

solutions of this equation, equation (1), when p(t) =0, are discussed by the Lyapunov-

Krasovskii functional approach. Later, the stability of the solutions of the same equation,
when p(t)=0 in equation (1), is investigated by the fixed point technique under an

exponentially weighted metric. The claim made by the author is illustrated as the following:
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1°)  The obtained results, Theorem 4 and Theorem 7, extend and improve that of Burton
(2005), Burton (2006), Burton and Furumochi (2001), Pi (2011) and Tung¢ and Biger
(2014), and in addition we give additional three new results, Theorem 5, Theorem 6 and
Remark to that of Burton (2005), Burton (2006), Burton and Furumochi (2001), Pi
(2011) and Tun¢ and Biger (2014) by using the Lyapunov-Krasovskii functional
approach.

2°) It is clear that our equation, equation (1), includes the equations investigated by Burton
(2005), Burton (2006), Burton and Furumochi (2001), Pi (2011) and Tunc¢ and Bicer
(2014). This case is an extension and contribution to the works of Burton (2005),
Burton (2006), Burton and  Furumochi (2001), Tun¢ (2010) and Tun¢ and Biger
(2014).

3°) It follows that that the assumptions of Theorem 4 and Theorem 7 are completely
different from each other except the similarity of the assumption
f(t,x(t), y(t)) +a, (t)F (y@®)=at) of Theorem 7 and the assumption

ao (t) f (L, x, y) +a, (t)F.(y) > a(t) > % jﬁ_ll_,. (b; (t) + 1)z (t) = 00f Theorem 4.

4°) On the other hand, the assumptions of Theorem 4  are very clear, elegant and
comprehensible. That is, the assumptions of Theorem 4 have very simple forms and the
applicability and correctness of them can be easily checked and verified. In spite of this
fact, to the best of our knowledge, it may be difficult to say the same for the
assumptions of Theorem 7. That is, to show the applicability Theorem 7 may be more
difficulty. This shows the advantage of the Lyapunov-Krasovskii functional approach
over the fixed point technique.

5°) We assume the existence and continuity of the derivatives ay t), b (t), < (t) and g;(x)
when applying the Lyapunov-Krasovskil functional. However, it is assumed g and g
are odd and they are strictly increasing on [-1,1],and x —g(x)and x — g, (x) are non-

decreasing on [-I,1Jwhen applying the fixed point technique. It is not needed the
differentiability of the mentioned functions when we use the fixed point technique. This
is the advantage of the fixed point technique over the Lyapunov-Krasovskii functional
approach. Finally, we do not need the restriction of g and g, are odd and they are

strictly increasing on [-1,1],and x —g(x)and x — g, (x) are non-decreasing on [-I,1]

when applying the Lyapunov-Krasovskii functional approach. This case shows that
there is no more restriction on the functions g and g, when applying the Lyapunov-

Krasovskii functional approach.

6°) When we change equation (1) into a more complex form, finding an appropriate
Lyapunov-Krasovskii functional, which gives meaningful results, may be very difficult.
It should be noted construction or definition of Lyapunov-Krasovskii functionals remain
as an open problem in the literature by now. This fact shows that the advantage of the
fixed point theory over the Lyapunov’s direct method for the special cases. Further, in
spite of more effectiveness of the Lyapunov-Krasovskii functionals for ordinary and
functional differential equations of higher order, the application of the fixed point
theory for those type equations is very difficult because of multiple integrals to be
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arisen in proofs. By this fact, we mean that the observations of Burton (2005), Burton
(2006) and Burton and Furumochi (2001) may not be true in general cases. Depending
on the form and order of given functional differential equations, sometimes, the
Lyapunov-Krasovskii functional approach has an advantage over the fixed point theory,
and sometimes it is in the contrast. However, so far, the most effective method to
investigate the qualitative behaviors of non-linear ordinary and functional differential
equations of higher order is still the Lyapunov’s direct method. At the end, the
Lyapunov’s direct method is old but it is still more an active method in the scientific
literature.

6. Conclusion

A Liénard type differential equation with multiple variable time-lags is considered. The
stability of zero solutions of the differential equation considered is investigated by the
Lyapunov-Krasovskii functional approach and the fixed point technique under an
exponentially weighted metric, respectively. It is done a comparison between the applications
of both methods with the established conditions on the same stability problems. A comment is
made on the effectiveness of the methods applied. In addition, three new results for uniformly
stability and boundedness/ uniformly boundedness of the solutions to the equation considered
are obtained by the Lyapunov-Krasovskii functional approach. An example is also given to
verify the results obtained by the Lyapunov-Krasovskii functional approach. The results
established complement and improve some recent results found in the literature.
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