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Abstract 

The purpose of this paper is to propose some test statistics for testing the skewness parameter of 

a distribution, not limited to a normal distribution. Since a theoretical comparison is not possible, 

a simulation study has been conducted to compare the performance of the test statistics. We have 

compared both parametric methods (classical method with normality assumption) and 

non-parametric methods (bootstrap in Bias Corrected Standard Method, Efron’s Percentile 

Method, Hall’s Percentile Method and Bias Corrected Percentile Method). Our simulation results 

indicate that the power of the tests differ significantly across sample sizes, the choice of 

alternative hypotheses and methods one choose. When the data are generated from a normal 

distribution, both classical method and Efron’s Percentile Method can attain a nominal size of 

0.05, while other bootstrap methods cannot. However, for a skewed distribution, bootstrap 

methods show higher power with larger sample sizes whereas the classical method only performs 

well when the sample size is small. 
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1.  Introduction 
 

Shape parameters are useful in testing normality and robustness studies and widely used by 

researchers in many disciplines. Joanes and Gill (1998) proposed that skewness and kurtosis are 

popular as shape parameters and they could easily be estimated by using higher moments. 

Skewness is a measure of the symmetry of a distribution, and it could be either positive or 

negative. When the coefficient of skewness is equal to zero, it means that the distribution is 

symmetric. If the coefficient is positive, the tail on the right side is longer than the left side, and 

if the coefficient is negative, the tail on the left side is longer than the right side (Groeneveld and 

Meeden, 1984).  

 

Perez-Meloand and Kibria (2016) considers several confidence intervals and proposed some 

bootstrap version of the existing interval estimators for estimating the skewness parameter of a 

distribution and compared them using a simulation study for a large sample size. In addition, 

Ankarali et al. (2009) mentioned that the shape of the distribution of the variable plays an 

important role in selecting appropriate test statistics among all criteria, in particular in small 

samples with a normal distribution.  

 

Since there are only a handful of studies that have compared the confidence intervals of the 

skewness, the literature on the hypothesis testing of skewness is limited. In this paper, we will 

focus on the various hypothesis testing of skewness parameter and compare them in the sense of 

nominal size and empirical power of the test. The comparison will be made on the basis of 

following characteristics: different sample sizes, different proposed test statistics and different 

methods including parametric and non-parametric. 

 

The organization of the paper is as follows. In Section 2, we review the previously proposed 

estimators and formulate the hypothesis testing for both a single parametric method and several 

non-parametric methods and their corresponding test statistics. A simulation study on the 

nominal size and power of the tests of skewness are discussed in Section 3. As an illustration, 

examples for skewness have been considered in Section 4. Some concluding remarks are 

presented in Section 5.  

 

2.  Statistical Methodology 
 

In this section, we consider some parametric and non-parametric test statistics for testing the 

population skewness.  

 

 

2.1. Parametric Methods  

2
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Skewness is viewed as a major shape parameter for a probability distribution. In probability 

theory and statistics, skewness is a measure of symmetry or asymmetry of the probability 

distribution. It could be represented by the third central moment and standard deviation as 

follows, 

                   𝛾1 =
𝜇3

𝜎3 = 𝐸 [(
𝑋−𝜇

𝜎
)

3

] =
𝐸[(𝑋−𝜇)3]

(𝐸[(𝑋−𝜇)2])
3
2

,                       (2.1) 

 

where 𝛾1 is the population skewness parameter, 𝜇3 is the third central moment, 𝜇 is the mean, 

𝜎 is the standard deviation and 𝐸 is the expectation operator. 

 

However, for different definitions of skewness, we have different ways to evaluate the 

performance. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be an independently and identically distributed (iid) random 

sample from a population with mean 𝜇 and standard deviation 𝜎. The traditional definition of 

skewness, proposed by Cramer (1946), has the form 

 

𝑔1 =
𝑚3

𝑚2
3/2⁄ ,  

where the sample moments for variable X are defined as, 

                              𝑚𝑟 =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)𝑟.                   (2.3) 

Following the work of Joanes and Gill (1998), the three most commonly used parametric 

estimators for skewness from traditional measures, which has been developed by SAS and 

MINITAB are provided below: 

𝑔1 =
𝑚3

𝑚2
3/2 =

1

𝑛
∑ (𝑥𝑖−𝑥̅)3𝑛

𝑖=1

[
1

𝑛
∑ (𝑥𝑖−𝑥̅)2]𝑛

𝑖=1

3/2 =
1

𝑛
∑ (𝑥𝑖−𝑥̅)3𝑛

𝑖=1

[
1

𝑛
∗(𝑛−1)∗𝑠2]3/2

= (
𝑛

𝑛−1
)3/2 ∗

1

𝑛
∗

∑ (𝑥𝑖−𝑥̅)3𝑛
𝑖=1

𝑠3 , 

                                  𝐺1 =
√𝑛(𝑛−1)

𝑛−2
𝑔1,                          (2.4) 

     𝑏1 = (
𝑛−1

𝑛
)3/2𝑔1. 

It is noted that for large sample sizes, the results do not deviate significantly. However, for small 

sample sizes, the results among three methods of estimators are sometimes significant at 0.05 

level.   

 

For normal distribution, Fisher (1930) stated that 𝐸(𝑔1) = 0 which is unbiased, and we could 

easily find that  
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  𝐸(𝐺1) =
√𝑛(𝑛−1)

𝑛−2
𝐸(𝑔1) = 0 and 𝐸(𝑏1) = (

𝑛−1

𝑛
)

3

2
𝐸(𝑔1) = 0. 

 

As given by Cramer (1946), in normal samples the variance of the Fisher-Pearson coefficient of 

skewness (𝑔1) is  

𝑉𝑎𝑟(𝑔1) =
6(𝑛−2)

(𝑛+1)(𝑛+3)
. 

 

Then, the variance of 𝐺1 and 𝑏1 are obtained respectively as  

 

𝑉𝑎𝑟(𝐺1) =
𝑛(𝑛 − 1)

(𝑛 − 2)2
𝑉𝑎𝑟(𝑔1) =

6𝑛(𝑛 − 1)(𝑛 − 2)

(𝑛 + 1)(𝑛 + 3)(𝑛 − 2)2
 

and 

𝑉𝑎𝑟(𝑏1) = (
𝑛−1

𝑛
)

3

𝑉𝑎𝑟(𝑔1) = (
𝑛−1

𝑛
)

3 6(𝑛−2)

(𝑛+1)(𝑛+3)
. 

 

Following Joanes and Gill (1998) and Perez-Meloand and Kibria (2016), we attempt to develop a 

Z-test statistic for testing the population skewness parameter. That means, we will test the 

following null and alternative hypotheses, 

  

𝐻0: 𝛾1 = 𝛾𝑠 

                  𝐻1: 𝛾1 ≠ 𝛾𝑠 ,                  (2.5) 

 

and the test statistic for the three estimators (𝑔1, 𝐺1, 𝑎𝑛𝑑 𝑏1) can be defined respectively as 

follows: 

                 𝑍𝑔1 =
𝑔1 − 𝛾𝑠

√
6(𝑛 − 2)

(𝑛 + 1)(𝑛 + 3)

 , 

                                  𝑍𝐺1 =
𝐺1−𝛾𝑠

√
6𝑛(𝑛−1)

(𝑛+1)(𝑛+3)(𝑛−2)

 ,                        

(2.6) 

and 

                                  𝑍𝑏1 =
𝑏1−𝛾𝑠

√
6(𝑛−2)

(𝑛+1)(𝑛+3)
(

𝑛−1

𝑛
)

3
2

 , 

where 𝑔1, 𝐺1, 𝑏1  are previously defined in equation (2.4), n is the sample size, 𝛾𝑠  is 

hypothesized value of skewness parameter. We will reject 𝐻0 at 𝛼 level of significance if the 

absolute values of the test statistics (𝑍𝑔1
, 𝑍𝐺1

, 𝑍𝑏1
) are greater than 𝑍𝛼

2⁄ , where 𝑍𝛼
2⁄  is the 

4
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upper 
𝛼

2
 percentile of the standard normal distribution.  

 

2.2.  Bootstrap Approach. 

 

In this section, we will discuss the bootstrap techniques for testing the skewness parameter. The 

bootstrap approach can be applied to any population as it does not require any assumption about 

the distribution, and if the sample size is large enough, the process of bootstrap could be very 

accurate (Efron, 1992). Following Perez-Meloand and Kibria (2016), the bootstrap methods for 

testing the skewness, can be summarized as follows: Let 𝑋(∗) = 𝑋1
(∗)

, 𝑋2
(∗)

, … , 𝑋𝑛
(∗)

, where the ith 

sample is denoted 𝑋(𝑖) for i=1,2,…,B, where B is the number of bootstrap samples. Parametric 

method requires normality assumption, however, in reality, most of the data do not follow a 

normal distribution. In this situation, the bootstrap is desired. 

 

2.2.1. Bias-Corrected Standard Bootstrap Approach 

 

Let 𝜃  be a point estimator of 𝜃  (skewness parameter). Then, the bias-corrected standard 

bootstrap confidence interval for 𝜃 proposed by Perez-Meloand and Kibria (2016) takes the 

form, 

𝜃 − 𝐵𝑖𝑎𝑠(𝜃) ± 𝑍𝛼/2𝜎𝐵  ̂ , 

where 𝜎𝐵̂ = √
1

𝐵−1
∑ (𝜃𝑖

∗ − 𝜃̅)2𝐵
𝑖=1  is the bootstrap standard deviation, 𝜃̅ =

1

𝐵
∑ 𝜃𝑖

∗𝐵
𝑖=1  is the 

bootstrap mean and 𝐵𝑖𝑎𝑠(𝜃) = 𝜃̅ − 𝜃 is the estimated bias. Now we attempt to develop a Z-test 

statistic for testing the population skewness. In this regard, the null and alternative hypotheses 

are defined below: 

𝐻0: 𝜃 = 𝜃0 

  𝐻0: 𝜃 ≠ 𝜃0. 

 

The test statistic for testing the alternative hypothesis can be written as follows: 

 

             𝑍𝜃0
=

𝜃 − 𝐵𝑖𝑎𝑠(𝜃) − 𝜃0

𝜎𝐵̂
  , 

 

where 𝜃 is the population skewness parameter. We will reject 𝐻0 at 𝛼 level of significance if 

the test statistic 𝑍𝜃0
 is greater than 𝑍𝛼

2⁄ , where 𝑍𝛼
2⁄  is the upper 

𝛼

2
 percentile of the standard 

normal distribution.  
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2.2.2. Efron’s Percentile Bootstrap Approach 

 

Compared to bias-corrected standard bootstrap approach, Efron’s Percentile method makes the 

computation of confidence intervals rather easy, since the confidence interval will depend on the 

value of upper 𝛼/2 level of bootstrap samples and lower 𝛼/2 level of bootstrap samples 

(Efron, 1987). First, we order the sample skewness of each bootstrap sample as follows: 

 

𝜃(1)
∗ ≤ 𝜃(2)

∗ ≤ 𝜃(3)
∗ ≤ ⋯ ≤ 𝜃(𝐵)

∗ . 

 

Following Efron’s (1987), the confidence interval will be given by 

 

𝐿 = 𝜃
[(

𝛼

2
)∗𝐵]

∗  and 𝑈 = 𝜃
[(1−

𝛼

2
)∗𝐵

∗    

 

and we will reject the null hypothesis 𝐻0: 𝜃 = 𝜃0 against alternative hypothesis 𝐻𝑎: 𝜃 ≠ 𝜃0, 

if 𝐿 > 𝜃0 𝑜𝑟 𝑈 < 𝜃0 . 

 

2.2.3. Hall’s Percentile Bootstrap Approach 

 

This is also a non-parametric approach proposed by Hall (1992), which does not require the 

standard deviation. In Hall’s method, we order the errors of the estimator instead of estimator 

itself. The errors are ordered as follows: 

 

𝜀(1)
∗ ≤ 𝜀(2)

∗ ≤ 𝜀(3)
∗ ≤ ⋯ ≤ 𝜀(𝐵)

∗ , 

 

where 𝜀𝑖
∗ = 𝜃𝑖

∗ − 𝜃. The confidence interval could be obtained in the similar manner as previous 

Efron’s Percentile approach and it is presented below: 

 

𝐿 = 𝜃 − 𝜀
[(1−

𝛼

2
)∗𝐵]

∗  and 𝑈 = 𝜃 − 𝜀
[(

𝛼

2
)∗𝐵]

∗ . 

 

Following Hall (1992), the confidence interval could be simplified as: 

 

𝐿 = 2𝜃 − 𝜃
[(1−

𝛼

2
)∗𝐵]

∗  and 𝑈 = 2𝜃 − 𝜃
[(

𝛼

2
)∗𝐵]

∗  

and we will reject the null hypothesis: 𝐻0: 𝜃 = 𝜃0 against alternative hypothesis 𝐻𝑎: 𝜃 ≠ 𝜃0,  

if 𝐿 > 𝜃0 𝑜𝑟 𝑈 < 𝜃0. 

 

6
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2.2.4. Bias-Corrected Percentile Bootstrap Approach 

 

This method was introduced by Efron (1987) and the first step is to find the proportion of times 

that 𝜃𝑖
∗ is greater than 𝜃, that is, 

𝑃 =
#(𝜃𝑖

∗ > 𝜃)

𝐵
 

 

and then find 𝑍0 in order to make 𝜙(𝑍0) = 1 − 𝑃, where 𝜙 is the cumulative distribution 

function of standard normal random variable. 𝑍0  will be used to construct the following 

confidence interval, 

𝐿 = 𝜃[𝜙(2𝑍0−𝑍1−𝛼/2)∗𝐵]
∗  and = 𝜃[𝜙(2𝑍0+𝑍1−𝛼/2)∗𝐵]

∗   

and we will reject the null hypothesis 𝐻0: 𝜃 = 𝜃0 against alternative hypothesis 𝐻𝑎: 𝜃 ≠ 𝜃0, 

if 𝐿 > 𝜃0 𝑜𝑟 𝑈 < 𝜃0 . 

 

For more on bootstrap technique we refer our readers to DiCiccio & Romano (1988) among 

others.  

 

3.  Simulation Study 
 

In this section, we will compare the performance of the proposed test statistics. We conducted a 

simulation study using R Version 3.2.1 to compare the performance of the test statistics in the 

sense of standard nominal size and high empirical power of the test. 

 

3.1.  Simulation Technique. 

 

Even though the proposed test statistics are mainly developed for testing data from a normal (or 

symmetric) population, we will make an attempt to see the performance of these test statistics 

when the data are from a skewed distribution. The flow chart of our simulation study is pointed 

below: 

 

1. Sample size, n=10, 20, 30, 50, 100 and 300. 

2. 3000 simulation replications are used for each case, 1000 bootstrap samples for each 

simulation replication.  

3. The normal and right skewed distributions are generated. 

(a) Normal distribution with mean 0 and SD 1 

(b) Gamma distribution with shape parameter 4, 7.5 and 10 and scale parameter 1. 

 

For more on simulation technique, we refer our readers to Kibria and Banik (2013) and Banik 
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and Kibria (2016) among others. 

 

3.2.  Performance for Normal distribution 

 

It is well known that the normal distribution is symmetric and the skewness for normal 

distribution equals 0. Under this assumption and at α = 0.05 level of significance, we expect to 

get the power = 0.05 from the simulation dataset. Figure 3.1 shows the empirical size of the test 

when we are testing whether the skewness equals 0. It appears from Figure 3.1 that the classical 

method performs the best among all methods in the sense of attaining nominal size of 0.05 for 

different sample sizes. It differs only when sample size is small, that is when n =10. Among four 

types of bootstrap methods, only Efron’s Percentile method attained the nominal size of 0.05. 

For the Bias Corrected Standard Method, Hall’s Percentile Method and Bias Corrected Percentile 

Method, the empirical nominal size is beyond 0.1 when the sample size is less than 100. 

However, they attained nominal size 0.05 when the sample size is very large say, 300. In this 

case bootstrap methods do not provide better results than the classical method, despite the limit 

of sample size to test the skewness for normal distribution. It should be mentioned that for power 

test, we deleted the unqualified statistics using a 0.05 nominal size and all good test statistics are 

demonstrated in the graph. 

 

 

Figure 3.1. Empirical size of testing skewness=0 with different methods and sample size 

 

Figures 3.2 to 3.7 show the empirical power against different hypothesized values for all 

proposed test statistics with different sample sizes: n = 10, 20, 30, 50, 100 and 300. The x-axis 

represents different hypothesized values and Y-axis is the empirical power. We would expect to 

have the empirical power close to 1 when increasing the hypothesized value from 0 to a larger 

value. From these six Figures, it appears that empirical powers are close to 1 when skewness 

8
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equals to 2 or less than 2.  

 

From Figures 3.2 to 3.7, we can see that for small sample sizes and near the null hypothesis or 

for large sample sizes and for high skewness, the power of the tests does not vary greatly. 

However, for small sample size with moderate departure from null hypothesis, the power of the 

tests varies among the test statistics. It appears that among all test statistics, the classical method 

is more powerful when the sample size is small (say 10) while for sample size greater than 10, 

Efron’s Percentile Method shows absolute advantage other than classical method. Overall, the 

power approaches 1 when the alternative hypothesis is testing for skewness =2.  

 

 

Figure 3.2. Power of testing skewness of N (0, 1) in different methods when n = 10 

 

 

 

 

Figure 3.3. Power of testing skewness of N (0, 1) in different methods when n = 20 

9
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Both the classical and Efron’s Percentile methods show acceptable results. By changing the 

alternative hypothesis, the Efron’s Percentile is getting close to other bootstrap methods and 

apparently away from the classical method. The power approaches 1 when skewness is 1.6 and 

1.2 respectively for n = 30 and 50.  

 

 

Figure 3.4. Power of testing skewness of N (0, 1) in different methods when n = 30 

 

 

 

    Figure 3.5. Power of testing skewness of N (0, 1) in different methods when n = 50 

 

When we consider a larger sample size, say 100, and are testing skewness = 0.2, 0.4 or 0.6, then, 

the classical method is less powerful than the bootstrap methods. The power increases sharply to 

0.9 for all methods when skewness = 0.8 and it goes up steadily to 1 from that point on. When 

the sample size goes up to 300, the power rises by an order of magnitude from 0.05 to 0.7 when 

10
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the skewness shifts from 0 to 0.4, and thereafter, it increases gradually until 1 when 

skewness=0.6. Thus, it may be concluded that the classical method shows a little less power than 

Efron’s Percentile method for moderate departure from null value, and when the sample size is 

large enough, there is no significant difference among bootstrap methods. However, it is noted 

that when the classical and Efron’s Percentile methods attain a nominal size 0.05, other proposed 

bootstrap methods, from data in a normal population, are not useful.  

 

 

  Figure 3.6. Power of testing skewness of N (0, 1) in different methods when n = 100 

 

 

   Figure 3.7. Power of testing skewness of N (0, 1) in different methods when n = 300 

 

We analyzed the performance of test statistics using sample size with different methods 

separately. Figures 3.8 and 3.9 illustrates the power of testing skewness in different sample size 

with classical method and Efron’s Percentile Method only as other methods failed to attained the 

nominal level. These figures indicate that if the sample size is large enough, there seems to be no 

11

Guo and Golam Kibria: On Some Statistics for Testing the Skewness in a Population

Published by Digital Commons @PVAMU, 2017



AAM: Intern. J., Vol. 12, Issue 2 (December 2017) 737 

  

obvious difference among those three test statistics. The difference is only visible when the 

sample size is small, say n=10. Within each test statistic using those three estimators, increasing 

the sample size could improve the power of test for both classical and Efron’s Percentile Method. 

Moreover, we find that the test statistic based on 𝐺1 has the smallest power while the test 

statistic based on estimator 𝑏1 has the highest power within each sample size. 

 

 
Figure 3.8.  Power of testing skewness of N (0, 1) in different sample size with Classical 

Method 

 

Figure 3.9.  Power of testing skewness of N (0, 1) in different sample size with Efron’s 

Percentile Method 
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3.3. Performance for Gamma distribution 

 

Even though the parametric methods are developed for testing the skewness parameter of normal 

distribution, we made an attempt to apply this method along with bootstrap methods to other 

asymmetric distributions, which will be discussed in this section.  

 

The skewness of the gamma distribution depends on the scale parameter only. For instance, the 

skewness of Gamma (𝑘, 𝑝) is 
2

√𝑘
. At  α = 0.05 level of significance, we are expecting the 

nominal size to be 0.05 from the simulation data when we are testing the skewness equal to 
2

√𝑘
. 

Figures 3.10 and 3.11 illustrate the empirical sizes for testing the skewness = 1 of Gamma (4,1) 

and skewness = 0.63 of Gamma (10,1) respectively. Unfortunately, the results are not acceptable 

for both parametric and bootstrap methods for Gamma (4,1), while the results are closer to 0.05 

for Gamma (10,1) distribution. For small sample size n = 10, as Efron’s Percentile method is 

under 0.05 limit, it can be chosen as a good test statistic. By increasing k, the shape of gamma 

distribution became closer to the bell-shaped “normal” distribution, which allowed us to find a 

nominal size closer to 0.05. We considered the following gamma distributions in simulations: 

Gamma (4, 1), Gamma (7.5, 1) and Gamma (10, 1) and the full results can be found in the 

Appendix A2 to A4. In the following Figures 3.10 and 3.11, we find that the nominal size is 

much closer to 0.05 for Gamma (10, 1) than for Gamma (4, 1). Because of the imperfect results, 

we can organize a graph to see the trend of changes of power as a reference but do not encourage 

using these results as conclusive. The classical method is selected from all five methods as the 

relatively best method, which shows the trend of power changes from above 0.05 to 1 in Gamma 

(10, 1). In Figure 3.12, we can find the test statistic based on estimator 𝐺1 is less powerful for a 

small sample size, say n=10 or 20 when other conditions remain the same. When sample size 

increases to 100, we can easily find test statistic of 𝐺1 has lower power while that of 𝑏1 has 

higher power. By increasing the sample size to 300 two results were gathered: the power 

increases sharply to 1 at skewness=2 and stays at 1 thereafter, and there is no apparent difference 

among the test statistics based on these three estimators. In contrast, when the sample size is 

small, say n=10, the power rises gradually to 1 at skewness=3. In this paper, we will not discuss 

more about the results deeply but they are provided in Appendices A2 to A4 as a reference.  
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Figure 3.10. Empirical size of testing Gamma (4,1) skewness=1 with different 

methods and sample size 

 

 

 

Figure 3.11.  Empirical size of testing Gamma (10,1) skewness=0.63 with different 

methods and sample size 
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Figure 3.12.  Power of testing skewness of Gamma (10,1) in different sample size with 

Classical Method 

 

 

4. Applications 

 

In this section, we will analyze two real life data sets to illustrate the performance of the test 

statistics based on the three estimators.  We have a dataset in regards to 48 SIDS (Sudden Infant 

Death Syndrome) cases observed in King County, Washington during the years 1974 and 1975 

(Belle at el., 2004). However, we used only one variable, birth weights (in grams) of these 48 

cases in our study. Using this data the results of test statistics for testing the skewness for various 

alternative hypotheses are presented in Table 4.1. Before testing the hypotheses, we would like to 

confirm that whether the data follow a normal distribution or not. We have performed the 

Shapiro test (test statistic, W=0.9832, p-value=0.7168), which indicated that the data follow a 

normal distribution. We can easily find from Table 4.1, the classical method could correctly 

reject the null hypothesis when the skewness is departed from hypothesized value, say 

skewness=0.7. From that on, the classical method performs very well, however, the Bias 

Corrected Standard method shows unusual results which even reject the hypothesis when 

hypothesized value is close to null hypothesis. The Efron’s Percentile method performs as well 

as the classical method. 
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Table 4.1. Testing skewness for n = 48 normal distribution data 

 

 

Another example, which is used to test the skewness, is also related to SIDS. We obtained a 

dataset that consist of 78 cases of SIDS occurring in King County between 1976 and 1977 

(Morris et al, 1993). They recorded the age at death (in Days) of 78 cases of SIDS and finally 

classify them into 11 different age intervals. For each age interval, the number of deaths was 

recorded and eventually the number of deaths was employed in this example study. The Shapiro 

test (test statistic, W = 0.82135, p-value = 0.0329), which cannot support normality assumption. 

By using classical method, the results of testing the statistics based on 𝑔1 and 𝑏1 could reject 

the null hypothesis when testing skewness=2.0 while Bias Corrected Standard method does not 

perform correctly in this test. For bootstrap method, only when the testing hypothesized value is 

large enough, say skewness = 1.9 and above, the results from the test statistics based on 

estimator 𝑏1 from Efron’s Percentile and Hall’s Percentile method can provide a good solution 

to make a correct decision, otherwise the other methods can not.  

 

Table 4.2. Testing skewness for n=11 non-normal distribution data 
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5. Conclusion 

 

This paper proposed several test statistics for testing the skewness parameter of a distribution. 

Since a theoretical comparison is not possible, a simulation study has been conducted to compare 

the performance of the test statistics. We have compared both parametric method (Classical 

method with normality assumption) and non-parametric methods (bootstrap in Bias Corrected 

Standard Method, Efron’s Percentile Method, Hall’s Percentile Method and Bias Corrected 

Percentile Method) in the hypothesis testing of skewness, where the data are generated from 

normal and gamma distributions. Table 5.1 illustrates the performance of the tests and our 

simulation results indicate that the power of the tests differ significantly across sample sizes, the 

choice of alternative hypotheses and methods we choose. When the data are generated from 

normal distribution, both classical method and Efron’s Percentile Method can attain a nominal 

size 0.05, while other bootstrap methods cannot provide good results in this situation. However, 

for skewed distribution, bootstrap methods show higher power for increased sample sizes 

whereas the classical method only performs well with small sample sizes. The results of Bias 

Corrected Percentile Method are approaching those of other bootstrap methods, which are 

obviously away from the classical method. Moreover, for testing different hypotheses among all 

distributions, as usual, a larger sample size always provide with higher empirical power. 

 

Table 5.1. Performance of hypothesis test of skewness 

 

 

The test statistics used in this paper are based on the assumption of normal distribution, however, 

the simulated results suggest that these statistics can be used for some non-normal distributions 

as well. It is noted that the performance of gamma distribution needs further investigation since 
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the bootstrap methods do not work for the data coming from this distribution. We would suggest 

continuing to explore the test of skewness of gamma distribution and some other distributions 

with specific skewness features.  
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APPENDICES 
 

APPENDIX A 

Table A1:  Power for N(0,1) with skewness= 0 against with other value for different 

sample sizes 
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Table A1 (Continued) 
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Table A2:  Power for Gamma(4,1) with skewness=1 against with other value for 

different sample size 
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Table A2 (Continued) 
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Table A3:  Power for Gamma(7.5,1) with skewness=0.73 against with other value for 

different sample size 
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Table A3 (Continued) 
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Table A4:  Power for Gamma(10,1) with skewness=0.63 against with other value for 

different sample size 
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Table A4 (Continued) 
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