
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 12 Issue 2 Article 4 

12-2017 

The FMX/FM/1 Queue with Multiple Working Vacation The FMX/FM/1 Queue with Multiple Working Vacation 

G. Kannadasan 
Annamalai University 

N. Sathiyamoorthi 
Annamalai University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Computer Sciences Commons, and the Numerical Analysis and Computation Commons 

Recommended Citation Recommended Citation 
Kannadasan, G. and Sathiyamoorthi, N. (2017). The FMX/FM/1 Queue with Multiple Working Vacation, 
Applications and Applied Mathematics: An International Journal (AAM), Vol. 12, Iss. 2, Article 4. 
Available at: https://digitalcommons.pvamu.edu/aam/vol12/iss2/4 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol12
https://digitalcommons.pvamu.edu/aam/vol12/iss2
https://digitalcommons.pvamu.edu/aam/vol12/iss2/4
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol12/iss2/4?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 12, Issue 2 (December 2017), pp. 695 – 709

The FMX/FM/1 Queue with Multiple Working Vacation

1G. Kannadasan and 2N. Sathiyamoorthi

Department of Mathematics
Annamalai University

Annamalainagar - 608 002, India
1klsk.g.21@gmail.com, 2n.satyamurthi@gmail.com

Received: November 25, 2016; Accepted: April 20, 2017

Abstract

This study investigates the batch arrival FMX/FM/1 queue with multiple working vacation. For
this fuzzy queuing model, this research obtains some performance measure of interest such as mean
system length, mean system sojourn time, mean busy period for the server and working vacation
period. Finally, numerical results are presented to show the effects of system parameters.

Keywords: FMX/FM/1 queue; Multiple working vacation; Busy period; Length of
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1. Introduction

Vacation queues have been investigated for four decades as a useful tool for modeling and analyz-
ing computer systems, communication networks, manufacturing and production systems. However,
in these models, the server stops the original work in the vacation period and does not come back
to the regular busy period until the vacation period ends.

Recently, Servi and Finn (2002) introduced working vacation policy, in which the server works at a
different rate rather than completely stopping service during the vacation. In the working vacation
queuing systems, the server can return back to the regular busy period even if the vacation period
is not completed.

The basic queuing model of this research article is the MX/M/1 queue with multiple working
vacation customers arriving in batches according to a Poisson process. Service time in regular
busy periods follow an exponential distribution. During the vacation period, arriving customers
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696 G. Kannadasan and N. Sathiyamoorthi

are served, and when a vacation ends, if there are no customers in the queue, another vacation
is taken. Otherwise, the server switches service and a regular busy period starts. But, in many
real situations, the system parameters are both possibilistic and probabilistic. Thus fuzzy analysis
would be potentially much more useful and realistic than the commonly used crisp concepts.

Li and Lee has (1989) investigated analytical results for fuzzy queues using a general approach
based on Zadeh’s extension principle (1978). Negi and Lee’s (1999) home inventory procedure use
α-cut and two-variable simulation to analyze fuzzy queues. Using parametric programming Kao et
al. (1999) constructed the membership functions of systems characteristic for fuzzy queues.

2. The Crisp Model

This study considers a queuing system in which the customers arrive in a group in a Poisson fashion
with multiple working vacations. The arrive rate of a batch is specified by λ. It assumes that the
arrival batch size X follows a geometric distribution with parameter q; that is,

P(X = k) = gk ,

where 0 ≤ q ≤ 1, k = 1, 2, ..., and g =
1

q
, g(2) =

2− q
q2

, then

G(z) =
∑∞

k=1 gkz
k, |z| ≤ 1.

The customers are served using First-Come First-Service queuing discipline. Service time follows
an exponential distribution with parameter µ. Upon completion of service, if there is no customer
in the system, the server begins a vacation and the vacation duration follows an exponential dis-
tribution with parameter θ. During the working vacation period, arriving customers are served at
a rate ν. When the vacation ends, if there are no customers in the queue, the server takes another
vacation; otherwise the service switches service rate from ν to µ, and a regular busy period starts.
The Laplace-Stieltjes transform of the service time distribution in a regular busy period and the
service time in a working vacation time are

B∗(s) =
µ

s + µ
, C ∗(s) =

v

s + ν
,

respectively. Obviously, the numerator and the denominator of the expressions are both positive
since ν < µ and

ρ =
λg

µ
< 1.

Furthermore, we have

π00 =
µ(1− ρ)

δ
, δ = µ+

λ

θ
{1−G(α)}(µ− ν).

Let L(t) be the number of customers in the system at time t. Then,

2
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J(t) =

{
0, the system is in a working vacation period at time t,

1, the system is in a regular busy period at time t.

Then the process {L(t), J(t)} is a two-dimensional Markov chain with the state space

Ω = {(0, 0)} ∪ {(k, j)/k ≥ 1, j = 0, 1}.

Using the lexicographical order for the states, the infinitesimal generator of the process is
{L(t), J(t)} . Then,

Q =


B0 B1 B2 B3 . . .

C0 A1 A2 A3 . . .

A0 A1 A2 . . .

A0 A1 . . .
...

... . . .

,

where

B0 = −λ, Bi = (λgi , 0 ), i ≥ 1 , C0 = (ν, µ)T ,

A0 =

[
v 0

0 µ

]
, A1 =

[
−(λ+ ν + θ) θ

0 −(λ+ µ)

]
,

Ai =

[
λgi−1 0

0 λgi−1

]
, i ≥ 2.

We derive the probability generating function stationary distribution for {L(t), J(t)}. Let (L, J) be
the stationary limit of the process {L(t), J (t)}.

It assumes that:

πk = (πk0 , πk1 ), k ≥1,

πkj = P (L = k, J = j)

= lim
t→∞

P{L(t) = k, J(t) = j}, (k, j) ∈ Ω.

The probability generating function of {πk0} and {πk1} are

Q0 (z ) =
∞∑

k=1

πk0 z k , ‖z‖ ≤1,

Q1 (z ) =
∞∑

k=1

πk1 z k , ‖z‖ ≤1.
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698 G. Kannadasan and N. Sathiyamoorthi

Then the probability generating function of a stationary system of length L can be written as

L(z) = π00 +Q0(z) +Q1(z), ‖z‖ ≤ 1,

L(z) =
π(1− ρ)

δ
+
∞∑
k=1

πk0z
k +

∞∑
k=1

πk1z
k, ‖z‖ ≤ 1,

L = L0 + Ld , where L0 is the stationary system length in the corresponding classical MX/M/1

queue without vacation, and Ld is the additional system length due to vacation.

Now

L(z ) = L0 (z ) + Ld (z ),

L0 (z ) =
µ(1 − ρ)(z − 1 )

(λ+ µ)z − µ− λzG(z )
,

Ld (z ) =
σ(z )

δ{(λ+ ν + θ)z − ν − λzG(z )}
,

where

σ(z ) = µ(λ+ ν + θ)z − ν − λzG(z ) + λz{G(z )−G(α)}(µ− ν),

and

δ = µ+ λ
θ {1−G(α)}(µ− ν).

Thus, the mean length in the system is given by

L =
µ(1 − ρ)(z − 1 )

(λ+ µ)z − µ− λzG(z )
+

σ(z )

δ{(λ+ ν + θ)z + ν − λzG(z )}
.

Therefore,

E(L) =
λ(g(2) + g)

2µ(1− ρ)
+
λ(µ− ν)[gθ + (λg − ν)] {1−G(α)}

δθ2
.

Hence,

E (L) =
λ

q

[
2

(µq−λ) +
(µ− ν)[θT1 + (µ− qν)T2 ]

θ[µθT1 + λT2 (µ− ν)]

]
,

where T1 = 1 − α+ qα, T2 = 1 − α. The probability P(J = 0 ), that the server is in a working
vacation period, and the probability P(J = 1 ), that the server is in a regular busy period, are given
by

4
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V = P(J = 0 )=
(µq − λ)[θT1 + λT2 ]

q [θµT1 + λT2 (µ− ν)]
,

and

B = P(J = 1 )=
λθT1 + (λ− qν)T2

q [µθT1 + λ(µ− ν)T2 ]
.

We can obtain the Laplace-Stieltjes transform of the stationary sojourn time of an arbitrary cus-
tomer. Let W and W ∗(s) denote the stationary sojourn time of an arbitrary customer and its LST,
respectively.

If ρ =
λg

µ
< 1 and ν < µ, W ∗(s) is given by

W ∗(s) =

[
π00 +Q0(B∗(s))µθ

(µ− ν)s+ µθ
+Q1(B∗(s))

]
{1−G(B∗(s))}
g {1−B∗(s)}

+
(µ− ν)s{π00 +Q0(C∗(s+ θ))}{1−G(C∗(s+ θ))}

g{(µ− ν)s+ µθ}{1− C∗(s+ θ)}
.

3. The Model in Fuzzy Environment

In this section, the arrival rate, the service rate, working vacation rate and mean busy period are
assumed to be fuzzy number λ̄, µ̄, θ̄, and β̄, respectively. Now

λ̄ =
{
x, µλ̄(x);x ∈ S(λ̄)

}
,

µ̄ = {y, µµ̄(y); y ∈ S(µ̄)} ,
θ̄ =

{
z, µθ̄(z); z ∈ S(θ̄)

}
, and

β̄ =
{
s, µβ̄(s); s ∈ S(β̄)

}
,

where S (λ̄), S (µ̄), S (θ̄) and S (β̄) are the universal sets of the arrival rate, the service rate, busy
period, and working vacation period, respectively. It defines f (x , y , z , s) as the system performance
measure related to the above defined fuzzy queuing model, which depends on the fuzzy member-
ship function f̄ (λ̄, µ̄, θ̄, β̄). Applying Zadeh’s extension principle (1978) the membership function
of the performance measure f̄ (λ̄, µ̄, θ̄, β̄) can be defined as

µf̄(λ̄,µ̄,θ̄,β̄)(D) = sup
x∈S(λ̄)
y∈S(µ̄)
z∈S(θ̄)
s∈S(β̄)

{
µλ̄(x), µµ̄(y), µθ̄(z), µβ̄(s)/D = f(x, y, z, s).

}
(A)

If the α-cuts of f̄ (λ̄, µ̄, θ̄, β̄) degenerates to some fixed value, then the system performance is a crisp
number. Otherwise it is a fuzzy number.

E(W ) =
E(L)

λg
− (1− π00)

λg

=

[
2

(µq − λ)
+

(µ− ν)[θT1 + (µ− qν)T2]

θ[µθT1 + λT2(µ− ν)]

]
− 1

λ

[
q(µθT1) + λT2(µ− ν)− θT1(µq − λ)

λθµT1 + λT2(µ− ν)

]
.
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Under the stedy state condition ρ =
λg

µ
< 1.

We obtain the membership function some performance measures, namely the mean number of
customer in the system E(L), the mean sojourn time in the system E(W ), the busy period in
the system B, and the working vacation period in the system V . For the system in terms of this
membership function are

µ
E(L)

(K ) = sup
x∈S(λ̄)
y∈S(µ̄)
z∈S(θ̄)
t∈S(β̄)

{min{µλ̄(x ), µµ̄(y), µθ̄(z ), µβ̄(s)/K},

where

K =
x

q

[
2

(yq − x )
+

(y − s)[zT1 + (y − qs)T2 ]

z [yzT1 + xT2 (y − s)]

]
,

µ
E(W )

(M ) = sup
x∈S(λ̄)
y∈S(µ̄)
z∈S(θ̄)
t∈S(β̄)

{min{µλ̄(x ), µµ̄(y), µθ̄(z ), µθ̄(s)/M }},

where

M =

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]
− 1

x

[
q(yzT1) + xT2(y − s)− zT1(yq − x)

zyT1 + xT2(y − s)

]
,

µB(N) = sup
x∈S(λ̄)
y∈S(µ̄)
z∈S(θ̄)
t∈S(β̄)

{min{µλ̄(x), µµ̄(y), µθ̄(z), µβ̄(s)/N}},

where

N =
(yq − x )[zT1 + xT2 ]

q [zyT1 + xT2 (y − s)]
,

µV (O) = sup
x∈S(λ̄)
y∈S(µ̄)
z∈S(θ̄)
t∈S(β̄)

{min{µλ̄(x ), µµ̄(y), µθ̄(z ), µβ̄(s)/O}},

where

O =
xzT1 + (x− qs)T2

q[yzT1 + x(y − s)T2]
.

Using the fuzzy analysis technique explain, we can find the membership of E(L), E(W ) and the
system is in a working vacation period and the probability that the system is in a regular busy
period V and B as a function of the parameter α. Thus the α-cut approach can be used to develop
the membership function of E(L), E(W ), V and B.

6
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4. Performance Measure of Interest

The following performance measures are studied for this model in fuzzy environment.

The Membership Function of the Mean System Length

Based on Zadeh’s extension principle, µE(L)(K) is the supermum of minimum over
{µλ̄(x ), µµ̄(y), µθ̄(z ), µβ̄(s)},

K =
x

q

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]
, (1)

to satisfying µ
E(L)

(K ) = α, 0 < α ≤1.

The following four cases arise:

Case(i): µλ̄(x ) = α, µµ̄(y) ≥ α, µθ̄(z ) ≥ α, µβ̄(s) ≥ α,
Case(ii): µλ̄(x ) ≥ α, µµ̄(y) = α, µθ̄(z ) ≥ α, µβ̄(s) ≥ α,
Case(iii): µλ̄(x ) ≥ α, µµ̄(y) ≥ α, µθ̄(z ) = α, µβ̄(s) ≥ α,
Case(iv): µλ̄(x ) ≥ α, µµ̄(y) ≥ α, µθ̄(z ) ≥ α, µβ̄(s) = α.

For Case (i), the lower and upper bound of α-cuts of E(L) can be obtained through the correspond-
ing parametric non-linear programs,

[E(L)]L1
α = min

Ω

{
x

q

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]}
,

[E(L)]U1
α = max

Ω

{
x

q

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]}
.

Similarly, we can calculate the lower and upper bounds of the α-cuts of E (L) for Cases (ii), (iii)

and (iv). By considering the cases, simultaneously the lower and upper bounds of the α-cuts of
E(L) can be written as

[E(L)]Lα = min
Ω

{
x

q

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]}
,

[E(L)]Uα = max
Ω

{
x

q

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]}
,

such that

xLα ≤ x ≤ xUα , yLα ≤ y ≤ yUα , zLα ≤ z ≤ zUα , and sLα ≤ s ≤ sUα .

If both (E (L))L
α and (E (L))U

α are invertible with respected to α, the left and right shape function,

L(K) = [(E(L))Lα]−1 and R(K) = [(E(L))Uα ]−1,

7

Kannadasan and Sathiyamoorthi: The FMX/FM/1 Queue with Multiple Working Vacation

Published by Digital Commons @PVAMU, 2017
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can be derived from which the membership function µ
E(L)

(K ) can be considered as

µ
E(L)

(K) =


L(K), (E(L))Lα=0 ≤ K ≤ (E(L))Uα=0

1, (E(L))Lα=1 ≤ K ≤ (E(L))Uα=1.

R(D), (E(L))Lα=1 ≤ K ≤ (E(L))Uα=0

Membership Function of Mean System Sojourn Time

Similarly, we can calculate the lower and upper bounds of the α-cuts of E (W ) as µ
E(W )

(M) which
is the supremum over {µλ̄(x),µµ̄(y),µθ̄(z),µβ̄(t)},

M =

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]
− 1

x

[
q(yzT1) + xT2(y − s)− zT1(yq − x)

zyT1 + xT2(y − s)

]
, (2)

E(W )tLα = min
Ω

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]
− 1

x

[
q(yzT1) + xT2(y − s)− zT1(yq − x)

zyT1 + xT2(y − s)

]
,

(3)

E(W )tUα = max
Ω

[
2

(yq − x)
+

(y − s)[zT1 + (y − qs)T2]

z[yzT1 + xT2(y − s)]

]
− 1

x

[
q(yzT1) + xT2(y − s)− zT1(yq − x)

zyT1 + xT2(y − s)

]
,

(4)

such that

x L
α ≤ x ≤ x U

α , yL
α ≤ y ≤ yU

α , z L
α ≤ z ≤ z U

α , and sL
α ≤ s ≤ sU

α .

If both (E (W ))L
α and (E (W ))U

α are invertible with respected to α then the left and right shape
function,

L(M) =
[
[E(W )]Lα

]−1 and R(M) =
[
[E(W )]Lα

]−1
,

can be derived from the membership function as

µ
E(W )

(M) =


L(M), (E(W ))Lα=0 ≤M ≤ (E(W ))Uα=0

1, (E(W ))Lα=1 ≤M ≤ (E(W ))Uα=1

R(D), (E(W ))Lα=1 ≤M ≤ (E(W ))Uα=0

(5)
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Membership Function of Mean Busy Period for the Server

The lower and upper bounds of the α cuts of B(N) can be written as,

[B(N)]Lα = min
Ω

{
(yq − x)[zT1 + xT2]

q[zyT1 + xT2(y − s)]

}
, (6)

[B(N)]Uα = max
Ω

{
(yq − x)[zT1 + xT2]

q[zyT1 + xT2(y − s)]

}
, (7)

such that

x L
α ≤ x ≤ x U

α , yL
α ≤ y ≤ yU

α , z L
α ≤ z ≤ z U

α , and sL
α ≤ s ≤ sU

α .

If both (B(N ))L
α and (B(N ))U

α are invertible with respect to α then the right and left shape function,

L(N) =
[
[B(N)]Lα

]−1 and R(N) =
[
[B(N)]Uα

]−1

can be derived from the membership function as

µB(O) =


L(N), (B(N))Lα=0 ≤ N ≤ (B(N))Uα=0

1, (B(N))Lα=1 ≤ N ≤ (B(N))Uα=1

R(N), (B(N))Lα=1 ≤ N ≤ (B(N))Uα=0.

(8)

The membership function of working vacation period

The lower and upper bounds of the α cuts of V (O) can be written as[
V (O)

]L
α

= min
Ω

{
xzT1 + (x− qs)T2

q[yzT1 + x(y − s)T2]

}
, (9)

[
V (O)

]U
α

= max
Ω

{
xzT1 + (x− qs)T2

q[yzT1 + x(y − s)T2]

}
, (10)

such that

x L
α ≤ x ≤ x U

α , yL
α ≤ y ≤ yU

α , z L
α ≤ z ≤ z U

α , and sL
α ≤ s ≤ sU

α .

If both (V (O))L
α and (V (O))U

α are invertible with respect to α then the left and right shape function,

L(O) =
[
[V (O)]Lα

]−1 and R(O) =
[
[V (O)]Uα

]−1
,

can be derived from which the membership function µV (O) can be constructed as

µV (O) =


L(O), (V (O))Lα=0 ≤ O ≤ (V (O))Uα=0

1, (V (O))Lα=1 ≤ O ≤ (V (O))Uα=1

R(N), (V (O))Lα=1 ≤ O ≤ (V (O))Uα=0

(11)

9
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5. Numerical Study

The Mean System Length

Suppose the arrival rate λ, the service rate µ, the vacation rate θ, and the busy period β are assumed
to be trapezoidal fuzzy numbers described by:

λ = [1, 2, 3, 4], µ = [11, 12, 13, 14], θ = [31, 32, 33, 34], and β = [51, 52, 53, 54]

per hour, respectively. Then

λ(α) = min
x∈s(λ̄)

{x ∈ s(λ̄),


x− 1, 1 ≤ x ≤ 2

1 , 2 ≤ x ≤ 3

4− x, 3 ≤ x ≤ 4

≥ α},

max
x∈s(λ̄)

{x ∈ s(λ̄),


x− 1, 1 ≤ x ≤ 2

1 , 2 ≤ x ≤ 3

4− x, 3 ≤ x ≤ 4

≥ α}.

That is,

λ(α) = [1 + α, 4− α], µ(α) = [11 + α, 14− α]

θ(α) = [31 + α, 34− α], and β(α) = [51 + α, 54− α].

It is clear that, when x = x U
α , y = yU

α , z = z U
α and s = sUα , L attains its maximum value and, when

x = x L
α , y = yL

α , z = z L
α and s = sL

α , L attains its minimum value.

From the generated, for the given input value of λ, µ, θ and β with P = 0 .5 , we infer that,

i) For fixed values of x , y and z ,K decreases as s increase.
ii) For fixed values of x , y and s,K decreases as z increase.
iii) For fixed values of x , z and s,K decreases as y increase.
iv) For fixed values of y , z and s,K decreases as x increase.

The smallest value occurs when x takes its lower bound. That is, x = 1 +α and y, z and s take their
upper bounds given by y = 14 − α, and z = 34 − α, and s = 54 − α, respectively. The maximum
value of L occurs when x = 4− α, y = 11 + α, z = 31 + α, and s = 51 + α.

If both (L)L
α and (L)αU are invertible with respect to ′α′, then the left shape function L(K ) = [(L)]−1

and right shape function R(K ) = [(L)L
α]−1 can be obtained and from which the membership func-

tion µL(K ) can be constructed as:

µL(K) =


L(K), K1 ≤ K ≤ K2

1, K2 ≤ K ≤ K3

R(K), K3 ≤ K ≤ K4.

(12)
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The values of K1, K2, K3 and K4 as obtained from (12) are

µL(K) =


L(K), 0.4591 ≤ K ≤ 0.6893

1, 0.6893 ≤ K ≤ 24.9267,

R(K), 24.9267 ≤ K ≤ 36.2060

The Mean System Sojourn Time

The smallest value of W occurs when x take its lower bound. That is, x = 1 + α and y, z, and s
take their upper bounds given by y = 14 − α, z = 34 − α, and s = 54 − α, respectively, and the
maximum value of W occurs when x = 4−α, y = 11+α, z = 31+α, and s = 51+α. If both (W )L

α

and (W )Uα are invertible with respect to α, then the left shape function L(M ) = [(W )L
α]−1 and right

shape function R(M ) = [(W )U
α ]−1 can be obtained, from which the membership function µ

(W )
(M )

can be written as

µL(M) =


L(M), M1 ≤M ≤M2

1, M2 ≤M ≤M3,

R(M), M3 ≤M ≤M4

(13)

The values of M1, M2, M3 and M4 as obtained from (13) are

µL(M) =


L(M), 0.0883 ≤M ≤ 0.7999

1, 0.7999 ≤M ≤ 1.4024.

R(M), 1.4024 ≤M ≤ 1.7024.

The mean busy period of the server

The smallest values of B occurs when x takes its lower bound. That is, x = 1 + α, and y , z , and s

take their upper bounds given by y = 14−α, z = 34−α and s = 54−α, respectively. The maximum
value of B occurs when x = 4− α, y = 11 + α, z = 31 + α, and s = 51 + α. If both (B)L

α and (B)U
α

are invertible with respect to α, then the left shape function L(N ) = [(B)L
α]−1 and the right shape

function R(N ) = [(B)U
α ]−1 can be obtained, from which the membership function µ

(B)
(N ) can be

written as

µL(N) =


L(N), N1 ≤ N ≤ N2

1, N2 ≤ N ≤ N3

R(N), N3 ≤ N ≤ N4.

(14)

The values of N1, N2, N3 and N4, as obtained from (14), are

µL(N) =


L(N), 0.4370 ≤ N ≤ 0.6690

1, 0.6690 ≤ N ≤ 0.7655

R(N), 0.7655 ≤ N ≤ 0.8519.

The mean working vacation period
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Figure 1. Arrival rate, service rate versus average of queue length is steady state.
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Figure 2. Arrival rate, service rate versus average of the sojourn time in steady state.

The smallest value of V occurs when x take its lower bound. That is, x = 1+α, and y, z, and s take
their upper bounds given by y = 14 − α, z = 34 − α and s = 54 − α, respectively. The maximum
value of V occurs when x = 4− α, y = 11 + α, z = 31 + α and s = 51 + α. If both (V )L

α and (V )U
α

are invertible with respect to α, then the left shape function L(O) = [(V )L
α]−1 and the right shape

function R(O) = [(V )U
α ]−1 can be obtained, from which the membership function µ

(V )
(O) can be

written as

µL(O) =


L(O), O1 ≤ O ≤ O2

1, O2 ≤ O ≤ O3

R(O), O3 ≤ O ≤ O4,

(15)

The values of O1, O2, O3 and O4, as obtained from (15), are

µL(O) =


L(O), 0.2059 ≤ O ≤ 0.2755

1, 0.2755 ≤ O ≤ 0.3469

R(O), 0.3469 ≤ O ≤ 0.4429.

Further, by fixing the vacation rate by a crisp value θ = 31.40 and taking the arrival rate λ =
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Figure 3. Arrival rate, service rate versus server is in close-up period.
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Figure 4. Arrival rate, service rate versus server is in start-up period.

[1, 2, 3, 4] and the service rate µ = [21, 22, 23, 24], both trapezoidal fuzzy numbers, the values of the
mean system length are generated and are given from the graph; it is observed that, as λ increases,
the mean system length increases for the fixed value of the service rate, whereas for fixed value of
arrival rate, the mean system length decreases as service rate increases. Similar conclusions can be
obtained for the case θ = 33.60.

Again, for fixed values of θ = 31.40 and taking λ = [1, 2, 3, 4] and µ = [11, 12, 13, 14], the graphs of
mean sojourn time are drawn in Figure 2. This figure shows that as the arrival rate increases then
the sojourn time also increases, while the sojourn time decreases as the service rate increases in
both the case.

The graph of the busy period for θ = 31.40 are presented in Figure 3. As the arrival rate increases,
the busy period also increases for fixed values of the service rate, whereas for fixed values of arrival
rate, the busy period decreases as the service rate increases on the expected time.

It is also observed from the data generated that the membership value of the mean system length
is 1, when the ranges of the arrival rate, the service rate, and the vacation rate lie in the intervals
(2, 3.4), (13, 13.6), and (21.8, 22.4), respectively.
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Figure 5. Arrival rate, service rate versus server is in
working vacation period.
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Figure 6. Arrival rate, service rate versus server is in
regular busy period.

6. Conclusion

In this research paper, we have studied the FM X /FM /1 queue with multiple working vacations.
We have obtained the performance measures such as mean system length, mean system waiting
time, mean busy period of the server, and mean working vacation period. We have obtained nu-
merical results to all the performance measures for this fuzzy queue. For the application of this
fuzzy queue, there are situations, particularly in transportation systems (bus service, trains, and
express elevators), where the service provided is a group that a group of customers can be served
simultaneously with batch servicing in this process.
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