

Applications and Applied Mathematics: An International Journal (AAM)

Volume 12 | Issue 2

Article 6

12-2017

On Some Statistics for Testing the Skewness in a Population: An Empirical Study

Yawen Guo Florida International University

B. M. Golam Kibria Florida International University

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam

Part of the Statistics and Probability Commons

Recommended Citation

Guo, Yawen and Golam Kibria, B. M. (2017). On Some Statistics for Testing the Skewness in a Population: An Empirical Study, Applications and Applied Mathematics: An International Journal (AAM), Vol. 12, Iss. 2, Article 6.

Available at: https://digitalcommons.pvamu.edu/aam/vol12/iss2/6

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

Available at <u>http://pvamu.edu/aam</u> Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017), pp. 726 - 752

Applications and Applied Mathematics: An International Journal (AAM)

1

On Some Statistics for Testing the Skewness in a Population: An

Empirical Study

Yawen Guo and B.M. Golam Kibria

Department of Mathematics and Statistics Florida International University Miami, FL 33199 <u>kibriag@fiu.edu</u>

Received: February 12, 2017; Accepted: July 26, 2017

Abstract

The purpose of this paper is to propose some test statistics for testing the skewness parameter of a distribution, not limited to a normal distribution. Since a theoretical comparison is not possible, a simulation study has been conducted to compare the performance of the test statistics. We have compared both parametric methods (classical method with normality assumption) and non-parametric methods (bootstrap in Bias Corrected Standard Method, Efron's Percentile Method, Hall's Percentile Method and Bias Corrected Percentile Method). Our simulation results indicate that the power of the tests differ significantly across sample sizes, the choice of alternative hypotheses and methods one choose. When the data are generated from a normal distribution, both classical method and Efron's Percentile Method can attain a nominal size of 0.05, while other bootstrap methods cannot. However, for a skewed distribution, bootstrap methods show higher power with larger sample sizes whereas the classical method only performs well when the sample size is small.

Keywords: Bootstrap Methods; Hypothesis Testing; Power of the test; Skewness; Simulation Study

MSC 2010: 62F03, 62F40, 62G10

1. Introduction

Shape parameters are useful in testing normality and robustness studies and widely used by researchers in many disciplines. Joanes and Gill (1998) proposed that skewness and kurtosis are popular as shape parameters and they could easily be estimated by using higher moments. Skewness is a measure of the symmetry of a distribution, and it could be either positive or negative. When the coefficient of skewness is equal to zero, it means that the distribution is symmetric. If the coefficient is positive, the tail on the right side is longer than the left side, and if the coefficient is negative, the tail on the left side is longer than the right side (Groeneveld and Meeden, 1984).

Perez-Meloand and Kibria (2016) considers several confidence intervals and proposed some bootstrap version of the existing interval estimators for estimating the skewness parameter of a distribution and compared them using a simulation study for a large sample size. In addition, Ankarali et al. (2009) mentioned that the shape of the distribution of the variable plays an important role in selecting appropriate test statistics among all criteria, in particular in small samples with a normal distribution.

Since there are only a handful of studies that have compared the confidence intervals of the skewness, the literature on the hypothesis testing of skewness is limited. In this paper, we will focus on the various hypothesis testing of skewness parameter and compare them in the sense of nominal size and empirical power of the test. The comparison will be made on the basis of following characteristics: different sample sizes, different proposed test statistics and different methods including parametric and non-parametric.

The organization of the paper is as follows. In Section 2, we review the previously proposed estimators and formulate the hypothesis testing for both a single parametric method and several non-parametric methods and their corresponding test statistics. A simulation study on the nominal size and power of the tests of skewness are discussed in Section 3. As an illustration, examples for skewness have been considered in Section 4. Some concluding remarks are presented in Section 5.

2. Statistical Methodology

In this section, we consider some parametric and non-parametric test statistics for testing the population skewness.

2.1. Parametric Methods

Skewness is viewed as a major shape parameter for a probability distribution. In probability theory and statistics, skewness is a measure of symmetry or asymmetry of the probability distribution. It could be represented by the third central moment and standard deviation as follows,

$$\gamma_1 = \frac{\mu_3}{\sigma^3} = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] = \frac{E[(X-\mu)^3]}{(E[(X-\mu)^2])^{\frac{3}{2}}},$$
(2.1)

where γ_1 is the population skewness parameter, μ_3 is the third central moment, μ is the mean, σ is the standard deviation and *E* is the expectation operator.

However, for different definitions of skewness, we have different ways to evaluate the performance. Let $X_1, X_2, ..., X_n$ be an independently and identically distributed *(iid)* random sample from a population with mean μ and standard deviation σ . The traditional definition of skewness, proposed by Cramer (1946), has the form

$$g_1 = \frac{m_3}{m_2^{3/2}},$$

where the sample moments for variable X are defined as,

$$m_r = \frac{1}{n} \sum (x_i - \bar{x})^r.$$
 (2.3)

Following the work of Joanes and Gill (1998), the three most commonly used parametric estimators for skewness from traditional measures, which has been developed by SAS and MINITAB are provided below:

$$g_{1} = \frac{m_{3}}{m_{2}^{3/2}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{3}}{\left[\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right]^{3/2}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{3}}{\left[\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right]^{3/2}} = (\frac{n}{n-1})^{3/2} * \frac{1}{n} * \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{3}}{s^{3}},$$

$$G_{1} = \frac{\sqrt{n(n-1)}}{n-2} g_{1},$$

$$b_{1} = (\frac{n-1}{n})^{3/2} g_{1}.$$
(2.4)

It is noted that for large sample sizes, the results do not deviate significantly. However, for small sample sizes, the results among three methods of estimators are sometimes significant at 0.05 level.

For normal distribution, Fisher (1930) stated that $E(g_1) = 0$ which is unbiased, and we could easily find that

Applications and Applied Mathematics: An International Journal (AAM), Vol. 12 [2017], Iss. 2, Art. 6 AAM: Intern. J., Vol. 12, Issue 2 (December 2017)

$$E(G_1) = \frac{\sqrt{n(n-1)}}{n-2}E(g_1) = 0$$
 and $E(b_1) = \left(\frac{n-1}{n}\right)^{\frac{3}{2}}E(g_1) = 0.$

As given by Cramer (1946), in normal samples the variance of the Fisher-Pearson coefficient of skewness (g_1) is

$$Var(g_1) = \frac{6(n-2)}{(n+1)(n+3)}.$$

Then, the variance of G_1 and b_1 are obtained respectively as

$$Var(G_1) = \frac{n(n-1)}{(n-2)^2} Var(g_1) = \frac{6n(n-1)(n-2)}{(n+1)(n+3)(n-2)^2}$$

and

$$Var(b_1) = \left(\frac{n-1}{n}\right)^3 Var(g_1) = \left(\frac{n-1}{n}\right)^3 \frac{6(n-2)}{(n+1)(n+3)}$$

Following Joanes and Gill (1998) and Perez-Meloand and Kibria (2016), we attempt to develop a Z-test statistic for testing the population skewness parameter. That means, we will test the following null and alternative hypotheses,

729

and the test statistic for the three estimators $(g_1, G_1, and b_1)$ can be defined respectively as follows:

$$\begin{split} Z_{g1} &= \frac{g_1 - \gamma_s}{\sqrt{\frac{6(n-2)}{(n+1)(n+3)}}} \ , \\ Z_{G1} &= \frac{G_1 - \gamma_s}{\sqrt{\frac{6n(n-1)}{(n+1)(n+3)(n-2)}}} \ , \end{split}$$

(2.6) and

$$Z_{b1} = \frac{b_1 - \gamma_s}{\sqrt{\frac{6(n-2)}{(n+1)(n+3)} \left(\frac{n-1}{n}\right)^2}} ,$$

where g_1, G_1, b_1 are previously defined in equation (2.4), n is the sample size, γ_s is hypothesized value of skewness parameter. We will reject H_0 at α level of significance if the absolute values of the test statistics $(Z_{g_1}, Z_{G_1}, Z_{b_1})$ are greater than $Z\alpha_{/2}$, where $Z\alpha_{/2}$ is the

upper $\frac{\alpha}{2}$ percentile of the standard normal distribution.

2.2. Bootstrap Approach.

In this section, we will discuss the bootstrap techniques for testing the skewness parameter. The bootstrap approach can be applied to any population as it does not require any assumption about the distribution, and if the sample size is large enough, the process of bootstrap could be very accurate (Efron, 1992). Following Perez-Meloand and Kibria (2016), the bootstrap methods for

testing the skewness, can be summarized as follows: Let $X^{(*)} = X_1^{(*)}, X_2^{(*)}, \dots, X_n^{(*)}$, where the *ith* sample is denoted $X^{(i)}$ for i=1,2,...,B, where B is the number of bootstrap samples. Parametric method requires normality assumption, however, in reality, most of the data do not follow a normal distribution. In this situation, the bootstrap is desired.

2.2.1. Bias-Corrected Standard Bootstrap Approach

Let $\hat{\theta}$ be a point estimator of θ (skewness parameter). Then, the bias-corrected standard bootstrap confidence interval for θ proposed by Perez-Meloand and Kibria (2016) takes the form,

$$\hat{\theta} - Bias(\hat{\theta}) \pm Z_{\alpha/2} \widehat{\sigma_B}$$
,

where $\widehat{\sigma_B} = \sqrt{\frac{1}{B-1}\sum_{i=1}^{B}(\theta_i^* - \overline{\theta})^2}$ is the bootstrap standard deviation, $\overline{\theta} = \frac{1}{B}\sum_{i=1}^{B}\theta_i^*$ is the bootstrap mean and $Bias(\widehat{\theta}) = \overline{\theta} - \widehat{\theta}$ is the estimated bias. Now we attempt to develop a Z-test statistic for testing the population skewness. In this regard, the null and alternative hypotheses are defined below:

$$H_0: \ \theta = \theta_0$$
$$H_0: \ \theta \neq \theta_0.$$

The test statistic for testing the alternative hypothesis can be written as follows:

$$Z_{\theta_0} = \frac{\hat{\theta} - Bias(\hat{\theta}) - \theta_0}{\widehat{\sigma_B}} \quad .$$

where θ is the population skewness parameter. We will reject H_0 at α level of significance if the test statistic Z_{θ_0} is greater than $Z_{\alpha/2}$, where $Z_{\alpha/2}$ is the upper $\frac{\alpha}{2}$ percentile of the standard normal distribution.

2.2.2. Efron's Percentile Bootstrap Approach

Compared to bias-corrected standard bootstrap approach, Efron's Percentile method makes the computation of confidence intervals rather easy, since the confidence interval will depend on the value of upper $\alpha/2$ level of bootstrap samples and lower $\alpha/2$ level of bootstrap samples (Efron, 1987). First, we order the sample skewness of each bootstrap sample as follows:

$$\theta_{(1)}^* \le \theta_{(2)}^* \le \theta_{(3)}^* \le \dots \le \theta_{(B)}^*.$$

Following Efron's (1987), the confidence interval will be given by

$$L = \theta^*_{\left[\left(\frac{\alpha}{2}\right)*B\right]}$$
 and $U = \theta^*_{\left[\left(1-\frac{\alpha}{2}\right)*B\right]}$

and we will reject the null hypothesis H_0 : $\theta = \theta_0$ against alternative hypothesis H_a : $\theta \neq \theta_0$, if $L > \theta_0$ or $U < \theta_0$.

2.2.3. Hall's Percentile Bootstrap Approach

This is also a non-parametric approach proposed by Hall (1992), which does not require the standard deviation. In Hall's method, we order the errors of the estimator instead of estimator itself. The errors are ordered as follows:

$$\varepsilon_{(1)}^* \leq \varepsilon_{(2)}^* \leq \varepsilon_{(3)}^* \leq \cdots \leq \varepsilon_{(B)}^*,$$

where $\varepsilon_i^* = \theta_i^* - \theta$. The confidence interval could be obtained in the similar manner as previous Efron's Percentile approach and it is presented below:

$$L = \theta - \varepsilon^*_{\left[\left(1 - \frac{\alpha}{2}\right) * B\right]}$$
 and $U = \theta - \varepsilon^*_{\left[\left(\frac{\alpha}{2}\right) * B\right]}$

Following Hall (1992), the confidence interval could be simplified as:

$$L = 2\theta - \theta^*_{\left[\left(1 - \frac{\alpha}{2}\right) * B\right]}$$
 and $U = 2\theta - \theta^*_{\left[\left(\frac{\alpha}{2}\right) * B\right]}$

and we will reject the null hypothesis: H_0 : $\theta = \theta_0$ against alternative hypothesis H_a : $\theta \neq \theta_0$, if $L > \theta_0$ or $U < \theta_0$.

2.2.4. Bias-Corrected Percentile Bootstrap Approach

This method was introduced by Efron (1987) and the first step is to find the proportion of times that θ_i^* is greater than θ , that is,

$$P = \frac{\#(\theta_i^* > \theta)}{B}$$

and then find Z_0 in order to make $\phi(Z_0) = 1 - P$, where ϕ is the cumulative distribution function of standard normal random variable. Z_0 will be used to construct the following confidence interval,

$$L = \theta^*_{[\phi(2Z_0 - Z_{1-\alpha/2})*B]} \text{ and } = \theta^*_{[\phi(2Z_0 + Z_{1-\alpha/2})*B]}$$

and we will reject the null hypothesis H_0 : $\theta = \theta_0$ against alternative hypothesis H_a : $\theta \neq \theta_0$, if $L > \theta_0$ or $U < \theta_0$.

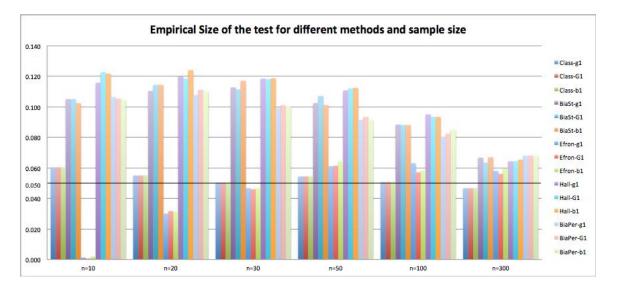
For more on bootstrap technique we refer our readers to DiCiccio & Romano (1988) among others.

3. Simulation Study

In this section, we will compare the performance of the proposed test statistics. We conducted a simulation study using R Version 3.2.1 to compare the performance of the test statistics in the sense of standard nominal size and high empirical power of the test.

3.1. Simulation Technique.

Even though the proposed test statistics are mainly developed for testing data from a normal (or symmetric) population, we will make an attempt to see the performance of these test statistics when the data are from a skewed distribution. The flow chart of our simulation study is pointed below:


- 1. Sample size, n=10, 20, 30, 50, 100 and 300.
- 2. 3000 simulation replications are used for each case, 1000 bootstrap samples for each simulation replication.
- 3. The normal and right skewed distributions are generated.
 - (a) Normal distribution with mean 0 and SD 1
 - (b) Gamma distribution with shape parameter 4, 7.5 and 10 and scale parameter 1.

For more on simulation technique, we refer our readers to Kibria and Banik (2013) and Banik

and Kibria (2016) among others.

3.2. Performance for Normal distribution

It is well known that the normal distribution is symmetric and the skewness for normal distribution equals 0. Under this assumption and at $\alpha = 0.05$ level of significance, we expect to get the power = 0.05 from the simulation dataset. Figure 3.1 shows the empirical size of the test when we are testing whether the skewness equals 0. It appears from Figure 3.1 that the classical method performs the best among all methods in the sense of attaining nominal size of 0.05 for different sample sizes. It differs only when sample size is small, that is when n = 10. Among four types of bootstrap methods, only Efron's Percentile method attained the nominal size of 0.05. For the Bias Corrected Standard Method, Hall's Percentile Method and Bias Corrected Percentile Method, the empirical nominal size is beyond 0.1 when the sample size is less than 100. However, they attained nominal size 0.05 when the sample size is very large say, 300. In this case bootstrap methods do not provide better results than the classical method, despite the limit of sample size to test the skewness for normal distribution. It should be mentioned that for power test, we deleted the unqualified statistics using a 0.05 nominal size and all good test statistics are demonstrated in the graph.

Figures 3.2 to 3.7 show the empirical power against different hypothesized values for all proposed test statistics with different sample sizes: n = 10, 20, 30, 50, 100 and 300. The *x*-axis represents different hypothesized values and Y-axis is the empirical power. We would expect to have the empirical power close to 1 when increasing the hypothesized value from 0 to a larger value. From these six Figures, it appears that empirical powers are close to 1 when skewness

equals to 2 or less than 2.

From Figures 3.2 to 3.7, we can see that for small sample sizes and near the null hypothesis or for large sample sizes and for high skewness, the power of the tests does not vary greatly. However, for small sample size with moderate departure from null hypothesis, the power of the tests varies among the test statistics. It appears that among all test statistics, the classical method is more powerful when the sample size is small (say 10) while for sample size greater than 10, Efron's Percentile Method shows absolute advantage other than classical method. Overall, the power approaches 1 when the alternative hypothesis is testing for skewness =2.

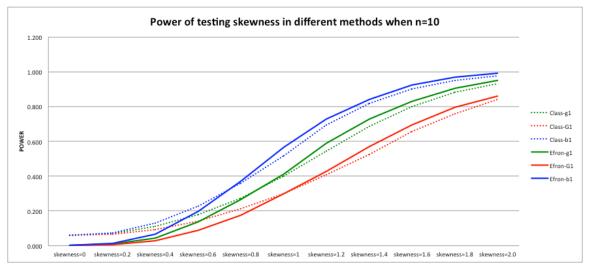


Figure 3.2. Power of testing skewness of N(0, 1) in different methods when n = 10

Figure 3.3. Power of testing skewness of N(0, 1) in different methods when n = 20

Both the classical and Efron's Percentile methods show acceptable results. By changing the alternative hypothesis, the Efron's Percentile is getting close to other bootstrap methods and apparently away from the classical method. The power approaches 1 when skewness is 1.6 and 1.2 respectively for n = 30 and 50.

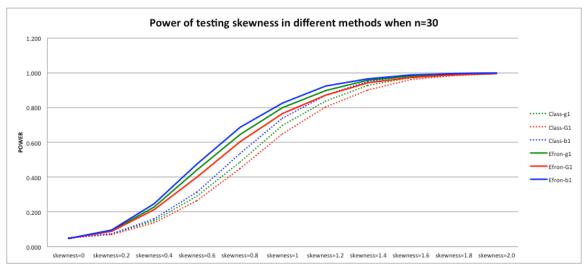


Figure 3.4. Power of testing skewness of N(0, 1) in different methods when n = 30

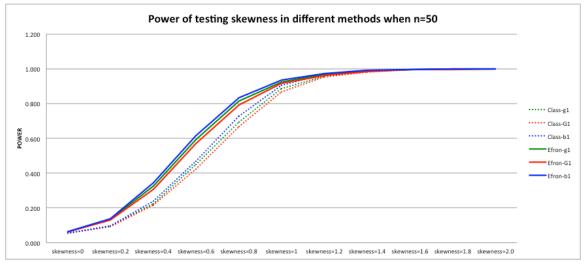
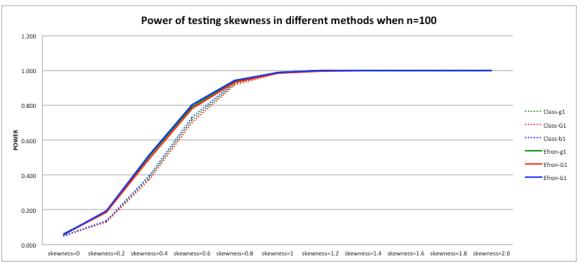
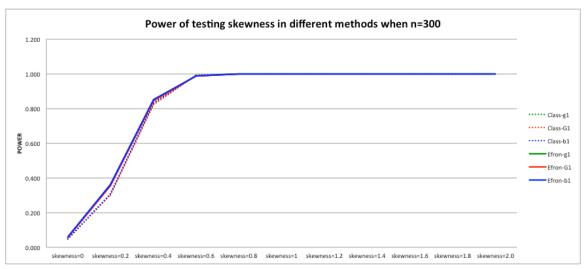
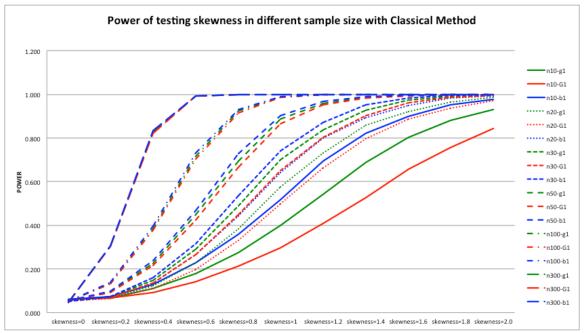


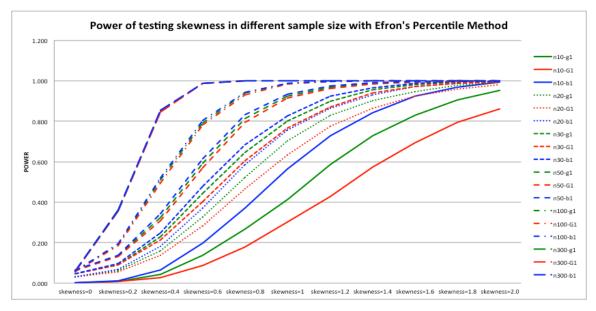
Figure 3.5. Power of testing skewness of N(0, 1) in different methods when n = 50

When we consider a larger sample size, say 100, and are testing skewness = 0.2, 0.4 or 0.6, then, the classical method is less powerful than the bootstrap methods. The power increases sharply to 0.9 for all methods when skewness = 0.8 and it goes up steadily to 1 from that point on. When the sample size goes up to 300, the power rises by an order of magnitude from 0.05 to 0.7 when

the skewness shifts from 0 to 0.4, and thereafter, it increases gradually until 1 when skewness=0.6. Thus, it may be concluded that the classical method shows a little less power than Efron's Percentile method for moderate departure from null value, and when the sample size is large enough, there is no significant difference among bootstrap methods. However, it is noted that when the classical and Efron's Percentile methods attain a nominal size 0.05, other proposed bootstrap methods, from data in a normal population, are not useful.


Figure 3.6. Power of testing skewness of N(0, 1) in different methods when n = 100


Figure 3.7. Power of testing skewness of N(0, 1) in different methods when n = 300

We analyzed the performance of test statistics using sample size with different methods separately. Figures 3.8 and 3.9 illustrates the power of testing skewness in different sample size with classical method and Efron's Percentile Method only as other methods failed to attained the nominal level. These figures indicate that if the sample size is large enough, there seems to be no

obvious difference among those three test statistics. The difference is only visible when the sample size is small, say n=10. Within each test statistic using those three estimators, increasing the sample size could improve the power of test for both classical and Efron's Percentile Method. Moreover, we find that the test statistic based on G_1 has the smallest power while the test statistic based on estimator b_1 has the highest power within each sample size.

Figure 3.8. Power of testing skewness of N (0, 1) in different sample size with Classical Method

Figure 3.9. Power of testing skewness of N (0, 1) in different sample size with Efron's Percentile Method

3.3. Performance for Gamma distribution

Even though the parametric methods are developed for testing the skewness parameter of normal distribution, we made an attempt to apply this method along with bootstrap methods to other asymmetric distributions, which will be discussed in this section.

The skewness of the gamma distribution depends on the scale parameter only. For instance, the skewness of Gamma (k, p) is $\frac{2}{\sqrt{k}}$. At $\alpha = 0.05$ level of significance, we are expecting the

nominal size to be 0.05 from the simulation data when we are testing the skewness equal to $\frac{2}{\sqrt{k}}$.

Figures 3.10 and 3.11 illustrate the empirical sizes for testing the skewness = 1 of Gamma (4,1)and skewness = 0.63 of Gamma (10,1) respectively. Unfortunately, the results are not acceptable for both parametric and bootstrap methods for Gamma (4,1), while the results are closer to 0.05 for Gamma (10,1) distribution. For small sample size n = 10, as Efron's Percentile method is under 0.05 limit, it can be chosen as a good test statistic. By increasing k, the shape of gamma distribution became closer to the bell-shaped "normal" distribution, which allowed us to find a nominal size closer to 0.05. We considered the following gamma distributions in simulations: Gamma (4, 1), Gamma (7.5, 1) and Gamma (10, 1) and the full results can be found in the Appendix A2 to A4. In the following Figures 3.10 and 3.11, we find that the nominal size is much closer to 0.05 for Gamma (10, 1) than for Gamma (4, 1). Because of the imperfect results, we can organize a graph to see the trend of changes of power as a reference but do not encourage using these results as conclusive. The classical method is selected from all five methods as the relatively best method, which shows the trend of power changes from above 0.05 to 1 in Gamma (10, 1). In Figure 3.12, we can find the test statistic based on estimator G_1 is less powerful for a small sample size, say n=10 or 20 when other conditions remain the same. When sample size increases to 100, we can easily find test statistic of G_1 has lower power while that of b_1 has higher power. By increasing the sample size to 300 two results were gathered: the power increases sharply to 1 at skewness=2 and stays at 1 thereafter, and there is no apparent difference among the test statistics based on these three estimators. In contrast, when the sample size is small, say n=10, the power rises gradually to 1 at skewness=3. In this paper, we will not discuss more about the results deeply but they are provided in Appendices A2 to A4 as a reference.

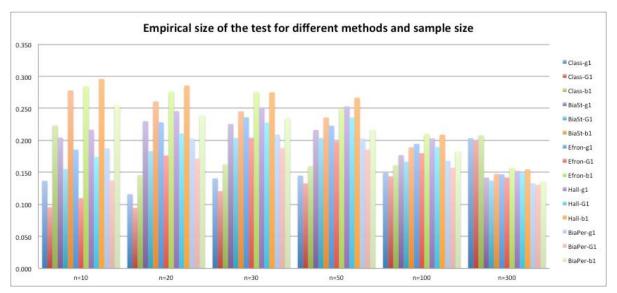
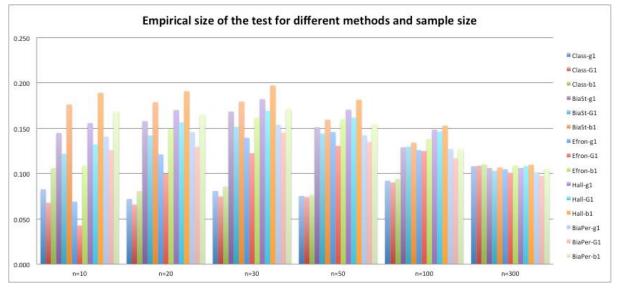
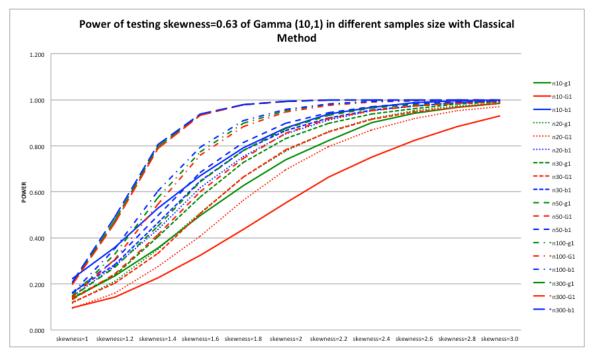




Figure 3.10. Empirical size of testing Gamma (4,1) skewness=1 with different methods and sample size

Figure 3.11. Empirical size of testing Gamma (10,1) skewness=0.63 with different methods and sample size

Figure 3.12. Power of testing skewness of Gamma (10,1) in different sample size with Classical Method

4. Applications

In this section, we will analyze two real life data sets to illustrate the performance of the test statistics based on the three estimators. We have a dataset in regards to 48 SIDS (Sudden Infant Death Syndrome) cases observed in King County, Washington during the years 1974 and 1975 (Belle at el., 2004). However, we used only one variable, birth weights (in grams) of these 48 cases in our study. Using this data the results of test statistics for testing the skewness for various alternative hypotheses are presented in Table 4.1. Before testing the hypotheses, we would like to confirm that whether the data follow a normal distribution or not. We have performed the Shapiro test (test statistic, W=0.9832, p-value=0.7168), which indicated that the data follow a normal distribution. We can easily find from Table 4.1, the classical method could correctly reject the null hypothesis when the skewness is departed from hypothesized value, say skewness=0.7. From that on, the classical method performs very well, however, the Bias Corrected Standard method shows unusual results which even reject the hypothesis when hypothesized value is close to null hypothesis. The Efron's Percentile method performs as well as the classical method.

			sk=0	sk=0.15	sk=0.4	sk=0.6	sk=0.7	sk=0.8	sk=1.0
Method	Estimator	Point Estimate				P-Value			
	g1	0.135	0.657	0.482	0.212	0.081	0.044	0.023	0.005
Classical	G1	0.139	0.657	0.487	0.224	0.090	0.051	0.027	0.006
	b1	0.131	0.657	0.476	0.201	0.072	0.038	0.019	0.003
Bias	g1	0.135	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Corrected	G1	0.139	0.000	0.000	0.000	0.000	0.000	0.000	0.000
standard	b1	0.131	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		CI				Decision			
Efron's	g1	(-0.631, 0.676)	А	А	А	А	R	R	R
percentile	G1	(-0.586, 0.726)	А	А	А	А	А	R	R
bootstrap	b1	(-0.595, 0.648)	А	А	А	А	R	R	R
Hall's	g1	(-0. 445, 0. 879)	А	A	А	А	А	А	R
Percentile	G1	(-0.444, 0.878)	А	A	А	А	А	А	R
bootstrap	b1	(-0. 424, 0. 869)	А	А	А	А	А	А	R
Bias-	g1	(-0.517, 0.724)	R	A	А	А	А	R	R
corrected	G1	(-0.539, 0.727)	R	А	А	А	А	R	R
percentile	b1	(-0.574, 0.728)	R	А	А	А	А	R	R

Table 4.1. Testing skewness for n = 48 normal distribution data

Another example, which is used to test the skewness, is also related to SIDS. We obtained a dataset that consist of 78 cases of SIDS occurring in King County between 1976 and 1977 (Morris et al, 1993). They recorded the age at death (in Days) of 78 cases of SIDS and finally classify them into 11 different age intervals. For each age interval, the number of deaths was recorded and eventually the number of deaths was employed in this example study. The Shapiro test (test statistic, W = 0.82135, p-value = 0.0329), which cannot support normality assumption. By using classical method, the results of testing the statistics based on g_1 and b_1 could reject the null hypothesis when testing skewness=2.0 while Bias Corrected Standard method does not perform correctly in this test. For bootstrap method, only when the testing hypothesized value is large enough, say skewness = 1.9 and above, the results from the test statistics based on estimator b_1 from Efron's Percentile and Hall's Percentile method can provide a good solution to make a correct decision, otherwise the other methods can not.

			sk=0	sk=0.5	sk=1	sk=1.5	sk=1.9	sk=2.0
Method	Estimator	Point Estimate			P-Va	alue		
	g1	1.020	0.964	0.821	0.514	0.199	0.060	0.042
Classical	G1	1.189	0.964	0.851	0.612	0.319	0.141	0.110
	b1	0.884	0.964	0.783	0.407	0.105	0.019	0.012
Bias	g1	1.020	0.256	0.235	0.216	0.197	0.183	0.180
Corrected	G1	1.189	0.270	0.249	0.229	0.209	0.195	0.191
standard	b1	0.884	0.244	0.224	0.205	0.187	0.191	0.170
		CI			Deci	sion		•
Efron's	g1	(-0.131, 2.202)	А	А	А	А	А	А
percentile	G1	(-0.065, 2.504)	А	А	А	А	А	А
bootstrap	b1	(-0.043, 1.887)	А	A	А	А	R	R
Hall's	g1	(-0. 189, 2. 078)	А	A	А	А	A	A
Percentile	G1	(-0.210, 2.558)	А	А	А	А	A	A
bootstrap	b1	(-0.142, 1.833)	А	А	А	А	R	R
Bias-	g1	(0. 185, 2. 370)	R	А	А	А	A	А
corrected	G1	(0. 179, 2. 674)	R	А	А	А	A	A
percentile	b1	(0. 114, 2. 036)	R	Α	А	А	A	A

Table 4.2. Testing skewness for n=11 non-normal distribution data

5. Conclusion

This paper proposed several test statistics for testing the skewness parameter of a distribution. Since a theoretical comparison is not possible, a simulation study has been conducted to compare the performance of the test statistics. We have compared both parametric method (Classical method with normality assumption) and non-parametric methods (bootstrap in Bias Corrected Standard Method, Efron's Percentile Method, Hall's Percentile Method and Bias Corrected Percentile Method) in the hypothesis testing of skewness, where the data are generated from normal and gamma distributions. Table 5.1 illustrates the performance of the tests and our simulation results indicate that the power of the tests differ significantly across sample sizes, the choice of alternative hypotheses and methods we choose. When the data are generated from normal distribution, both classical method and Efron's Percentile Method can attain a nominal size 0.05, while other bootstrap methods cannot provide good results in this situation. However, for skewed distribution, bootstrap methods show higher power for increased sample sizes whereas the classical method only performs well with small sample sizes. The results of Bias Corrected Percentile Method are approaching those of other bootstrap methods, which are obviously away from the classical method. Moreover, for testing different hypotheses among all distributions, as usual, a larger sample size always provide with higher empirical power.

		Performan	ice of Hypot				
Distribution	Method	n=10	n=20	n-30	n=50	n=100	n-300
N (0,1)	Classical	Good	Good	Good	Good	Good	Good
	Bias Corrected Standard Bootstrap	Weak	Weak	Weak	Weak	Weak	Fair
	Efron's Percentile Bootstrap	Good	Good	Good	Good	Fair	Good
	Hall's Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Fair
	Bias Corrected Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Fair
Gamma (4,1)	Classical	Weak	Weak	Weak	Weak	Weak	Weak
	Bias Corrected Standard Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
	Efron's Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
	Hall's Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
	Bias Corrected Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
Gamma (7.5,1)	Classical	Weak	Fair	Fair	Fair	Fair	Weak
	Bias Corrected Standard Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
	Efron's Percentile Bootstrap	Fair	Weak	Weak	Weak	Weak	Weak
	Hall's Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
	Bias Corrected Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
Gamma (10,1)	Classical	Fair	Fair	Fair	Fair	Fair	Weak
	Bias Corrected Standard Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
	Efron's Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak
	Hall's Percentile Bootstrap	Good	Weak	Weak	Weak	Weak	Weak
	Bias Corrected Percentile Bootstrap	Weak	Weak	Weak	Weak	Weak	Weak

 Table 5.1. Performance of hypothesis test of skewness

The test statistics used in this paper are based on the assumption of normal distribution, however, the simulated results suggest that these statistics can be used for some non-normal distributions as well. It is noted that the performance of gamma distribution needs further investigation since

743

the bootstrap methods do not work for the data coming from this distribution. We would suggest continuing to explore the test of skewness of gamma distribution and some other distributions with specific skewness features.

Acknowledgements

Authors are thankful to the Editor-in-Chief and three anonymous referees for their valuable comments and suggestions, which certainly improved the quality and presentations of the paper greatly. Dedication: Author, B. M. Golam Kibria dedicates this paper to his most respected teacher, Late Professor, M Kabir, Department of Statistics, Jahangirnagar University, Bangladesh for his love and caring of students and invaluable contributions in the field of social and statistical sciences.

REFERENCES

- Ankarali, H., Yazici, A. C. and Ankarali, S. (2009). A bootstrap confidence interval for skewness and kurtosis and properties of t-test in small samples from normal distribution. *Trakya Univ Tip Fak Derg*, 26(4) 297-305.
- Banik, S. and Kibria, B. M. G. (2016). Confidence Intervals for the population correlation coefficients p. *International Journal of Statistics in Medical Research*. 5(2), 99-111.
- Belle, V., G., Fisher, L. D., Heagerty, P. J., & Lumley, T. (2004). *Biostatistics: a methodology for the health sciences* (Vol. 519). John Wiley & Sons.
- Cramér, H. (1946). A contribution to the theory of statistical estimation. *Scandinavian Actuarial Journal*, (1), 85-94.
- DiCiccio, T. J. and Romano, J. P. (1988). A review of bootstrap confidence intervals. *Journal of the Royal Statistical Society. Series B (Methodological)*, 338-354.
- Efron, B. (1987). Better bootstrap confidence intervals. *Journal of the American statistical Association*, 82 (397), 171-185.
- Efron, B. (1992). Bootstrap methods: another look at the jackknife. In *Breakthroughs in Statistics* (pp. 569-593). Springer New York.
- Fisher, R. A. (1930). Moments and product moments of sampling distributions. *Proceedings of the London Mathematical Society*, 2(1), 199-238.
- Groeneveld, R. A. and Meeden, G. (1984). Measuring skewness and kurtosis. *The* Statistician, 391-399.
- Hall, P. (1992). The bootstrap and Edgeworth expansion. Springer Science & Business Media.
- Joanes, D. N. and Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. *Journal of the Royal Statistical Society: Series D (The Statistician)*, 47(1), 183-189.
- Kibria, B. M. G. and Banik, S. (2013). Parametric and Nonparametric Confidence Intervals for Estimating the Difference of Means of Two Skewed Populations. *Journal of Applied*

Statistics. 40(12), 2617-2636.

- Morris, J. C., Edland, S., Clark, C., Galasko, D., Koss, E., Mohs, R. & Heyman, A. (1993). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Part IV. Rates of cognitive change in the longitudinal assessment of probable Alzheimer's disease. *Neurology*, 43(12), 2457-2457.
- Perez-Meloand, S. & Kibria, B. M. G. (2016). Comparison of Some Confidence Intervals for Estimating the Skewness Parameter of a Distribution. *Thailand Statistician*, *14*(1), 93-115.

745

APPENDIX A

Table A1:Power for N(0,1) with skewness= 0 against with other value for different
sample sizes

		n=10										
Method	Est	$\gamma 1=0$	γ1=0.2	γ1=0.4	γ1=0.6	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0
Method	gl	0.060	0.069	0. 110	0. 179	0.275	0.399	0. 543	0.688	0.802	0.881	0.930
Classical	G1	0.060	0.065	0.092	0.143	0.213	0. 399	0. 343	0. 525	0.658	0. 758	0. 842
Classical	b1	0.060	0.000	0. 092	0. 228	0. 360	0. 298	0. 693	0. 323	0. 000	0. 951	0.842
Bias	gl	0.105	0. 073	0.129	0. 228	0.359	0. 318	0. 595	0. 694	0. 901	0. 931	0. 977
Corrected	G1	0.105	0.120	0.174	0.230	0. 339	0. 382	0. 390	0. 584	0. 675	0. 745	0.809
standard	b1	0.103	0.113	0.138	0. 303	0. 433	0. 582	0. 482	0. 792	0.854	0. 901	0.932
Efron's		0. 102	0.130	0. 198	0. 303	0. 433	0.380	0. 588	0. 792	0.834	0.901	0. 952
percentile	g1 G1	0.001	0.008	0.043	0. 137	0.200	0. 301	0. 388	0. 728	0. 695	0. 905	0.951
bootstrap	b1	0.000	0.008	0.028	0. 198	0. 372	0. 565	0. 429	0. 843	0. 923	0. 795	0.801
Hall's		0.002	0. 012	0.007	0. 198	0.349	0. 365	0. 729	0. 692	0. 923	0. 909	0.993
Percentile	g1 G1	0.110	0. 128	0.177	0.247	0. 283	0. 409	0. 391	0. 579	0. 676	0. 745	0.805
	b1	0. 123	0. 129	0. 200	0.210	0. 283	0.575	0. 698	0. 579	0.851	0. 745	0. 803
bootstrap								0. 565	0. 790			0.924
Bias	g1 G1	0.106	0.126	0.180 0.158	0.255 0.218	0.354 0.290	0.458 0.375	0. 565	0. 664	0.742 0.639	0.810	0.870
Corrected percentile	b1	0.105	0.118	0. 158	0. 218	0. 290	0.548	0.465	0. 554	0. 836	0.710	0. 778
percentile	υI	0.105 n=20	0.120	0.203	0.301	0.420	0.046	0.000	0.700	0.000	0.900	0.952
Method	Est		γ1=0.2	γ1=0.4	γ1=0.6	γ1=0.8	w1-1.0	γ1=1.2	γ1=1.4	γ1=1.6	w1-1.0	w1-2.0
method	g1	$\gamma 1=0$ 0.055	$\gamma_1 = 0.2$ 0.067	$\gamma_1=0.4$ 0. 123	$\gamma_1 = 0.6$ 0.229	$\gamma_1 = 0.8$ 0.384	γ1=1.0 0.578	$\gamma_1 = 1.2$ 0.731	$\gamma_1 = 1.4$ 0.858	$\gamma_1 = 1.6$ 0.921	$\gamma 1=1.8$ 0.965	γ1=2.0 0.987
Classical	G1 G1	0.055	0.067	0. 123	0. 229	0.384	0.578	0. 663	0.858	0. 921	0.965	0. 987
Classical	b1	0.055	0.003	0.136	0. 198	0. 333	0.641	0. 799	0. 798	0. 950	0. 930	0.970
Bias		0.055	0.071	0. 130	0.200	0. 442	0. 686	0.799	0.895	0.950	0. 985	0.994
Corrected	g1 G1	0.110	0. 140	0.231	0.355	0.504	0.641	0.751	0.802	0. 910	0.938	0.933
standard	b1	0.114	0. 133	0.215	0. 355	0.597	0. 730	0. 755	0.824	0. 880	0.918	0. 943
Efron's		0. 030	0. 142	0. 257	0. 328	0. 524	0.730	0.830	0.890	0.929	0.935	0.973
percentile	g1 G1	0.030	0.057	0.139	0. 328	0. 324	0. 635	0.830	0. 865	0. 947	0.970	0.990
bootstrap	b1	0.032	0.057	0.133	0. 282	0. 587	0. 033	0.865	0. 930	0. 923	0.987	0.996
Hall's	gl	0. 120	0.146	0. 183	0.375	0.555	0. 688	0. 791	0. 855	0. 905	0. 933	0.954
Percentile	G1	0.120	0.140	0.240	0.355	0.513	0.638	0.751	0.835	0. 881	0.915	0.939
bootstrap	b1	0.113	0.142	0.221	0. 437	0.598	0.735	0. 825	0.886	0.924	0.948	0.967
Bias	gl	0.124	0.132	0.233	0.373	0.533	0.678	0. 785	0.864	0.924	0.943	0.967
Corrected	G1	0.103	0. 132	0.207	0.375	0. 333	0.627	0.783	0.804	0. 881	0. 943	0.951
percentile	b1	0.111	0.128	0.248	0.330	0.581	0. 725	0.831	0.889	0.931	0. 963	0.981
percentite	01	n=30	0.135	0.240	0.410	0.001	0.120	0.001	0.005	0.331	0. 505	0. 501
Method	Est	γ1=0	γ1=0.2	γ1=0.4	γ1=0.6	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0
meenou	g1	0.032	0.050	0. 128	0. 291	0.506	0.726	0.884	0.957	0. 986	0.996	0.998
Classical	G1	0.032	0.030	0.128	0.251	0. 460	0. 720	0.844	0.940	0.977	0.992	0.998
Jussical	b1	0.032	0.040	0.113	0.322	0.555	0.070	0.914	0.971	0.991	0.998	0.999
Bias	gl	0.103	0.166	0.328	0.522	0. 712	0.832	0.914	0.954	0.974	0.987	0.992
Corrected	G1	0.099	0.160	0.307	0. 323	0.680	0.814	0.893	0.942	0.967	0.981	0.989
standard	b1	0.103	0.173	0.342	0.564	0.743	0.859	0.930	0.942	0.978	0.989	0.994
Efron's	g1	0.045	0.099	0.273	0.504	0.731	0.878	0.952	0.982	0.993	0.999	0.999
percentile	G1	0.046	0.096	0.213	0.469	0.691	0.850	0.934	0.975	0.991	0.997	0.999
bootstrap	b1	0.010	0.109	0.297	0.544	0.767	0.903	0.968	0.987	0.995	0.999	0.999
Hall's	g1	0.111	0.172	0.337	0.542	0.714	0.838	0.908	0.950	0.971	0.985	0.994
Percentile	G1	0.112	0.169	0.319	0.508	0.678	0.812	0.890	0.937	0.965	0.978	0.989
bootstrap	b1	0.112	0.178	0.354	0.572	0.742	0.857	0.925	0.957	0.979	0.990	0.994
Bias	gl	0.091	0.151	0.306	0.516	0.711	0.848	0.924	0.971	0.983	0.993	0.997
Corrected	G1	0.090	0.150	0.289	0.486	0.673	0.815	0.906	0.958	0.979	0.990	0.996
percentile	b1	0.091	0.158	0.333	0.546	0.743	0.876	0.942	0.977	0.990	0.995	0.999
POLOGIUTIO		5. 501	5.100	5. 500	0.010	0.110	0.010	0.010	5.511	0.000	0.000	0.000

746

Table A1 (Continued)

		n=50										
Method	Est	γ1=0	γ1=0.2	γ1=0.4	γ1=0.6	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0
	g1	0.034	0.075	0.203	0.442	0.707	0.887	0.968	0.992	0.998	0.999	1.000
Classical	G1	0.034	0.073	0.193	0.419	0.680	0.868	0.960	0.989	0.997	0.999	1.000
	b1	0.034	0.078	0.215	0.467	0.734	0.900	0.976	0.995	0.999	0.999	1.000
Bias	g1	0.100	0.182	0.392	0.630	0.807	0.910	0.960	0.982	0.990	0.995	0.998
Corrected	G1	0.102	0.182	0.376	0.614	0.788	0.896	0.952	0.981	0.989	0.995	0.998
standard	b1	0.104	0.190	0.406	0.656	0.823	0.920	0.966	0.985	0.993	0.996	0.998
Efron's	g1	0.059	0.140	0.367	0.638	0.837	0.941	0.981	0.996	0.999	1.000	1.000
percentile	G1	0.058	0.137	0.349	0.613	0.820	0.930	0.975	0.992	0.998	0.999	1.000
bootstrap	b1	0.058	0.145	0.385	0.663	0.855	0.949	0.985	0.996	0.999	1.000	1.000
Hall's	g1	0.114	0.197	0.399	0.635	0.804	0.904	0.960	0.984	0.990	0.996	0.998
Percentile	G1	0.109	0.189	0.385	0.617	0.792	0.893	0.955	0.980	0.990	0.994	0.997
bootstrap	b1	0.111	0.203	0.418	0.652	0.821	0.918	0.966	0.986	0.992	0.996	0.999
Bias	g1	0.093	0.173	0.381	0.636	0.815	0.924	0.973	0.991	0.997	0.999	1.000
Corrected	G1	0.091	0.170	0.371	0.611	0.798	0.914	0.967	0.988	0.996	0.999	0.999
percentile	b1	0.093	0.181	0.392	0.651	0.833	0.931	0.978	0.992	0.997	0.999	1.000
FOLCOMOLIO	~ 1	n=100		0.001		0.000	0.001		0.000	0.001	0.000	1.000
Method	Est	$\gamma 1=0$	γ1=0.2	γ1=0.4	γ1=0.6	$\gamma 1 = 0.8$	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0
	g1	0.048	0. 123	0.379	0.733	0. 923	0. 988	0.998	0.999	1.000	1.000	1.000
Classical	G1	0.048	0.121	0.371	0.717	0.917	0.987	0.998	0.999	1.000	1.000	1.000
	b1	0.048	0.125	0.391	0.746	0.929	0.989	0.998	0.999	1.000	1.000	1.000
Bias	g1	0.096	0.215	0.529	0.803	0.928	0.978	0.993	0.997	0.998	0.999	0.999
Corrected	G1	0.096	0.210	0.514	0.796	0.924	0.975	0.992	0.997	0.998	0.999	0.999
standard	b1	0.097	0.223	0.536	0.808	0.930	0.978	0.995	0.998	0.998	0.999	1.000
Efron's	g1	0.071	0.191	0.528	0.818	0.943	0.988	0.996	0.998	0.999	1.000	1.000
percentile	G1	0.069	0.191	0.512	0.811	0.939	0.986	0.996	0.998	0.999	1.000	1.000
bootstrap	b1	0.067	0.195	0.534	0.830	0.946	0.988	0.997	0.999	0.999	1.000	1.000
Hall's	g1	0.100	0.226	0.533	0.806	0.928	0.976	0.993	0.997	0.999	0.999	1.000
Percentile	G1	0.102	0.220	0.524	0.794	0.924	0.973	0.992	0.997	0.998	0.999	1.000
bootstrap	b1	0.098	0.223	0.544	0.813	0.932	0.977	0.994	0.998	0.999	0.999	1.000
Bias	g1	0.090	0.217	0.530	0.807	0.931	0.982	0.996	0.998	0.999	1.000	1.000
Corrected	G1	0.092	0.210	0.518	0.798	0.927	0.980	0.995	0.998	0.999	1.000	1.000
percentile	b1	0.092	0.218	0.536	0.815	0.936	0.984	0.996	0.998	0.999	1.000	1.000
		n=300										
Method	Est	γ1=0	γ1=0.2	γ1=0.4	γ1=0.6	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0
	g1	0.044	0.296	0.821	0.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Classical	G1	0.044	0.292	0.819	0.993	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	b1	0.044	0.298	0.825	0.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Bias	g1	0.064	0.365	0.843	0.989	0.999	1.000	1.000	1.000	1.000	1.000	1.000
Corrected	G1	0.064	0.362	0.837	0.989	0.999	1.000	1.000	1.000	1.000	1.000	1.000
standard	b1	0.066	0.362	0.842	0.989	0.999	1.000	1.000	1.000	1.000	1.000	1.000
Efron's	g1	0.060	0.366	0.850	0.991	0.999	1.000	1.000	1.000	1.000	1.000	1.000
percentile	G1	0.059	0.363	0.844	0.990	0.999	1.000	1.000	1.000	1.000	1.000	1.000
bootstrap	b1	0.059	0.367	0.854	0.991	0.999	1.000	1.000	1.000	1.000	1.000	1.000
Hall's	g1	0.065	0.369	0.844	0.990	0.999	1.000	1.000	1.000	1.000	1.000	1.000
Percentile	G1	0.067	0.366	0.842	0.990	0.999	1.000	1.000	1.000	1.000	1.000	1.000
bootstrap	b1	0.068	0.368	0.846	0.990	0.999	1.000	1.000	1.000	1.000	1.000	1.000
Bias	g1	0.065	0.375	0.839	0.989	0.999	1.000	1.000	1.000	1.000	1.000	1.000
Corrected	G1	0.064	0.369	0.841	0.988	0.999	1.000	1.000	1.000	1.000	1.000	1.000
percentile	b1	0.065	0.372	0.843	0.987	0.999	1.000	1.000	1.000	1.000	1.000	1.000

		n=10	-						1	1		
M -1 -1	E-t	n=10	1 1 2	.1.1.4	1 1 (1.2.0	1.2.2		1.2.6		.1.2.0
Method	Est	$\gamma 1 = 1.0$	$\gamma 1 = 1.2$	$\gamma_{1=1.4}$	$\gamma 1 = 1.6$	$\gamma 1=1.8$	$\gamma 1 = 2.0$	$\gamma 1 = 2.2$	$\gamma 1 = 2.4$	$\gamma 1 = 2.6$	$\gamma 1=2.8$	$\gamma 1 = 3.0$
c1 · · 1	gl C1	0.137	0.236	0.355	0.497	0.628	0.741	0.823	0.901	0.941	0.968	0.984
Classical	G1	0.096	0.142	0.227	0.325	0.437	0.552	0.664	0.752	0.822	0.884	0.931
	b1	0.223	0.360	0.530	0.671	0.790	0.879	0.938	0.968	0.987	0.997	0.999
Bias Corrected	g1	0.204	0.293	0.390	0.493	0.587	0.663	0.730	0.779	0.829	0.868	0.898
standard bootstrap	G1	0.155	0.211	0.288	0.365	0.455	0.536	0.613	0.671	0.722	0.767	0.810
bootstrap	b1	0.278	0.392	0.517	0.620	0.702	0.767	0.823	0.870	0.904	0.925	0.944
Efron's	g1	0.186	0.302	0.446	0.585	0.701	0.810	0.907	0.973	0.999	1.000	1.000
percentile bootstrap	G1	0.110	0.190	0.292	0.405	0.531	0.637	0.730	0.824	0.903	0.961	0.996
bootstrap	b1	0.285	0.447	0.608	0.749	0.864	0.958	0.998	1.000	1.000	1.000	1.000
Hall's	gl	0.217	0.310	0.407	0.499	0.590	0.660	0.720	0.769	0.815	0.854	0.886
Percentile	G1	0.174	0.224	0.302	0.377	0.467	0.541	0.614	0.669	0.720	0.760	0.801
bootstrap	b1	0.296	0.417	0.519	0.619	0.692	0.755	0.809	0.857	0.894	0.916	0.938
Bias-corrected	g1	0.188	0.261	0.351	0.445	0.541	0.631	0.736	0.843	0.970	1.000	1.000
percentile	G1	0.138	0.191	0.256	0.325	0.403	0.485	0.562	0.646	0.723	0.819	0.924
bootstrap	b1	0.255	0.359	0.472	0.575	0.681	0.809	0.960	1.000	1.000	1.000	1.000
		n=20										
Method	Est	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6	γ1=2.8	γ1=3.0
ļ	gl	0.116	0.214	0.351	0.510	0.664	0.778	0.865	0.917	0.954	0.973	0.985
Classical	G1	0.095	0.160	0.276	0.409	0.563	0.696	0.797	0.869	0.917	0.952	0.971
	b1	0.146	0.279	0.437	0.618	0.753	0.853	0.913	0.952	0.974	0.986	0.994
Bias Corrected	g1	0.230	0.321	0.433	0.545	0.637	0.714	0.776	0.823	0.865	0.894	0.917
standard	G1	0.183	0.272	0.369	0.480	0.575	0.654	0.723	0.780	0.825	0.863	0.892
bootstrap	b1	0.261	0.375	0.496	0.606	0.694	0.763	0.816	0.862	0.898	0.919	0.938
Efron's	g1	0.228	0.355	0.500	0.641	0.748	0.836	0.897	0.939	0.962	0.979	0.992
percentile	G1	0.176	0.298	0.426	0.554	0.678	0.770	0.843	0.901	0.938	0.960	0.979
bootstrap	b1	0.276	0.426	0.577	0.715	0.815	0.885	0.934	0.961	0.982	0.993	0.998
Hall's	g1	0.246	0.340	0.449	0.557	0.639	0.714	0.772	0.822	0.859	0.891	0.917
Percentile	G1	0.211	0.293	0.396	0.499	0.589	0.659	0.722	0.775	0.818	0.858	0.887
bootstrap	b1	0.286	0.395	0.514	0.612	0.695	0.762	0.813	0.860	0.894	0.917	0.936
Bias-corrected	g1	0.203	0.299	0.412	0.523	0.626	0.705	0.773	0.832	0.877	0.916	0.945
percentile	G1	0.171	0.254	0.347	0.455	0.555	0.639	0.719	0.778	0.837	0.876	0.908
bootstrap	b1	0.239	0.352	0.475	0.587	0.685	0.763	0.827	0.880	0.916	0.949	0.972
		n=30										
Method	Est	$\gamma_{1=1.0}$	γ1=1.2	$\gamma_{1=1.4}$	γ1=1.6	$\gamma_{1=1.8}$	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6	γ1=2.8	γ1=3.0
	g1	0.141	0.239	0.404	0.579	0.728	0.832	0.899	0.937	0.962	0.981	0.989
Classical	G1	0.121	0.204	0.332	0.505	0.665	0.781	0.861	0.916	0.946	0.968	0.984
	b1	0.163	0.284	0.465	0.646	0.779	0.868	0.921	0.955	0.974	0.987	0.995
Bias Corrected	gl	0.226	0.340	0.469	0.592	0.688	0.758	0.808	0.851	0.881	0.908	0.927
standard bootstrap	G1	0.204	0.301	0.425	0.545	0.646	0.724	0.783	0.826	0.862	0.888	0.914
bootstrap	b1	0.245	0.383	0.513	0.639	0.718	0.784	0.836	0.868	0.897	0.924	0.943
Efron's	gl	0.236	0.395	0.555	0.692	0.789	0.864	0.914	0.941	0.964	0.982	0.989
percentile	G1	0.204	0.340	0.499	0.637	0.751	0.830	0.890	0.924	0.951	0.971	0.984
bootstrap	b1	0.275	0.439	0.604	0.739	0.826	0.892	0.929	0.955	0.978	0.987	0.995
Hall's	g1	0.252	0.365	0.490	0.602	0.687	0.750	0.808	0.844	0.877	0.906	0.929
Percentile	G1	0.228	0.323	0.445	0.553	0.652	0.724	0.776	0.825	0.857	0.888	0.913
bootstrap	b1	0.275	0.402	0.525	0.640	0.720	0.785	0.830	0.864	0.897	0.923	0.940
Bias-corrected	g1	0.209	0.324	0.458	0.588	0.698	0.776	0.836	0.882	0.916	0.934	0.951
percentile	G1	0.188	0.284	0.419	0.547	0.650	0.739	0.801	0.856	0.892	0.919	0.939
bootstrap	b1	0.235	0.364	0.506	0.635	0.740	0.807	0.865	0.905	0.930	0.948	0.967

Table A2: Power for Gamma(4,1) with skewness=1 against with other value for
different sample size

748

Table A2 (Continued)

		n=50										
Method	Est	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6	γ1=2.8	γ1=3.0
	g1	0.145	0.274	0.452	0.645	0.780	0.874	0.931	0.964	0.978	0.987	0.993
Classical	G1	0.133	0.244	0.415	0.600	0.747	0.855	0.919	0.954	0.974	0.985	0.992
F	b1	0.160	0.305	0.497	0.686	0.815	0.899	0.944	0.969	0.983	0.991	0.995
Bias Corrected	g1	0.216	0.345	0.478	0.604	0.701	0.782	0.833	0.872	0.906	0.928	0.944
standard	G1	0.204	0.321	0.445	0.571	0.678	0.760	0.817	0.862	0.894	0.917	0.939
bootstrap	b1	0.236	0.367	0.503	0.631	0.725	0.797	0.852	0.888	0.913	0.938	0.951
Efron's	g1	0.223	0.392	0.561	0.704	0.812	0.881	0.927	0.959	0.974	0.985	0.990
percentile	G1	0.198	0.359	0.527	0.671	0.785	0.865	0.914	0.950	0.968	0.981	0.990
bootstrap	b1	0.250	0.420	0.593	0.735	0.833	0.896	0.940	0.965	0.979	0.989	0.993
Hall's	g1	0.253	0.364	0.483	0.608	0.701	0.779	0.831	0.870	0.903	0.930	0.943
Percentile	G1	0.236	0.346	0.458	0.580	0.680	0.755	0.812	0.855	0.891	0.920	0.939
bootstrap	b1	0.267	0.388	0.509	0.637	0.727	0.795	0.848	0.885	0.914	0.936	0.951
Bias-corrected	g1	0.203	0.331	0.483	0.619	0.738	0.825	0.884	0.925	0.953	0.970	0.980
percentile	G1	0.186	0.312	0.452	0.593	0.714	0.804	0.868	0.911	0.939	0.962	0.974
bootstrap	b1	0.217	0.362	0.518	0.656	0.763	0.846	0.899	0.937	0.963	0.974	0.983
		n=100										
Method	Est	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6	$\gamma 1 = 2.8$	γ1=3.0
	g1	0.150	0.331	0.576	0.775	0.899	0.953	0.981	0.992	0.996	0.999	0.999
Classical	G1	0.144	0.307	0.547	0.759	0.885	0.946	0.976	0.992	0.995	0.998	0.999
L F	b1	0.161	0.353	0.603	0.794	0.908	0.958	0.983	0.993	0.996	0.999	0.999
Bias Corrected	g1	0.177	0.353	0.530	0.677	0.791	0.859	0.903	0.933	0.952	0.969	0.979
standard	G1	0.167	0.334	0.516	0.662	0.779	0.853	0.896	0.930	0.950	0.966	0.976
bootstrap	b1	0.189	0.366	0.547	0.695	0.800	0.867	0.911	0.936	0.958	0.973	0.979
Efron's	g1	0.195	0.404	0.609	0.772	0.870	0.924	0.959	0.979	0.990	0.994	0.997
percentile	G1	0.180	0.387	0.588	0.750	0.859	0.916	0.955	0.977	0.986	0.994	0.996
bootstrap	b1	0.210	0.428	0.630	0.787	0.879	0.930	0.965	0.982	0.990	0.994	0.998
Hall's	g1	0.203	0.362	0.531	0.683	0.789	0.859	0.906	0.935	0.956	0.972	0.981
Percentile	G1	0.190	0.347	0.514	0.663	0.775	0.851	0.899	0.931	0.951	0.970	0.979
bootstrap	b1	0.209	0.382	0.556	0.699	0.802	0.867	0.909	0.939	0.960	0.974	0.982
Bias-corrected	g1	0.168	0.357	0.547	0.708	0.833	0.897	0.942	0.970	0.984	0.992	0.995
percentile	G1	0.157	0.334	0.530	0.692	0.822	0.892	0.936	0.966	0.981	0.990	0.995
bootstrap	b1	0.183	0.370	0.566	0.731	0.845	0.910	0.949	0.973	0.985	0.992	0.996
		n=300										
Method	Est	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6	γ1=2.8	γ1=3.0
	g1	0.203	0.478	0.797	0.936	0.979	0.994	0.998	1.000	1.000	1.000	1.000
Classical	G1	0.199	0.467	0.789	0.933	0.977	0.993	0.998	1.000	1.000	1.000	1.000
	b1	0.208	0.490	0.806	0.939	0.979	0.994	0.999	1.000	1.000	1.000	1.000
Bias Corrected	g1	0.142	0.376	0.641	0.808	0.900	0.944	0.968	0.983	0.990	0.993	0.996
standard	G1	0.137	0.369	0.631	0.805	0.896	0.941	0.966	0.982	0.989	0.992	0.996
bootstrap	b1	0.148	0.384	0.651	0.813	0.901	0.944	0.969	0.982	0.990	0.992	0.996
Efron's	g1	0.147	0.422	0.696	0.856	0.925	0.964	0.983	0.991	0.995	0.998	0.999
percentile	G1	0.142	0.411	0.687	0.847	0.922	0.962	0.983	0.991	0.995	0.997	0.999
bootstrap	b1	0.157	0.430	0.703	0.855	0.927	0.965	0.984	0.992	0.996	0.997	0.999
Hall's	g1	0.152	0.380	0.654	0.817	0.903	0.950	0.973	0.985	0.990	0.995	0.998
Percentile	G1	0.149	0.369	0.643	0.815	0.899	0.947	0.971	0.985	0.990	0.995	0.997
bootstrap	b1	0.155	0.387	0.660	0.824	0.907	0.951	0.975	0.985	0.991	0.996	0.998
Bias-corrected	g1	0.133	0.369	0.650	0.823	0.909	0.953	0.979	0.989	0.993	0.997	0.998
percentile	G1	0.130	0.362	0.639	0.818	0.907	0.951	0.976	0.989	0.993	0.997	0.999
bootstrap	b1	0.136	0.380	0.659	0.825	0.910	0.954	0.978	0.989	0.993	0.997	0.999

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
b1 0.127 0.290 0.454 0.600 0.738 0.847 0.910 0.951 0.978 0.998 0.998 Bias g1 0.151 0.264 0.367 0.675 0.656 0.725 0.785 0.831 0.865 0.832 0.811 0.895 0.823 0.755 0.823 0.861 0.899 0.999 1.000 percentile G1 0.054 0.141 0.243 0.368 0.487 0.599 0.699 0.998 1.000 1.0975 botstrap b1 0.146 0.272 0.379 0.481 0.579 0.658 0.721 0.784 0.866 0.991 0.001 Hall's g1 0.164 0.272 0.379 0.494 0.565 0.784 0.866 0.893 0.883 0.892 Bias g1 0.140 0.370 0.471 0.541 0.618 0.771 0.727 0.779 0.835 Dercentile b1 0.182
percentile G1 0.054 0.141 0.243 0.368 0.487 0.599 0.695 0.784 0.866 0.931 0.0975 botstrap b1 0.164 0.272 0.379 0.904 0.969 0.989 1.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
b1 0.096 0.246 0.413 0.595 0.742 0.846 0.918 0.959 0.977 0.988 0.993 Bias g1 0.178 0.319 0.446 0.564 0.667 0.743 0.803 0.845 0.882 0.911 0.932 Corrected G1 0.157 0.277 0.386 0.500 0.611 0.694 0.759 0.810 0.847 0.878 0.911 standard b1 0.202 0.368 0.503 0.623 0.722 0.787 0.834 0.876 0.910 0.933 0.948 percentile G1 0.125 0.284 0.419 0.572 0.698 0.789 0.864 0.921 0.950 0.970 0.982 bootstrap b1 0.190 0.336 0.459 0.569 0.669 0.741 0.794 0.837 0.875 0.908 0.929 Percentile G1 0.172 0.292 0.401 0.566 0
Bias Corrected g1 0.178 0.319 0.446 0.564 0.667 0.743 0.803 0.845 0.882 0.911 0.932 Corrected G1 0.157 0.277 0.386 0.500 0.611 0.694 0.759 0.810 0.847 0.878 0.911 standard b1 0.202 0.368 0.503 0.623 0.722 0.787 0.834 0.876 0.910 0.933 0.948 Efron's g1 0.153 0.340 0.497 0.650 0.762 0.846 0.911 0.948 0.968 0.983 0.992 percentile G1 0.125 0.284 0.419 0.572 0.698 0.944 0.965 0.950 0.970 0.982 bootstrap b1 0.190 0.336 0.459 0.669 0.741 0.794 0.837 0.875 0.908 0.922 Percentile G1 0.172 0.292 0.401 0.506 0.614
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
standard b1 0.202 0.368 0.503 0.623 0.722 0.787 0.834 0.876 0.910 0.933 0.948 Efron's g1 0.153 0.340 0.497 0.650 0.762 0.846 0.911 0.948 0.968 0.983 0.992 percentile G1 0.125 0.284 0.419 0.572 0.698 0.789 0.864 0.921 0.950 0.970 0.982 bootstrap b1 0.190 0.397 0.576 0.720 0.815 0.898 0.944 0.965 0.983 0.992 0.996 Hall's g1 0.191 0.336 0.459 0.569 0.669 0.741 0.794 0.837 0.875 0.908 0.929 Percentile G1 0.172 0.292 0.401 0.566 0.614 0.695 0.755 0.804 0.841 0.876 0.904 0.931 botstrap b1 0.220 0.331 <
Efron's percentile g1 0.153 0.340 0.497 0.650 0.762 0.846 0.911 0.948 0.968 0.983 0.992 percentile G1 0.125 0.284 0.419 0.572 0.698 0.789 0.864 0.921 0.950 0.970 0.982 botstrap b1 0.190 0.397 0.576 0.720 0.815 0.898 0.944 0.965 0.983 0.992 0.996 Hall's g1 0.191 0.336 0.459 0.569 0.669 0.741 0.794 0.837 0.875 0.908 0.929 Percentile G1 0.172 0.292 0.401 0.566 0.614 0.695 0.755 0.804 0.841 0.876 0.904 0.931 botstrap b1 0.220 0.383 0.515 0.634 0.718 0.780 0.830 0.873 0.908 0.930 0.947 Bias g1 0.167 0.311
percentile G1 0.125 0.284 0.419 0.572 0.698 0.789 0.864 0.921 0.950 0.970 0.982 botstrap b1 0.190 0.397 0.576 0.720 0.815 0.898 0.944 0.965 0.983 0.992 0.996 Hall's g1 0.191 0.336 0.459 0.569 0.669 0.741 0.794 0.837 0.875 0.908 0.929 Percentile G1 0.172 0.292 0.401 0.506 0.614 0.695 0.755 0.804 0.841 0.876 0.904 bootstrap b1 0.220 0.383 0.515 0.634 0.718 0.780 0.830 0.873 0.908 0.930 0.947 Bias g1 0.167 0.311 0.423 0.548 0.661 0.744 0.810 0.863 0.905 0.933 0.956 0.973 percentile b1 0.195 0.351 <td< td=""></td<>
bootstrap b1 0.190 0.397 0.576 0.720 0.815 0.898 0.944 0.965 0.983 0.992 0.996 Hall's g1 0.191 0.336 0.459 0.569 0.669 0.741 0.794 0.837 0.875 0.908 0.929 Percentile G1 0.172 0.292 0.401 0.506 0.614 0.695 0.755 0.804 0.841 0.876 0.904 bootstrap b1 0.220 0.383 0.515 0.634 0.718 0.780 0.830 0.873 0.908 0.930 0.947 Bias g1 0.167 0.311 0.423 0.548 0.661 0.744 0.810 0.863 0.905 0.933 0.956 Corrected G1 0.144 0.263 0.366 0.478 0.595 0.686 0.764 0.818 0.867 0.904 0.931 percentile b1 0.195 0.351 0.489 <td< td=""></td<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
g1 0.082 0.219 0.408 0.624 0.781 0.882 0.937 0.968 0.984 0.992 0.997 Classical G1 0.072 0.187 0.344 0.550 0.725 0.843 0.913 0.954 0.976 0.988 0.993 b1 0.095 0.259 0.475 0.691 0.831 0.910 0.957 0.978 0.989 0.996 0.999 Bias g1 0.224 0.412 0.554 0.682 0.773 0.837 0.880 0.911 0.932 0.950 0.966 Corrected G1 0.205 0.369 0.515 0.641 0.743 0.810 0.862 0.895 0.919 0.938 0.955 standard b1 0.240 0.452 0.603 0.721 0.803 0.859 0.896 0.921 0.945 0.961 0.971 Efron's g1 0.216 0.461 0.655 0.782 0.871 0.925
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
b1 0.095 0.259 0.475 0.691 0.831 0.910 0.957 0.978 0.989 0.996 0.999 Bias g1 0.224 0.412 0.554 0.682 0.773 0.837 0.880 0.911 0.932 0.950 0.966 Corrected G1 0.205 0.369 0.515 0.641 0.743 0.810 0.862 0.895 0.911 0.932 0.950 0.966 standard b1 0.240 0.452 0.603 0.721 0.803 0.859 0.896 0.921 0.945 0.961 0.971 Efron's g1 0.216 0.461 0.655 0.782 0.871 0.925 0.962 0.978 0.989 0.995 0.998 percentile G1 0.194 0.414 0.598 0.740 0.842 0.903 0.943 0.969 0.982 0.990 0.995 bootstrap b1 0.255 0.517 0.699 0.82
Bias Corrected standard g1 0.224 0.412 0.554 0.682 0.773 0.837 0.880 0.911 0.932 0.950 0.966 G1 0.205 0.369 0.515 0.641 0.743 0.810 0.862 0.895 0.919 0.938 0.955 standard b1 0.240 0.452 0.603 0.721 0.803 0.859 0.896 0.921 0.945 0.961 0.971 Efron's g1 0.216 0.461 0.655 0.782 0.871 0.925 0.962 0.978 0.989 0.995 0.998 percentile G1 0.194 0.414 0.598 0.740 0.842 0.903 0.943 0.969 0.982 0.990 0.995 bootstrap b1 0.255 0.517 0.699 0.825 0.895 0.942 0.970 0.985 0.992 0.997 1.000
Corrected standardG10.2050.3690.5150.6410.7430.8100.8620.8950.9190.9380.955standardb10.2400.4520.6030.7210.8030.8590.8960.9210.9450.9610.971Efron'sg10.2160.4610.6550.7820.8710.9250.9620.9780.9890.9950.998percentileG10.1940.4140.5980.7400.8420.9030.9430.9690.9820.9900.995bootstrapb10.2550.5170.6990.8250.8950.9420.9700.9850.9920.9971.000
standardb10. 2400. 4520. 6030. 7210. 8030. 8590. 8960. 9210. 9450. 9610. 971Efron'sg10. 2160. 4610. 6550. 7820. 8710. 9250. 9620. 9780. 9890. 9950. 998percentileG10. 1940. 4140. 5980. 7400. 8420. 9030. 9430. 9690. 9820. 9900. 995bootstrapb10. 2550. 5170. 6990. 8250. 8950. 9420. 9700. 9850. 9920. 9971. 000
Efron's percentileg10.2160.4610.6550.7820.8710.9250.9620.9780.9890.9950.998bootstrap610.1940.4140.5980.7400.8420.9030.9430.9690.9820.9900.995bootstrapb10.2550.5170.6990.8250.8950.9420.9700.9850.9920.9971.000
percentile G1 0.194 0.414 0.598 0.740 0.842 0.903 0.943 0.969 0.982 0.990 0.995 bootstrap b1 0.255 0.517 0.699 0.825 0.895 0.942 0.970 0.985 0.992 0.997 1.000
bootstrap b1 0.255 0.517 0.699 0.825 0.895 0.942 0.970 0.985 0.992 0.997 1.000
T HALLS T 91 TO 238 TO 422 TO 561 TO 683 TO 766 TO 830 TO 874 TO 908 TO 930 TO 950 TO 965
Percentile G1 0.222 0.384 0.524 0.643 0.732 0.808 0.854 0.889 0.917 0.937 0.956
bootstrap b1 0.255 0.465 0.603 0.717 0.798 0.851 0.891 0.921 0.943 0.960 0.970
Bias g1 0.212 0.403 0.568 0.704 0.802 0.864 0.915 0.945 0.965 0.976 0.986
I Corrected I C1 I 0 103 I 0 364 I 0 516 I 0 661 I 0 764 I 0 941 I 0 909 I 0 095 I 0 061 I 0 060 I 0 090
Corrected G1 0.193 0.364 0.516 0.661 0.764 0.841 0.892 0.925 0.951 0.969 0.980 percentile b1 0.234 0.446 0.615 0.743 0.828 0.891 0.928 0.959 0.974 0.983 0.991

Table A3: Power for Gamma(7.5,1) with skewness=0.73 against with other value for
different sample size

_

Table A3 (Continued)

		n=50										
Method	Est	$\gamma 1 = 0.73$	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	$\gamma_{1=1.8}$	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6	γ1=2.8
	g1	0.081	0.276	0.518	0.720	0.855	0.936	0.975	0.988	0.994	0.997	0.999
Classical	G1	0.075	0.246	0.476	0.682	0.832	0.917	0.967	0.985	0.992	0.996	0.999
orabbrear	b1	0.093	0.316	0.559	0.759	0.880	0.950	0.980	0.990	0.996	0.998	0.999
Bias	g1	0.197	0.428	0.594	0.733	0.808	0.874	0.912	0.942	0.961	0.973	0.979
Corrected	G1	0.131	0.402	0.566	0.699	0.794	0.856	0.897	0.932	0.954	0.968	0.976
standard	b1	0. 212	0. 450	0.624	0.745	0.823	0.881	0.922	0.952	0.965	0.900	0.910
Efron's	gl	0.212	0.483	0.678	0.811	0.896	0.946	0.976	0.987	0.993	0.997	0.999
percentile	G1	0.188	0.456	0.646	0.786	0.878	0.938	0.970	0.982	0.991	0.996	0.998
bootstrap	b1	0. 224	0.516	0.707	0.835	0.914	0.957	0.980	0.989	0.995	0.998	0.999
Hall's	gl	0.224	0. 310	0.601	0.333	0. 806	0.863	0.907	0.940	0.955	0.933	0.978
Percentile	G1	0.217	0.413	0.567	0.695	0.789	0.852	0. 894	0. 929	0.954	0.969	0.976
bootstrap	b1	0.203	0.413	0.627	0.746	0. 820	0.877	0.917	0.946	0.964	0.975	0.970
Bias	gl	0. 229	0.401	0. 613	0.740	0.848	0.915	0.917	0.940	0.987	0.973	0.984
Corrected	G1	0.192	0.432	0. 513	0.732	0.833	0. 915	0.930	0.978	0. 984	0.992	0.993
	b1	0. 175	0.400	0. 580	0.720	0.868	0. 898	0.943	0.971	0. 984	0.991	0.994
percentile	DI	0.200 n=100	0.400	0.047	0.760	0.000	0.941	0.901	0.901	0. 909	0. 992	0.991
Method	Est	$\gamma 1=0.73$	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	v1-1 9	γ1=2.0	γ1=2.2	w1-2.4	γ1=2.6	γ1=2.8
method		$\gamma 1 = 0.73$ 0.097		'	'	$\gamma_{1-1.6}$ 0.944	$\gamma 1 = 1.8$	$\gamma_1 = 2.0$ 0.991	$\gamma_{1-2.2}$ 0.997	γ1=2.4 0.998	$\gamma_{1-2.6}$ 0.999	'
Classical	g1 G1	0.097	0.353 0.325	0.648	0.848	0. 944	0.979 0.975	0.991	0.997	0.998	0.999	1.000
Classical	b1	0.093		0.623	0.859	0.935		0.990	0.998	0.998	0.999	1.000
Bias		0. 153	0.374 0.421	0.608	0. 859	0. 949	0.983 0.923	0. 992	0.998	0. 999	0.999	0. 989
	g1 G1	0.155				0.857		0.954		0.980	0. 980	0. 989
Corrected			0.400	0.609	0.758		0.918	0.951	0.969			0.990
standard	b1	0.162	0.440	0.637	0.778	0.879	0.930	0.957		0.982	0.987 0.998	0.991
Efron's	g1 G1	0.157				0.928	0.966		0.991	0.995		
percentile	b1	0.148	0.461	0.684	0.836	0.924	0.964 0.968	0.980	0.991	0.995	0.998	0.999
bootstrap												
Hall's Percentile	g1 G1	0.172 0.164	0. 428	0.627	0.767	0.866	0.924	0.953 0.949	0.971	0.981	0.987 0.986	0.991
	b1	0. 164	0.410	0.611	0.755	0.856 0.879	0.919	0. 949	0.969	0. 980	0. 980	0.991
bootstrap			0. 444	0.641	0. 770	0. 879		0.957	0.972	0. 982	0. 989	0.992
Bias Corrected	g1 G1	0.140	0.431	0. 633	0. 804	0.900	0.951 0.951	0.977	0. 988	0.993	0.997	0.999
percentile	b1	0.134	0.411	0.662	0. 780	0.900	0.951	0.973	0. 988	0.992	0.998	0.998
percentile	01	n=300	0.442	0.002	0.815	0.912	0.957	0.976	0.990	0.995	0.990	0.999
Method	Est	$\gamma 1=0.73$	w1-1.0	w1-1.2	γ1=1.4	w1-1.6	γ1=1.8	γ1=2.0	w1-2.2	γ1=2.4	γ1=2.6	w1-2.8
method	g1	0. 133	γ1=1.0 0.597	γ1=1.2 0.894	0. 982	γ1=1.6 0.996	0.999	1.000	γ1=2.2 1.000	$\frac{\gamma_1 - 2.4}{1.000}$	1.000	γ1=2.8 1.000
Classical	G1	0.133	0.586	0.894	0. 982	0.990	0.999	1.000	1.000	1.000	1.000	1.000
Classical	b1	0.132	0. 606	0.898	0. 981	0.995	0.999	1.000	1.000	1.000	1.000	1.000
Bias	gl	0.130	0.532	0.789	0.902	0.964	0.986	0.992	0.996	0.998	0.999	0.999
Corrected	G1	0. 123	0. 532							0.998		
standard	b1	0.123	0. 538	0.791	0.903	0.964	0. 985	0. 992	0.996	0. 998	0.999	0.999
Efron's	g1	0.132	0.573	0. 738	0.935	0.978	0.983	0. 992	0.998	0.999	1.000	1.000
percentile	G1	0.134	0.573	0.828	0.933	0.978	0. 990	0.996	0.998	0.999	1.000	1.000
bootstrap	b1	0. 128	0.571	0.828	0.935	0.978	0.990	0.996	0.998	0.999	1.000	1.000
Hall's	gl	0.133	0.585	0.803	0.930	0.979	0. 992	0.990	0.999	0.999	0.999	1.000
Percentile	G1	0.133	0. 535	0.803	0.910	0.970	0. 989	0.993	0.997	0.999	0.999	1.000
bootstrap	b1	0.130	0.550	0. 795	0.917	0.908	0. 989	0.993	0.997	0.999	1.000	1.000
Bias	gl	0. 138	0.530	0.808	0.922	0.971	0. 989	0.995	0.997	0.999	0.999	1.000
Corrected	G1	0.123	0. 532	0.790	0.917	0.968	0. 988	0.993	0.998	0.999	0.999	1.000
percentile	b1	0.119	0. 524	0. 790	0. 910	0.908	0. 987	0.994	0.998	0.999	1.000	1.000
percentite	01	0.120	0.041	0.003	0. 920	0.971	0. 900	0. 990	0. 990	0. 999	1.000	1.000

	um	erent sa	impic	5120			-		-			-
		n=10										
Method	Est	γ1=0.63	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6
	g1	0.083	0.127	0.215	0.342	0.476	0.610	0.739	0.836	0.894	0.937	0.967
Classical	G1	0.068	0.091	0.144	0.219	0.330	0.446	0.555	0.676	0.766	0.844	0.892
	b1	0.106	0.184	0.323	0.480	0.640	0.779	0.869	0.927	0.963	0.981	0.992
Bias	g1	0.145	0.200	0.293	0.401	0.500	0.602	0.689	0.755	0.812	0.853	0.888
Corrected	G1	0.122	0.158	0.219	0.302	0.392	0.479	0.561	0.643	0.709	0.765	0.807
standard	b1	0.176	0.259	0.383	0.509	0.623	0.714	0.784	0.844	0.884	0.915	0.936
Efron's	g1	0.069	0.140	0.259	0.397	0.553	0.682	0.794	0.877	0.943	0.986	1.000
percentile	G1	0.043	0.085	0.162	0.267	0.387	0.517	0.634	0.738	0.819	0.889	0.942
bootstrap	b1	0.109	0.223	0.380	0.557	0.705	0.825	0.913	0.978	0.999	1.000	1.000
Hall's	g1	0.156	0.208	0.297	0.410	0.509	0.610	0.685	0.751	0.795	0.840	0.874
Percentile	G1	0.132	0.170	0.219	0.305	0.400	0.486	0.569	0.647	0.706	0.754	0.797
bootstrap	b1	0.189	0.263	0.400	0.512	0.628	0.711	0.776	0.827	0.873	0.906	0.928
Bias	g1	0.141	0.186	0.278	0.369	0.471	0.558	0.649	0.736	0.824	0.904	0.979
Corrected	G1	0.126	0.155	0.202	0.283	0.361	0.450	0.524	0.595	0.671	0.747	0.813
percentile	b1	0.169	0.246	0.361	0.474	0.576	0.677	0.780	0.877	0.972	1.000	1.000
		n=20										
Method	Est	γ1=0.63	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6
	g1	0.072	0.117	0.223	0.358	0.538	0.701	0.822	0.893	0.937	0.966	0.983
Classical	G1	0.066	0.096	0.174	0.290	0.441	0.603	0.742	0.843	0.905	0.940	0.966
	b1	0.081	0.141	0.273	0.444	0.633	0.780	0.877	0.932	0.964	0.982	0.991
Bias	g1	0.158	0.233	0.355	0.481	0.603	0.697	0.774	0.827	0.868	0.900	0.923
Corrected	G1	0.142	0.209	0.307	0.424	0.536	0.644	0.728	0.791	0.838	0.873	0.899
standard	b1	0.179	0.272	0.407	0.539	0.662	0.755	0.814	0.862	0.897	0.922	0.940
Efron's	g1	0.121	0.219	0.369	0.536	0.684	0.791	0.873	0.921	0.955	0.975	0.987
percentile	G1	0.100	0.183	0.309	0.462	0.610	0.729	0.819	0.888	0.930	0.958	0.974
bootstrap	b1	0.149	0.264	0.440	0.611	0.752	0.850	0.911	0.950	0.972	0.987	0.994
Hall's	g1	0.170	0.251	0.361	0.488	0.601	0.705	0.776	0.826	0.867	0.896	0.917
Percentile	G1	0.156	0.223	0.322	0.433	0.545	0.644	0.731	0.785	0.832	0.869	0.897
bootstrap	b1	0.191	0.285	0.415	0.546	0.659	0.755	0.814	0.857	0.891	0.917	0.939
Bias	g1	0.146	0.223	0.340	0.467	0.593	0.691	0.777	0.838	0.886	0.922	0.950
Corrected	G1	0.129	0.188	0.294	0.404	0.524	0.634	0.726	0.791	0.850	0.893	0.922
percentile	b1	0.165	0.260	0.384	0.524	0.651	0.748	0.823	0.883	0.919	0.948	0.966
		n=30										
Method	Est	γ1=0.63	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6
	g1	0.081	0.133	0.260	0.455	0.637	0.774	0.877	0.934	0.966	0.983	0.991
Classical	G1	0.075	0.117	0.224	0.390	0.575	0.724	0.843	0.909	0.951	0.974	0.985
	b1	0.086	0.154	0.304	0.516	0.691	0.831	0.908	0.954	0.977	0.988	0.995
Bias	g1	0.168	0.255	0.398	0.543	0.666	0.752	0.822	0.867	0.906	0.929	0.947
Corrected	G1	0.151	0.229	0.363	0.500	0.626	0.717	0.795	0.847	0.888	0.917	0.936
standard	b1	0.179	0.286	0.433	0.585	0.702	0.785	0.847	0.889	0.920	0.941	0.956
Efron's	g1	0.139	0.269	0.444	0.622	0.751	0.845	0.907	0.951	0.971	0.985	0.993
percentile	G1	0.122	0.230	0.399	0.566	0.705	0.807	0.883	0.929	0.962	0.978	0.988
bootstrap	b1	0.161	0.306	0.491	0.668	0.786	0.877	0.929	0.963	0.981	0.992	0.995
Hall's	g1	0.182	0.269	0.408	0.544	0.667	0.752	0.814	0.867	0.897	0.925	0.944
Percentile	G1	0.169	0.252	0.374	0.510	0.628	0.717	0.791	0.842	0.883	0.910	0.932
bootstrap	b1	0.197	0.296	0.447	0.586	0.697	0.784	0.840	0.883	0.914	0.938	0.958
Bias	g1	0.154	0.248	0.394	0.549	0.674	0.773	0.850	0.901	0.935	0.961	0.973
Corrected	G1	0.145	0.221	0.362	0.502	0.633	0.735	0.813	0.879	0.917	0.948	0.966
percentile	b1	0.171	0.278	0.434	0.595	0.715	0.808	0.875	0.916	0.951	0.971	0.980
-												

Table A4:Power for Gamma(10,1) with skewness=0.63 against with other value for
different sample size

_

Table A4 (Continued)

		n=50										
Method	Est	$\gamma 1 = 0.63$	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6
ine erre a	g1	0.075	0. 147	0.329	0.561	0.758	0.881	0.946	0.981	0.991	0.997	0.999
Classical	G1	0.074	0.131	0.301	0.516	0.724	0.858	0.935	0.976	0.989	0.995	0.998
orabbrear	b1	0.076	0.164	0.363	0.602	0.790	0.907	0.961	0.986	0.994	0.998	0.999
Bias	g1	0.151	0.270	0.442	0.607	0.729	0.819	0.883	0.919	0.949	0.966	0.979
Corrected	G1	0.144	0.251	0.416	0.582	0.710	0.801	0.869	0.910	0.939	0.959	0.974
standard	b1	0.159	0.287	0.475	0.632	0.756	0.837	0.894	0.928	0.954	0.971	0.983
Efron's	g1	0.146	0.291	0.501	0.691	0.821	0.906	0.950	0.980	0.991	0.996	0.998
percentile	G1	0.130	0.266	0.467	0.661	0.798	0.889	0.944	0.973	0.987	0.994	0.997
bootstrap	b1	0.160	0.313	0.536	0.716	0.844	0.922	0.959	0.984	0.992	0.997	0.999
Hall's	g1	0.170	0.285	0.448	0.604	0.728	0.815	0.876	0.916	0.932	0.966	0.980
Percentile	G1	0.162	0.264	0.421	0.579	0.707	0.795	0.860	0.908	0.935	0.959	0.974
bootstrap	b1	0.102	0.296	0. 476	0.627	0.750	0.831	0.891	0.926	0.953	0.973	0.984
Bias	g1	0.142	0.250	0.446	0.625	0.764	0.862	0.924	0.959	0.982	0.990	0.996
Corrected	G1	0.135	0.244	0. 420	0.596	0.735	0.846	0.910	0.939	0.982	0.988	0.993
percentile	b1	0.153	0. 244	0.420	0. 550	0.733	0.840	0.910	0.949	0. 984	0. 988	0.993
Percentite	DI	n=100	0.200	0.111	0.001	0.150	0.002	0.301	0.303	0.004	0.334	0.000
Method	Est	$\gamma 1 = 0.63$	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6
meenou	g1	0. 092	0. 189	0.464	0.728	0.886	0. 959	0.986	0.995	0.999	0.999	1.000
Classical	G1	0.092	0.178	0.437	0.707	0.876	0.954	0.984	0.995	0.998	0.999	1.000
Classical	b1	0.094	0.205	0.486	0.747	0.897	0.964	0.989	0.996	0.999	0.999	1.000
Bias	g1	0.129	0.281	0.503	0.692	0.814	0.885	0.937	0.959	0.977	0.987	0.991
Corrected	G1	0.120	0.264	0.485	0.677	0.807	0.883	0.931	0.958	0.975	0.986	0.990
standard	b1	0.134	0.293	0.518	0.703	0.828	0.893	0.943	0.962	0.979	0.988	0.992
Efron's	g1	0.126	0.312	0.561	0.760	0.876	0.940	0.972	0.989	0.994	0.998	0.999
percentile	G1	0.125	0.293	0.545	0.744	0.870	0.933	0.969	0.988	0.993	0.997	0.999
bootstrap	b1	0.138	0.325	0.580	0.778	0.882	0.946	0.977	0.990	0.995	0.998	1.000
Hall's	g1	0.148	0.288	0.506	0.693	0.816	0.885	0.937	0.961	0.980	0.988	0.993
Percentile	G1	0.146	0.277	0.486	0.675	0.809	0.879	0.933	0.958	0.977	0.987	0.992
bootstrap	b1	0.153	0.295	0.523	0.705	0.825	0.891	0.943	0.966	0.982	0.989	0.993
Bias	g1	0.127	0.275	0.510	0.717	0.845	0.919	0.961	0.983	0.991	0.996	0.998
Corrected	G1	0.117	0.264	0.500	0.699	0.840	0.911	0.959	0.981	0.991	0.996	0.998
percentile	b1	0.127	0.297	0.534	0.731	0.856	0.926	0.964	0.985	0.992	0.997	0.999
T T		n=300										
Method	Est	γ1=0.63	γ1=0.8	γ1=1.0	γ1=1.2	γ1=1.4	γ1=1.6	γ1=1.8	γ1=2.0	γ1=2.2	γ1=2.4	γ1=2.6
	g1	0.108	0.329	0.768	0.950	0.991	0.999	1.000	1.000	1.000	1.000	1.000
Classical	G1	0.108	0.320	0.759	0.947	0.990	0.999	1.000	1.000	1.000	1.000	1.000
	b1	0.110	0.338	0.776	0.952	0.992	0.999	1.000	1.000	1.000	1.000	1.000
Bias	g1	0.106	0.328	0.677	0.868	0.949	0.979	0.990	0.995	0.997	0.999	0.999
Corrected	G1	0.103	0.318	0.671	0.864	0.947	0.978	0.989	0.994	0.997	0.999	0.999
standard	b1	0.107	0.338	0.680	0.870	0.951	0.979	0.991	0.994	0.997	0.999	0.999
Efron's	g1	0.105	0.365	0.718	0.895	0.963	0.987	0.994	0.997	0.999	0.999	1.000
percentile	G1	0.101	0.353	0.711	0.893	0.961	0.985	0.993	0.998	0.999	0.999	1.000
bootstrap	b1	0.109	0.373	0.726	0.899	0.966	0.987	0.994	0.998	0.999	1.000	1.000
Hall's	g1	0.106	0.340	0.686	0.877	0.953	0.981	0.993	0.996	0.999	0.999	1.000
Percentile	G1	0.108	0.328	0.674	0.874	0.951	0.981	0.993	0.996	0.998	0.999	1.000
bootstrap	b1	0.110	0.347	0.690	0.880	0.957	0.982	0.994	0.996	0.998	0.999	1.000
Bias	g1	0.101	0.327	0.675	0.870	0.952	0.981	0.992	0.996	0.998	0.999	1.000
Corrected	G1	0.097	0.319	0.673	0.865	0.950	0.981	0.992	0.996	0.998	0.999	1.000
percentile	b1	0.105	0.334	0.683	0.876	0.954	0.983	0.992	0.997	0.999	0.999	1.000
			•	•		•	•	•	•			