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Abstract

Considering the characteristics of the bivariate normal distribution, in which uncorrelation of two
random variables is equivalent to their independence, it is interesting to verify this problem in other
distributions. In other words, whether the multivariate normal distribution is the only distribution
in which uncorrelation is equivalent to independence. In this paper, we answer to this question and
establish generalized Farlie-Gumbel-Morgenstern (FGM) family is another family of distributions
under which uncorrelation is equivalent to independence.

Keywords: Uncorrelation; Independence; Farlie-Gumbel-Morgenstern Family; Exchangeablity;
Correlation Coefficient

MSC 2010 No.: 62F99, 47N30, 97K70

1. Introduction

Studying the dependence structure of bivariate distributions has an important role in statistics and
probability. It is also important to test independence against quadrant dependence (QD). Many
authors have investigated the dependence structure of bivariate distributions. Kochar and Gupta
(1987, 1990) introduced a class of distribution-free tests for testing independence against QD and
evaluated the empirical power for the bivariate exponential distribution of Block and Basu (1974)
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based on the sample sizes n = 8 and 12. Shetty and Pandit (2003) proposed a class of distribution-
free tests to test independence against positive quadrant dependence (PQD), which is a general-
ization of Kochar and Gupta (1990). Amini et al. (2010) evaluated the empirical power of this
class in FGM family for the sample sizes n = 6, 8, 10, 12, 16 and 20 based on the empirical dis-
tribution. Güven and Kotz (2008) introduced a new test statistic for testing independence against
QD in generalized FGM family. Amini et al. (2011) obtained a dependence measure for gener-
alized Farlie-Gumbel-Morgenstern (FGM) family in view of Kochar and Gupta (1987) and then
compared this measure with Spearman’s rho and Kendall’s tau in FGM family. Moreover, these
authors evaluated the empirical power of the class of distribution-free tests proposed by Kochar
and Gupta (1987, 1990) based on exact distribution of a U-statistics.

Certain bivariate densities constructed from marginals have recently been suggested as models of
hydrologic variates such as rainfall intensity and depth. It is pointed out that (i) these densities
belong to the families of the Farlie-Gumbel-Morgenstern densities and the Farlie polynomial den-
sities, which have been extensively studied in the statistical literature, and that (ii) these densities
have a limited potential applicability in hydrology since they can model only weakly associated
variates. Interested readers may refer to Long and Krzysztofowicz (1992) for more details.

The task of constructing a multivariate distribution having specified marginal distributions has
challenged statisticians for decades. The problem of constructing a multivariate distribution is from
interest on both theoretical and practical viewpoints. Several authors have worked on this problem;
see, for example, Haight (1961), Mardia (1970), Singh and Singh (1991), Morgenstern (1956),
Gumbel (1958) and Farlie (1960).

Joshi (1978) contracted a certain bivariate distribution which will illustrate the following situations
which are frequently mentioned in literatures but handy examples of which are not obvious to come
by.

(i) If X and Y are two random variables with the moment generating functions M1(t) and M2(t),
respectively, then independence between X and Y implies that the moment generating function
M(t) ofX+Y isM1(t)M2(t). However,M(t) = M1(t)M2(t) does not imply independence between
X and Y . An example of this is given in Cramér (1946), p. 317.
(ii) Univariate marginal distributions of a bivariate normal distribution are normal but there is a
bivariate non-normal distribution which univariate marginals are normal.
(iii) The joint distribution of two non-independent random variables X and Y is such that X2 and
Y 2 are independent (see Parzen (1960), p. 297).

Let (X1, X2) denote a vector of continuous variates having joint density f and arbitrarily specified
marginal functions: a density fi and a distribution Fi of Xi, for i = 1, 2. The general form of the
constructed bivariate density is

f(x1, x2) = f1(x1)f2(x2) {1 + c ν(F1(x1), F2(x2))} , (1)

where c is a scaler, and ν is a kernel which models the dependence structure. Scaler c may take
any value in the range −1 ≤ c ≤ 1. Density (1) with kernel ν(u,w) = (2u − 1)(2w − 1) is well
known in the statistical literature, generally under the name of its major developers, Farlie-Gumbel-
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Morgenstern. It has been characterized further by Kotz (1975), Kotz and Johnson (1977), Schucany
et al. (1978) and Marshall and Olkin (1988).

The rest of this paper is structured as follows. Section 2 presents some basic statistical concepts
and some aspects of FGM family that will be used in the subsequent developments. In Section 3
equivalence of uncorrelation and independence in FGM family is established. In Section 4, distinc-
tion between FGM family and bivariate normal distribution is discussed. Finally, some concluding
remarks are made in Section 5.

2. Some Aspects of This Family

In this section, we introduce a version of FGM family and discuss its statistical and probabilis-
tic properties. Let (X,Y ) be a pair of absolutely continuous random variables with the marginal
distribution functions F1(x1) and F2(x2). The FGM family of (X1, X2) for k > 0 and r > 0 is

fα(x1, x2) = f1(x1)f2(x2)

{
1 + α

[(
F k1 (x1)−

1

k + 1

)(
F r2 (x2)−

1

r + 1

)]}
, (2)

where−1 ≤ α ≤ 1. First, we show that fα(x1, x2) is a bivariate density function with given marginal
densities f1 and f2, for each α. It should be noted that(

F k1 (x1)−
1

k + 1

)(
F r2 (x2)−

1

r + 1

)
<

kr

(k + 1)(r + 1)
≤ 1, (3)

and then for α , we observe that 1 + α
[(
F k1 (x1)− 1

k+1

)(
F r2 (x2)− 1

r+1

)]
≥ 0. Also∫ ∞

−∞

∫ ∞
−∞

fα(x1, x2) dx1 dx2 = 1 + α

∫ ∞
−∞

∫ ∞
−∞

f1(x1)f2(x2)(F
k
1 (x1)−

1

k + 1
)

×(F r2 (x2)−
1

r + 1
)dx1 dx2

= 1 +

∫ ∞
−∞

f2(x2)

(
F r2 (x2)−

1

r + 1

)
×

{(
F k+1
1 (x1)

k + 1
− 1

k + 1

)∣∣∣+∞
−∞

}
dx2

= 1 + 0 = 1,

which it follows that fα(x1, x2) is a joint density function.

Let (xi, yi), i = 1, · · · , n denote random samples from FGM family. Using the joint density function
given in 2, the log likelihood function is obtained as,

l(α) =

n∑
i=1

ln(f1(xi)f2(yi)) +

n∑
i=1

ln

{
1 + α

[(
F k1 (xi)−

1

k + 1

)(
F r2 (yi)−

1

r + 1

)]}
.

Differentiating l(α) partially with respect to the α and equating it to zero, we get the following log
likelihood equation,

∂l(α)

∂α
=

n∑
i=1

(
F k1 (xi)− 1

k+1

)(
F r2 (yi)− 1

r+1

)
1 + α

[(
F k1 (xi)− 1

k+1

)(
F r2 (yi)− 1

r+1

)] = 0. (4)
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It can be seen that the above equation is non-linear with respect to α and hence obtaining closed
form expression for the estimator is not possible. One may use Newton-Raphson method or any
root finding algorithm to obtain solution to the system of non-linear equation given in Equation 4.

Definition 2.1.

Let F (x, y) and F1(x), F2(y), respectively, be the joint distribution function of (X,Y ) and the
marginal distribution functions of X and Y . Then, we say that X and Y are independent if and
only if

F (x, y) = F1(x)F2(y), for all (x, y) ∈ R2. (5)

It is important to note that in the FGM family X1 and X2 are not independent unless α = 0.

Definition 2.2.

Let X and X be random variables defined on a common probability space (Ω,F , P ). If E{(X −
EX)(Y − EY )} exists, then cov(X,Y ) = E{(X − EX)(Y − EY )}.

If X and Y are independent, then cov(X,Y ) = 0 and we say that X and Y are uncorrelated.
However, if cov(X,Y ) = 0, then X and Y may be not necessarily independent. It is of important to
note that independence is not a property of random variables but it is pertinent to probability space.
On the other hand, if probability space switches, the independence between random variables may
also change. So, we can say that independence is a property of probability space, not random
variables. For example, suppose X1, · · · , Xn are independent normal random variables, thus X̄ and
S2 are independent, but if distribution of Xi’s switch to Poisson with mean λ, then cov(X̄, S2) =

λ/n 6= 0 and X̄ and S2 are not independent.

One of the key questions in judging the applicability of a bivariate density constructed from
marginals concerns the flexibility of its dependence structure, in particular, the degree of associa-
tion between variates that can be modeled. The following theorem presents correlation coefficient
between X1 and X2 in the FGM family.

Theorem 2.1.

Let (X1, X2) be a random vector with FGM family. Then

ρ(X1, X2) ≤ α
kr

(k + 1)(r + 1)
√

(2k + 1)(2r + 1)
. (6)

Proof:

The correlation coefficient between X1 and X2, ρ(X1, X2), is given by

ρ(X1, X2) =
cov(X1, X2)

σ1 σ2
. (7)

First, cov(X1, X2) = αJ1(k)J2(r) readily observed where for i = 1, 2

Ji(m) =

∫ +∞

−∞
(xi − µi) fi(xi)

(
Fmi (xi)−

1

m+ 1

)
dxi. (8)

4
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By applying the Schwarz inequality to (8), we obtain

J2
i (m) ≤

(∫ +∞

−∞
(xi − µi)2 fi(xi) dxi

) (∫ +∞

−∞

(
Fmi (xi)−

1

m+ 1

)2

fi(xi) dxi

)

= σ2i

∫ 1

0

(
umi −

1

m+ 1

)2

dui

= σ2i
m2

(m+ 1)2(2m+ 1)
.

Now, by replacing these observations in (7), we get

ρ(X1, X2) ≤ α
kr

(k + 1)(r + 1)
√

(2k + 1)(2r + 1)
,

and, hence, the theorem. �

It is of important to note that if k = r = 1 then ρ(X1, X2) ≤ 1/3. This point shows this family can
have suitable fit for a set of observations that have weakly associated variates.

Definition 2.3.

The random variables X1, · · · , Xn is said to be exchangeable if and only if

(X1, · · · , Xn)
D
= (Xi1 , · · · , Xin),

for all n! permutations (i1, · · · , in) of (1, · · · , n), where D
= means the same distribution on both sides

of the equality.

Clearly if X1, · · · , Xn are exchangeable, then Xi’s are identically distributed but conversely may
not be held. The following example further illustrates this point.

Example 2.1.

Let (X1, X2) be jointly distributed with density function

f(x1, x2) =


1
4(1− x31x2), |x1| ≤ 1, |x2| ≤ 1,

0, otherwise.

It is easy to show that X1 and X2 are identically distributed and have the following density

g(x) =


1
2 , |x| ≤ 1,

0, otherwise,

but X1 and X2 are not exchangeable.

The following theorem shows in the FGM family, identically implies exchangeability and the con-
verse is also true.

Theorem 2.2.

Let Y1 and Y2 have density functions f1 and f2, respectively, and (X1, X2) have the joint density
function fα(x1, x2). Then,

5
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(i) X1 identically distributed with Y1 , and X2 identically distributed with Y2;
(ii) X1 and X2 are exchangeable if and only if Y1 and Y2 are identically distributed.

Proof:

(i) The proof of this part is straightforward.
(ii) Suppose X1 and X2 are exchangeable. So, (X1, X2)

D
= (X2, X1) and hence X1

D
= X2. Now,

according to Part (i), the desired result is obtained. Conversely, suppose Y1 and Y2 are identically
distributed. According to Part (i), we conclude X1

D
= X2 and then fα(x1, x2) = fα(x2, x1). �

We recall that the joint distribution of a multiple random variables uniquely determines the
marginal distributions of the component random variables, but in general, knowledge of marginal
distributions is not enough to determine the joint distribution. Indeed, it is quite possible to have
an infinite collection of joint densities fα with given marginal densities.

3. Equivalence of Uncorrelation and Independence

In this section, we show that except bivariate normal distribution, FGM is another family of distri-
butions, in which uncorrelation of two random variables is equivalent to their independence. Here,
we first present bivariate normal distribution for its distinction with FGM family.

A two-dimensional random variable (X1, X2) is said to have a bivariate normal distribution (de-
noted (X1, X2) ∼ N2(µ1, µ2, σ1, σ2, ρ)) if the joint density function is of the form

f(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

{
− 1

2(1− ρ2)
Q(x1, x2)

}
, |x1| <∞, |x2| <∞,

where

Q(x1, x2) =

(
x1 − µ1
σ1

)2

+

(
x2 − µ2
σ2

)2

− 2ρ

(
x1 − µ1
σ1

)(
x2 − µ2
σ2

)
,

and |µ1| < ∞, |µ2| < ∞, σ1 > 0, σ2 > 0 and |ρ| < 1. The next theorem presents uncorrelation of
two random variables is equivalent to their independence in the bivariate normal distribution.

Theorem 3.1. (Mardia et al. (1979))

Let (X1, X2) be a bivariate normal distribution. Then, X1 and X2 are independent if and only if
they are uncorelated.

In the next theorem, we calculate cov(X1, X2) in the FGM family.

Theorem 3.2.

Let (X1, X2) be a random vector with FGM family. Then,

cov(X1, X2) = αE

[
X2

(
F r2 (x2)−

1

r + 1

)]
cov

(
X1, F

k
1 (x1)

)
.

6
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Proof:

The condition density function and conditional expectation of X2, given X1 = x1, respectively, are

fX2|X1=x1
(x2) = f2(x2)

{
1 + α

(
F k1 (x1)−

1

k + 1

)(
F r2 (x2)−

1

r + 1

)}
,

and

E(X2|X1 = x1) = E(X2) + α

(
F k1 (x1)−

1

k + 1

)
E

[
X2

(
F r2 (x2)−

1

r + 1

)]
,

Then, the covariance between X1 and X2 is obtained as follows,

cov(X1, X2) = cov(X1, E(X2|X1))

= cov

(
X1, E(X2) + α

(
F k1 (x1)−

1

k + 1

)
E

[
X2

(
F r2 (x2)−

1

r + 1

)])
= cov(X1, E(X2)) + αE

[
X2

(
F r2 (x2)−

1

r + 1

)]
×cov

(
X1,

(
F k1 (x1)−

1

k + 1

))
= 0 + αE

[
X2

(
F r2 (x2)−

1

r + 1

)]
cov

(
X1, F

k
1 (x1)

)
,

and hence the theorem. �

Theorem 3 shows that the covariance between X1 and X2 is a function of α and with knowledge of
marginal distributions F1 and F2, we can obtain the value of cov(X1, X2).

The following example further illustrates Theorem 3.2.

Example 3.1.

Let f1 and f2 be two density functions of Uniform(0, 1) and let (X1, X2) have the joint density
function fα(x1, x2). Then, we do get

cov(X1, X2) = αE

[
X2

(
F r2 (x2)−

1

r + 1

)]
cov

(
X1, F

k
1 (x1)

)
= α

r

2(r + 1)(r + 2)

k

2(k + 1)(k + 2)

= α
rk

4(r + 1)(r + 2)(k + 1)(k + 2)
.

The following theorem shows in the FGM family uncorrelation and independence are equivalent.

Theorem 3.3.

Let (X1, X2) be a random vector with FGM family. If E
[
X2

(
F r2 (x2)− 1

r+1

)]
6= 0, then, X1 and

X2 are independent if and only if they are uncorrelated.

7
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Proof:

Let X1 and X2 be uncorrelated. So, cov(X1, X2) = 0 and then

αE

[
X2

(
F r2 (x2)−

1

r + 1

)]
cov

(
X1, F

k
1 (x1)

)
= 0, (9)

It is evident that cov
(
X1, F

k
1 (x1)

)
6= 0. Then assumption theorem, Equation 9 is equivalent to α = 0,

which gives fα(x1, x2) = f1(x1)f2(x2) and then X1 and X2 are independent. Conversely, if X1 and
X2 are independent, then cov(X1, X2) = 0 and, X1 and X2 are uncorrelated. �

4. Distinction Between FGM family and Bivariate Normal Distribution

In this section, we establish FGM family as another family of distributions, in which uncorrelation
of two random variables is equivalent to their independence, and it is different from bivariate nor-
mal distribution. On the other hand, bivariate normal distribution does not belong to FGM family.
Let f1 and f2 be probability density functions of normal distribution with means F−11 [( 1

k+1)1/k],
F−12 [( 1

r+1)1/r] and common variance 1. In this case, we show that the fα(x1, x2) cannot belong
to bivariate normal distribution. Let (X1, X2) be a bivariate normal distribution with parameters
(F−11 [( 1

k+1)1/k], F−12 [( 1
r+1)1/r], 1, 1, ρ). If fα(x1, x2) belongs to bivariate normal distribution, then

for all (x1, x2) ∈ R2, we must have

f1(x1)f2(x2)

{
1 + α

[(
F k1 (x1)−

1

k + 1

)(
F r2 (x2)−

1

r + 1

)]}
=

1

2π
√

1− ρ2
× exp

{
−Q(x1, x2)

2(1− ρ2)

}
, (10)

where

Q(x1, x2) =

(
x1 − F−11 [(

1

k + 1
)1/k]

)2

+

(
x2 − F−12 [(

1

r + 1
)1/r]

)2

− 2ρ

(
x1 − F−11 [(

1

k + 1
)1/k]

)(
x2 − F−12 [(

1

r + 1
)1/r]

)
. (11)

Now, if we replace (x1, x2) = (F−11 [( 1
k+1)1/k], F−12 [( 1

r+1)1/r]) in (10), then we get

f1

(
F−11

[( 1

k + 1

)1/k])
f2(F

−1
2

[( 1

r + 1

)1/r])
=

1

2π
√

1− ρ2
, (12)

which for holding relation (12), it is sufficient ρ = 0. But ρ = 0 implies that fα(x1, x2) =

f1(x1)f2(x2). Therefore, for all (x1, x2) ∈ R2 the following equation must hold

f1(x1)f2(x2)

{
1 + α

[(
F k1 (x1)−

1

k + 1

)(
F r2 (x2)−

1

r + 1

)]}
= f1(x1)f2(x2), (13)

which (13) dose not hold because the left side has a extra term. For example, for (x1, x2) = (1, 1)

then equation (13) does not hold. In FGM family, (X1, X2) is bivariate normal distribution if α = 0.
So, in this family ρ = 0 is equivalent to α = 0. Therefore, bivariate normal distribution does not
belong to the FGM family.

8
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5. Conclusion

If random variables X and Y are independent, then cov(X,Y ) = 0 and we say that X and Y are
uncorrelated. However, if cov(X,Y ) = 0, then X and Y may be not necessarily independent. It is
of importance to note that independence is not a property of random variables and it is pertinent
to probability space. On the other hand, if probability space changes, it may be the independence
between random variables also changes. So, we can say that independence is a property of prob-
ability space, not random variables. For example, suppose X1, · · · , Xn are independent normal
random variables, thus X̄ and S2 are independent, but if distribution of Xi’s switch to Poisson with
mean λ, then cov(X̄, S2) = λ/n 6= 0 and X̄ and S2 are not independent. In this paper, we introduce
a version of FGM family and its statistical and discuss its probabilistic properties. We also estab-
lish generalized Farlie-Gumbel-Morgenstern family is another family of distributions under which
uncorrelation is equivalent to independence.
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