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Abstract

We consider a M/M/c queuing system with synchronous working vacation and two different poli-
cies of working vacation i.e. a multiple working vacation policy and a single working policy. Dur-
ing a working vacation the server does not completely halts the service rather than it will render
service at a lower rate. In synchronous vacation policy all the servers leave for a vacation simul-
taneously, when the server finds the system empty after finishing serving a customer. In multiple
working vacation (MWV) policy the servers continue to take vacation till they find the system non-
empty at a vacation completion instant. Single working vacation (SWV) policy is different from
the multiple working vacation policy in a way that, when the working vacation ends and servers
find the system empty, they remains idle until the first arrival occurs rather than taking another
vacation. We have derived explicit expressions for some performance measures in terms of two
indexes by using PGF method. We derived some results regarding the limiting behavior of some
performance measures based on these two indexes. A comparison between the models is carried
out and numerical results are provided to illustrate the effects of various parameters on system
performance measures.
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1. Introduction

Over the last few decades, single server queuing systems have been studied extensively by vari-
ous researchers. These queuing systems have a profound applications in the real life congestion
systems including telecommunication, service and distribution centers, manufacturing and pro-
duction systems along with other queuing systems having industrial importance. The analysis of
multi-server vacation models is far more complex when compared to single server vacation models
and therefore a limited information in the literature is available for multi-server vacation models.
Levy and Yechiali (1976) did the early work on the multi-server vacation model. In this study,
they analyzed the M/M/c queue, where individual vacations (called asynchronous vacations) may
be taken by the servers and the expected number of customers were obtained along with the sta-
tionary distribution of busy server numbers in the system. Haghighi (1977, 1981) investigated the
multiple-server queues with feedback. Later, Haghighi et al. (1986) studied multi-server Marko-
vian queuing system with balking and reneging. Further, the analysis of M/M/c queue with both
synchronous and asynchronous vacation policies was done by Chao and Zhao (1998) and deduced
the stationary distribution by presenting some algorithms. The study of both, asynchronous and
synchronous multi-server queues, with server vacations of a finite number of servers was per-
formed by Zhang and Tian (2003a, 2003b). M/M/c/N queuing system with balking, reneging and
synchronous vacations of some partial servers together was presented by Yue et al. (2006). A cost
model for the determine of the optimal number of servers on vacations was formulated in this study.
A multi-server queueing model with Markovian arrival and synchronous phase type vacations was
formulated by Chakravarthy (2007) with the help of probabilistic rule and controlled thresholds.
The exact transient solution for the state probabilities of a multi-server queueing system under N-
policy have been also obtained by Parthasarathy and Sudhesh (2008). Haghighi and Mishev (2006)
analyzed a parallel finite buffer multi-server priority queuing model with balking and reneging and
obtained the distribution the mean queue length by providing an algorithm.

In the above mentioned studies, the basis of the research is the supposition that the server com-
pletely ceases service during a vacation. However, there are many situations where the server does
not remain completely inactive during a vacation. But provides service to the queue at a lower rate.
This idea was first utilized by Servi and Finn (2003). Servi and Finn (2003) introduced a class of
semi vacation polices, where the server does not completely stops working during a vacation, but it
will render service at a lower rate to the queuing system. This type of vacation is called a working
vacation (WV). Servi and Finn (2003) analyzed an M/M/1 queue with multiple working vacations
policy and derived the probability generating function for the number of customers in the system
and LST for waiting time distributions and utilized results to analysis the system performance of
gateway router in fiber communication networks. Liu et al. (2007) studied the same Servi and Finn
(2003) model and provide the explicit expressions of distributions for the number of customers
waiting in the queue and expected stationary queue length. Further, the authors derived expres-
sions for expected regular busy period and expected busy cycle and their stochastic decomposition
by utilizing the matrix geometric method. Other important studies were given by Kim et al. (2003),
Wu and Takagi (2006) who generalized the work of Servi and Finn (2003) and applied the results
to an M/G/1 queue.
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In another significant study Li and Tian (2007) studied the discrete time working vacation queue
GI/Geom/1 with service interruption. Baba (2005) analyzed a GI/M/1 queue with general ar-
rival process and multiple working vacations. Banik (2010) investigated the queuing systems
GI/M/1/N and GI/M/1/∞ with single working vacation and exponentially distributed vaca-
tion times. Jain and Upadhyaya (2011) analyzed a finite-buffer multi-server unreliable Markovian
queue with synchronous working vacation policy. Manoharan and Majid (2017) recently studied
the impatient customers in a multi-server queue with working vacation and derived explicit expres-
sions of the various performance measures and their stochastic decomposition. Xu et al. (2013)
derived the steady state distribution of the queue length of an M/M/c queuing system by using a
quasi-birth-and-death (QBD) process and a matrix-geometric solution method. Furthermore, they
discussed a fluid flow model driven by this multi-server working vacation queue. The analysis of
the PH/M/c queue with working vacation and impatient customers was done by Goswami and
Selvaraju (2016). Vijayashree (2015) presented the transient solution of the M/M/c Queue in the
Laplace domain by utilizing the matrix geometric approach.

The working vacation queue reduces to a classical vacation model, if the service rate during the
working vacation degenerates into zero. Therefore, the generalization of classical vacation model
is working vacation model and the study of such kind of models is far more complex than the
previous work. In the classical vacation queuing models, the server does not continue providing
service to the queue during a vacation and stops original work completely and such a policy may
lead to the dissatisfaction of the customers and ultimately to the loss of costumer base. However
in case of working vacation policy, the customers can get service as a sever still continues to work
during a vacation and may accomplish other assistant work simultaneously. Therefore, the working
vacation policy is more reliable than the classical vacation policy in some cases. Hence a working
vacation period is an operation period of lower rate of the queuing system. A typical example of
such a policy is found in case of maintenance problem, the ideal machine can be utilized for the
inspection and preventive maintenance.

The paper is organized as follows. In Section 2, we provide the description of the M/M/c model
with MWV. In Section 3, we develop the model as a quasi-birth-death process and carry out the
steady state analysis of the system by deriving the explicit expressions of the various performance
measures in terms of two indexes and some numerical illustrations are presented. M/M/c model
with SWV model is analyzed in Section 4. In Section 5, we have provided the comparison between
the MWV and SWV models by presented some numerical results.

2. Model Description

We consider an M/M/c queuing system with synchronous working vacation policy, where the cus-
tomers arrive according to Poisson process with rate λ. The service rate during the regular busy
period is exponentially distributed with mean 1

µb
, where ρ = λ

cµb
< 1 is the stability condition.

All the servers take the vacation simultaneously, when they finds the system empty and vacation
duration is also exponentially distributed with parameter θ. An arriving customer is served at an
exponential rate µv(µv < µb) during a working vacation period. In MWV policy, the servers con-
tinues to take vacation till they find the system non-empty at a vacation completion instant. When

3
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the vacation period ends and the server finds at least one customer waiting in the queue, it changes
its service rate from µv to µb and a non- vacation period starts. The server shifts its service rate
from µv to µb if the vacation period ends in between the ongoing service and continues to service
until completion at the higher rate.

Let {L(t), t ≥ 0} be the number of customers in the system at time t and J (t) be the state of system
at time t , where J (t) is defined as follows:

J(t) =

{
1, when the servers are in regular busy period at time t,
0, when the servers are in working vacation period at time t.

Then, {(L(t), J (t)), t ≥ 0} defines a two dimensional continuous time discrete state Markov chain
with state space

E =
{
{(0, 0)}

⋃
{(i, j)} , i = 1, 2, ..., j = 0, 1

}
.

3. The Stationary Analysis

Let Pi,j=P {L(t) = i , J (t) = j}, i = 0, 1, 2, ..., j = 0, 1 denote the steady state probabilities. The set
of balance equations governing the system are given as follows:

λP 0,0 = µvP 1,0 + µbP 1,1, (1)

(λ+ θ + nµv)Pn,0 = λPn−1,0 + (n+ 1)µvPn+1,0, if n ≥ 1, (2)

(λ+ µb)P11 = θp1,0 + 2µbP 2,1, (3)

(λ+ nµb)Pn,1 = λPn−1,1 + (n+ 1)µbPn+1,1 + θPn,0, if 2 ≤ n ≤ c− 1, (4)

(λ+ cµb)Pn,1 = λPn−1,1 + cµbPn+1,1 + θPn,0, if n ≥ c. (5)

Define the probability generating functions, for 0 < z ≤ 1,

P0(z ) =
∑∞

n=0
znPn,0,

P1(z ) =
∑∞

n=1
znPn,1,

with P0(1) + P1(1) = 1 and P ′0(z ) =
∑∞

n=1nz
n−1Pn,0.

Multiplying equation (2) by zn and summing over all possible values of n and using equation (1),
we have,

µv(1− z)P ′0(z) = (λ(1− z) + θ)P 0(z )− (θP 0,0 + µbP 1,1). (6)
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Similarly, multiplying equation (4) and equation (5) by zn and summing over all possible values
of n and using equation (3), we get

(1− z)(λz − cµb)P 1(z) = θzp0(z)− (θP 0,0 + µbP 1,1)z + µb(1− z)
∑c

n=1
(n− c)Pn,1z

n. (7)

3.1. Solution of differential equation

Set

H = θP 0,0 + µbP 1,1. (8)

For z 6= 1,

P ′0(z)−
(
λ

µv
+

θ

µv(1− z)

)
P0(z) = − H

µv(1− z)
. (9)

This is an ordinary linear differential equation with constant coefficients. To solve it, an integrating
factor can be found as

I.F = e
−

∫ [
λ

µv
+ θ

µv(1−z)

]
dz

= e−
λz

µv (1− z)
θ

µv .

Hence, the general solution to the differential equation (9) is given by

d

dz

[
e
λz

µv (1− z)
θ

µv P0(z)
]

=

[
H

µv(1− z)

]
e−

λx

µv (1− z)
θ

µv
−1. (10)

Integrating from 0 to z, we get

P0(z) = e
λz

µv (1− z)−
θ

µv

P0(0)− H

µv

z∫
0

e−
λx

µv (1− x)
θ

µv
−1dx

 . (11)

Then,

P0(1) = e
λ

µv

P0(0)− H

µv

1∫
0

e−
λx

µv (1− x)
θ

µv
−1dx

 lim
z→1

(1− z )
−θ
µv . (12)

Since

0 ≤ P0(1) =

∞∑
n=0

Pn,0 ≤ 1 and lim
z→1

(1− z)−
θ

ξ =∞,

we must have the term

P0,0 = P0(0) =
H

µv
K, (13)
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where

K =

1∫
0

e
−λx
µv (1− x)

θ

µv
−1dx. (14)

Define (Altman and Yechiali (2006))

Z(λ, θ) = −λ−θe−λ(−Γ(θ,−λ) + Γ(θ)), (15)

where Γ(z) is the Γ function that has representation

Γ(z) =

∞∫
0

e−ttz−1dt, (16)

and

Γ(a, z) =

∞∫
z

e−tta−1dt. (17)

Some computations give

K = Z

(
λ

µv
,
θ

µv

)
. (18)

From equations (8) and (13), we have

P0,0 =

(
θP0,0 + µbP1,1

µv

)
K =

Kµb
µv − θK

P1,1. (19)

Substituting the value of H from equation (13) into equation (11), we obtain

P0(z) =
e
λz

µv

(1− z)
θ

µv

1− 1

K

z∫
0

e
−λx
µv (1− x)

θ

µv
−1dx

P0,0. (20)

Using L’Hospital’s rule, we get

P0(1) =
µv
θK

P0,0. (21)

By substituting the value of P0,0 from equation (19), we have the relation

θP0(1) = θP0,0 + µbP1,1. (22)

Equation (7) can be expressed as

P1(z) =
[θP0(z)−H]z

(λz − cµb)(1− z)
− µb
λz − cµb

R(z), (23)

where

R(z) =

c∑
n=1

(c− n)Pn,1z
n. (24)

Equation (20) gives P0(z ) in terms of P0,0, the proportion of time the system is empty and the server
is on working vacation. Also, equation (23) shows that P1(z ) is a function of P0(z ), H and R(z ).
Hence, once P0,0 and Pj,1(j = 1, 2, ..., c) are calculated, P0(z ) and P1(z ) are completely determined.
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3.2. Performance Measures

Applying L’Hospital’s rule in equation (23), we have

P1(1) =
[θP0(1)−H] + θP ′0(1)]

cµb − λ
+

µb
cµb − λ

R(1), (25)

where

R(1) =

c∑
n=1

(c− n)Pn,1. (26)

Applying equation (22), we have

P1(1) =
θ

cµb − λ
E(L0) +

µb
cµb − λ

R(1). (27)

Applying L’Hospital’s rule to equation (6), we have

E(L0) = lim
z→1

P ′0(z) =
−λP0(1) + θP ′0(1)

µv

=
λP0(1)− θE(L0)

µv
, (28)

implying that

P0(1) =
(θ + µv)

λ
E(L0). (29)

Using equations (27) and (29) and noting that P0(1)+P1(1)=1, we get the mean number of cus-
tomers when the system is in working vacation as

E(L0) = P ′0(1) =
λ(1− ρ)

θ + µv(1− ρ)
−

λ
c

θ + µv(1− ρ)
R(1). (30)

Substituting (30) into (29), we get the probability that the server is on working vacation

P (J = 0) = P0(1) =
(1− ρ)(θ + µv)

θ + µv(1− ρ)
−

θ+µv
c

θ + µv(1− ρ)
R(1), (31)

and the probability that the server is in busy period

P (J = 1) = P1(1) = 1− P0(1) =
θρ

θ + µv(1− ρ)
+

θ+µv
c

θ + µv(1− ρ)
R(1). (32)

7
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Now, we derive E (L1). Differentiating equation (7) and using L’Hospital’s rule, we get

E(L1) = lim
z→1

P ′1(z)

= lim
z→1

{
−zλ(−H + θP0(z))

(1− z)(λz − cµb)2
+
−H + θP0(z)) + zθP ′0(z)

(1− z)(λz − cµb)

+
z(−H + θP0(z))

(1− z)2(λz − cµb)
+ µb

[(cµb − λz)R′(z) + λR(z)]

(cµb − λz)2

}

=
θ(cµb − λ)E(L0(L0 − 1)) + 2cµbθE(L0)

2((cµb − λ))2
+

R′(1)

c(1− ρ)
+

ρR(1)

c(1− ρ)2
, (33)

where

R′(1) =
dR(z)

dz
at z = 1

=

c∑
j=1

j(c− j)Pj,1. (34)

In order to get the value of P ′′0(1), we differentiate equation (6) twice on both sides such that

µv(1− z)P ′′′0 (z) + 2λP ′0(z) = [λ(1− z) + θ + 2µv]P
′′
0 (z), (35)

where

P ′′′0 (z) =
d3P0(z)

dz3
.

Letting z=1 in (35), we obtain

P ′′0 (1) =
2λ

θ + 2µv
P ′0(1), (36)

or, equivalently,

E[L0(L0 − 1)] =
2λ

θ + 2µv
E[L0]. (37)

Substituting equation (37) into equation (33), we obtain the mean number of customers when the
system is in regular busy period

E[L1] =
ρθ

1− ρ

[
1

θ + 2µv
+

1

λ(1− ρ)

]
E[L0] +

1

c(1− ρ)
R′(1) +

ρ

c(1− ρ)2
R(1). (38)

Hence, the mean number of customers in the system is

E[L] = E[L0] + E[L1]

=

{
1 +

ρθ

1− ρ

[
1

θ + 2µv
+

1

λ(1− ρ)

]}[
λ(1− ρ)− λ

cR(1)

θ + µv(1− ρ)

]
+

1

c(1− ρ)
R′(1) +

ρ

c(1− ρ)2
R(1). (39)

8
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Using equation (31) in equation (21), we finally get

P0,0 =
θK

µv
P0(1) =

θK

µv

[
(1− ρ)(θ + µv)− (θ+µv)

c R(1)

θ + µv(1− ρ)

]
. (40)

If the system is in state (n, 1), the service rates of the servers are nµb for n ≤ c and cµb for n > c

respectively. Hence, the mean number of customers served per unit of time is given by

Ns =

c∑
n=1

nµbPn,1 +

∞∑
n=c+1

cµbPn,1 = µb[cP1(1)−R(1)], (41)

implying the proportion of customers served per unit of time is given by

Ps =
Ns

λ
=

1

cρ
[cP.1 −R(1)], (42)

where P1(1) is given by (32).

In this subsection, we have derived all the performance measures of the system in terms of R(1)

or/and R′(1). In the next subsection, we calculate these two indexes.

3.3. Limiting Behavior

We consider the limiting behavior for some performance measures when ρ→1. Since P0(1) ≥ 0,
hence from equation (31), we have

0 ≤ Q(1) ≤ c(1− ρ),

which gives that

lim
ρ→1

R(1) = 0. (43)

Since R(1) =
c∑
j=1

(c − j )P j,1, therefore,

lim
ρ→1

Pj,1 = 0 for j = 1, 2, ..., c− 1, (44)

which implies that

lim
ρ→1

R′(1) = lim
ρ→1

c∑
j=1

j(c− j)Pj,1 = 0. (45)

Figure 1 shows the effect of ρ on R(1 ) and R′(1 ), where the parameter values are θ=0.7, µb=3 ,
µv=1.5 and c = 5. It is observed from Figure 1 that both R(1) and R′(1) tends to zero when ρ→1.
This observation agrees with equations (43) and (45). Using equation (43), we have from equations
(31) and (32) that

lim
ρ→1

P0(1) = 0, (46)

9
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lim
ρ→1

P1(1) = 1. (47)

Further, we get from (42) that

lim
ρ→1

Ps = 1. (48)

Figure 1. Effects of ρ on R(1 ) and R′(1 ).

3.4. Calculations of R(1) and R′(1)

In order to calculate the values R(1 ) and R′(1 ), we need to compute Pj,1, for j = 1, 2, ..., c − 1.
From equations (1), (2), (3) and (4), the unknown probabilities Pj,1, for j = 1, 2, ..., c − 1 and Pj,0,

for j = 0, 1, 2, ..., c − 1 satisfy the following 2c − 3 linear equations:

λP0,0 = µvP1,0 + µbP1,1, (49)

(λ+ θ + nµv)Pn,0 = λPn−1,0 + (n+ 1)µvPn+1,0, if 1 ≤ n ≤ c− 2, (50)

(λ+ µb)P1,1 = θp1,0 + 2µbP2,1, (51)

(λ+ nµb)Pn,1 = λPn−1,1 + (n+ 1)µbPn+1,1 + θPn,0, if 2 ≤ n ≤ c− 2. (52)

Hence, we need two another independent equations to compute all 2c − 1 unknowns.

From equation (19), we have

P0,0 =
Kµb

µv − θK
P1,1, (53)

implies that

P1,1 = δP0,0, (54)

where

δ =
µv − θK
Kµb

. (55)

10
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Substituting equation (22) into equation (31), we get

P0,0 +
µb
θ
P1,1 =

(cµb − λ)(θ + µv)

cµbθ + µv(cµb − λ)
− µb(θ + µv)

cµbθ + µv(cµb − λ)
R(1). (56)

Hence, we have two more independent equations (54) and (56). Therefore, we obtain 2c − 1 equa-
tions to solve 2c − 1 unknowns. We solve these equations analytically as follows.

Substituting equation (54) into equations (49) and (51), we obtain

(λ− µbδ)P0,0 = µvP1,0, (57)

(λ+ µb)δP0,0 = θp1,0 + 2µbP2,1. (58)

Hence, Pj,0, j = 1, 2, ..., c − 1 and Pj,1,ðİŚŮ j = 2, 3, ..., c − 1 satisfy equations (50), (52), (57),
and (58). These equations can be written in matrix form. For this, we define two column vectors as
follows,

P0 = (P1,0, P2,0, ..., P(c−1),0)
T ,

P1 = (P2,1, P3,1, ..., P(c−1),1)
T . (59)

Then, we have

AP0 = DP0,0,

BP0 + CP1 = EP0,0, (60)

where A, B and C are matrices defined as follows,

A =


µv 0 0 ... 0 0 0

−a1 2µv 0 ... 0 0 0

λ −a2 3µv ... 0 0 0
...

...
... ...

...
...

...
0 0 0 ... λ −ac−2 (c− 1)µv

 ,

B =


θ 0 ... 0 0

0 θ ... 0 0
...

... ...
...

...
0 0 ... θ 0

 ,

C =


2µb 0 0 ... 0 0 0

−b2 3µb 0... 0 0 0

λ −b3 4µb ... 0 0 0
...

...
... ... 0 0 0

0 0 0 ... λ −bc−2 (c− 1)µb

 , (61)
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where

an = λ+ nµv + θ,

bn = λ+ nµb, (62)

for n = 1, 2, ..., c − 2 and D and E are two column vectors defined as follows,

D = (λ− µbδ,−λ, 0, ..., 0)T ,

E = ((λ+ µb)δ,−λδ, 0, ..., 0)T . (63)

Clearly, matrices A and C are invertible matrices. Thus, from equation (60), we have

P0 = A−1DP0,0,

P1 = C−1(E −BA−1D)P0,0. (64)

Let e0 be a vector with c − 1 elements and e1 be a column vector with c − 2 elements all to be one
and zero respectively. Using equations (54) and (64), R(1) can be written by

R(1) = (c− 1)δP0,0 + FC−1(E −BA−1D)P0,0, (65)

where

F = (c− 2, c− 3, ..., 1), (66)

is a vector. Submitting equations (54) and (65) into (56), we can obtain P0,0. The matrices A−1

and C−1 can be calculated iteratively. Let xi,j and yi,j denote the elements of matrix A−1 and
C−1ðİŚŮrespectively. Then, we have

xi,j = 0, i < j, j = 2, 3, ..., c− 1,

xj,j =
1

jµv
, j = 1, 2, 3, ..., c− 1,

xi,j =
1

iµv
(ai−1x(i−1),j − λx(i−2),j), i > j, j = 1, 2, 3, ..., c− 1. (67)

Since the matrix C has the same structure as the matrix A, therefore we have

yi,j = 0, i < j, j = 2, 3, ..., c− 1,

yj,j =
1

(j + 1)µb
, j = 1, 2, 3, ..., c− 1,

yi,j =
1

(i+ 1)µb
(biy(i−1),j − λy(i−2),j), i > j, j = 1, 2, 3, ..., c− 1. (68)

Using equations (67) and (68), we obtain from equation (64) that

P1,0 = (λ− µbδ)x1,1P0,0, (69)
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Pj,0 = [(λ− µbδ)xj,1 − λxj,2]P0,0, j = 2, 3, ..., c− 1, (70)

Pj+1,1 = (b1yj,1 − λyj,2)δP0,0 − θ
j∑

k=1

yj,kPk,0, j = 1, 2, ..., c− 2. (71)

Define

φ0 = c− 1 +

c−2∑
j=1

(c− j − 1)(b1yj,1 − λyj,2),

φk =

c−2∑
j=k

(c− j − 1)yj,k, k = 1, 2, ..., c− 2. (72)

Using (71), we obtain

R(1) =

c−1∑
j=1

(c− j)Pj,1 = U(φ)P0,0, (73)

where

U(φ) = δφ0 − θ
c−2∑
k=1

φk[(λ− µbδ)xk,1 − λxk,2]. (74)

Substituting equations (54) and (73) into equation (56), we obtain

P0,0 =
Kθ(θ + µv)(cµb − λ)

µv[cµbθ + µv(cµb − λ)] +Kθµb(θ + µv)U(φ)
. (75)

Define

Ψ0 = c− 1 +

c−2∑
j=1

(j + 1)(c− j − 1)(b1yj,1 − λyj,2),

Ψk =

c−2∑
j=k

(j + 1)(c− j − 1)yj,k, k = 1, 2, ..., c− 2. (76)

Using (71), we get

R′(1) =

c−1∑
j=1

j(c− j)Pj,1 = U(Ψ)P0,0, (77)

where

U(Ψ) = δΨ0 − θ
c−2∑
k=1

Ψk[(λ− µbδ)xk,1 − λxk,2]. (78)
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(a) (b) (c)

Figure 2. Mean queue length E [L] versus service rate µv in working vacation period when ρ = 0.6 and µb = 5.

(a) (b) (c)

Figure 3. Mean queue length E [L] versus service rate µv in working vacation period when θ = 0.4 and µb = 5.

3.5. Numerical Results

In this section, we present some numerical examples to demonstrate the impact of system param-
eters on system performance indices. Figures 2 and 3 illustrates the effect of vacation service rate
µv on the mean number of customers in the system E (L) at different values of θ and ρ respectively.
Figure 4 explains the impact of vacation service rate µv on the state probability of the servers at
different values of θ. The main findings in this study are itemized as

• From Figure 2, we observe that the mean queue length E (L) decreases evidently with the increase
in vacation service rate µv. When µv > 1.5, E (L) increases with an increasing value of vacation
rate θ, but when µv < 1.5, E (L) decreases with an increasing value of θ as shown in Figure 2(a).
Therefore, a productive performance can be achieved by selecting the proper value of θ, which is
coherent with the fact that increasing the vacation rates may increase the queue length.

• From Figure 3, we observe that the mean queue length E(L) decreases with the increase in vaca-
tion service rate µv and it increases with an increasing value of ρ.

• Figure 4 illustrates the state probability of the servers and the probability that the servers remains
in normal busy period, i.e P(J = 1), evidently decreases with an increase in vacation service
rate µv. The probability that the servers remain in vacation period P(J = 0) increases with an
increasing value of µv, therefore, the utilization of the system idle time becomes bigger. Note that
the vacation rate θ has also some impact on the state probability of servers. For example, when
θ=0.5, P(J = 1) are evidently smaller than those when θ=1.5. It also shows that it is reasonable
to establish the vacation period or lower speed operation period.
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(a) (b) (c)

Figure 4. The state probability of the server versus service rate µv in working vacation period when ρ = 0.6 and
µb = 2.

4. Single working vacation (SWV) model

The M/M/c queue with synchronous single working vacation policy is different from the multiple
working vacation policy in a way that when the servers return from their working vacation and
finds the system empty, they remains idle until the first arrival occurs rather than taking another
vacation. As in MWV case, the markov chain {(L(t), J (t)), t ≥ 0} can be defined for SWV model
with state space

E = {(i, j), i = 0, 1, ..., j = 0, 1} .

Here,

J(t) =

{
1, when the servers are in regular busy period or idle at time t ,
0, when the servers are in working vacation period at time t.

The set of balance equations governing the state probabilities are as follows,

(λ+ cθ)P0,0 = µvP1,0 + µbP1,1, (79)

(λ+ θ + nµv)Pn,0 = λPn−1,0 + (n+ 1)µvPn+1,0, if n ≥ 1, (80)

λP0,1 = θp0,0, (81)

(λ+ nµb)Pn,1 = λPn−1,1 + (n+ 1)µbPn+1,1 + θPn,0, if 1 ≤ n ≤ c− 1, (82)

(λ+ cµb)Pn,1 = λPn−1,1 + cµbPn+1,1 + θPn,0, if n ≥ c. (83)

Define the probability generating functions, for 0 < z ≤ 1,

G0(z) =

∞∑
n=0

znPn,0,

G1(z) =

∞∑
n=0

znPn,1,

with G0(1) + G1(1) = 1 and G ′0(z) =
∞∑
n=1

nzn−1Pn,0.
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Multiplying equation (80) by zn and summing over all possible values of n and using equation
(79), we get

µv(1− z)G′0(z) = [λ(1− z) + θ]G0(z)− (θP0,0 + µbP1,1) + cθP0,0. (84)

Similarly, multiplying equations (82) and (83) by zn and summing over all possible values of n
and using equation (81), we obtain

(1− z)(λz− cµb)G1(z) = θzG0(z)− (θP0,0 + µbP1,1)z+ z2θP0,0 + µb(1− z)
c∑

n=1

(n− c)znPn,1. (85)

For z 6= 1,

G′0(z)−
[
λ

µv
+

θ

µv(1− z)

]
G0(z) =

−H + cθP0,0

µv(1− z)
. (86)

As in the MWV case, we solve this differential equation as

G0(z) =
e
λz

µv

(1− z)
θ

µv

1− 1

K

z∫
0

e
−λx
µv (1− x)

θ

µv
−1dx

P0,0. (87)

Hence, we get a similar expression for G0(z) as in MWV case. Here, we have

G0(0) = P0,0 =
(H − cθP0,0)

µv
K =

Kµb
µv − θ(1− c)K

P1,1. (88)

G0(1) =
µv
θK

P0,0. (89)

From equations (88) and (89), we have

θG0(1) = H − cθP0,0. (90)

Equation (85) can be written as

G1(z) =
[θG0(z)−H]z + z2θP0,0

(λz − cµb)(1− z)
− µb
λz − cµb

R(z). (91)

Equation (87) gives G0(z ) in terms of P0,0. Also, equation (91) shows that G1(z ) is a function of
G0(z ), H and R(z ). Hence, once P0,0 and Pj,1(j = 1, 2, ..., c) are calculated, G0(z ) and G1(z ) are
completely determined.
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4.1. Performance Measures

Applying L’Hospital’s rule to equation (91) and using equation (90), we have

G1(1) =
θE(L0) + θ(2− c)P0,0

cµb − λ
+

µb
cµb − λ

R(1). (92)

Applying L’Hospital’s rule to equation (86), we have

E(L0) = lim
z→1

G′0(z) =
λG0(1)− θE(L0)

µv
,

implies that

G0(1) =
(θ + µv)

λ
E(L0). (93)

Therefore, we get a similar expression for G0(1) as in MWV case. Using (92)and (93) and noting
that G0(1)+G1(1)=1, we get the mean number of customers when the system is in working vacation
as

E(L0) =
λ(1− ρ)

θ + µv(1− ρ)
− ρθ(2− c)P0,0

θ + µv(1− ρ)
−

λ
c

θ + µv(1− ρ)
R(1). (94)

Now substituting equation (94) into equation (93), we have the probability that the server is in
working vacation as

G0(1) =
(1− ρ)(θ + µv)

θ + µv(1− ρ)
− (θ + µv))ρθ(2− c)P0,0

λ[θ + µv(1− ρ)]
−

θ+µv
c

θ + µv(1− ρ)
R(1), (95)

and the probability that the server is in busy period as

G1(1) = 1−G0(1) =
θρ

θ + µv(1− ρ)
+

(θ + µv))ρθ(2− c)P0,0

λ[θ + µv(1− ρ)]
+

θ+µv
c

θ + µv(1− ρ)
R(1). (96)

Now, we derive E (L1 ). Differentiating equation (91) and using L’Hospital’s rule, we get

E(L1) = lim
z→1

G′1(z)

= lim
z→1

{
−λ[z(−H + θG0(z)) + z2θP0,0]

(1− z)(λz − cµb)2
+
−H + θG0(z)) + 2zθP0,0 + zθG′0(z)

(1− z)(λz − cµb)

+
z(−H + θG0(z))) + z2θP0,0

(1− z)2(λz − cµb)
+ µb

[(cµb − λz)R′(z) + λR(z)]

(cµb − λz)2

}

=
θ(cµb − λ)E(L0(L0 − 1)) + 2cµbθE(L0) + 2θ[(cµb − λ)− cλ]P0,0

2((cµb − λz))2

+
R′(1)

c(1− ρ)
+

ρR(1)

c(1− ρ)2
. (97)

In order to get the value of G ′′0(1), we differentiate equation (84) twice on both sides such that

E[L0(L0 − 1)] =
2λ

θ + 2µv
E[L0]. (98)
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Substituting (98) into (97), we obtain the mean number of customers when the system is in regular
busy period as

E[L1] =
ρθ

1− ρ

[
1

θ + 2µv
+

1

λ(1− ρ)

]
E[L0] +

[
1

λ
− 1

µb(1− ρ)

]
P0,0

+
1

c(1− ρ)
R′(1) +

ρ

c(1− ρ)2
R(1). (99)

Therefore, the mean number of customers in the system is

E[L] = E[L0] + E[L1]

=

{
1 +

ρθ

1− ρ

[
1

θ + 2µv
+

1

λ(1− ρ)

]}[
λ(1− ρ)− ρθ(2− c)P0,0 − λ

cR(1)

θ + µv(1− ρ)

]

+

[
1

λ
− 1

µb(1− ρ)

]
P0,0 +

1

c(1− ρ)
R′(1) +

ρ

c(1− ρ)2
R(1). (100)

Using equation (95) in equation (89), we finally get

P0,0 =
θK

µv
P0(1) =

θK

µv

[
(1− ρ)(θ + µv)− (θ+µv)

c R(1)

θ + µv(1− ρ) + Kθ2ρ(2−c)(θ+µv)
λµv

]
. (101)

4.2. Calculations of R(1) and R′(1)

As in MWV case, in order to calculate the values R(1) and R′(1), we need to compute Pj,1, for
j = 1, 2, ..., c − 1. From equations (79), (80), (81) and (82), the unknown probabilities Pj,1, for
j = 1, 2, ..., c − 1 and Pj,0, for j = 0, 1, 2, ..., c − 1 satisfy the following 2c − 3 linear equations

(λ+ cθ)P0,0 = µvP1,0 + µbP1,1, (102)

(λ+ θ + nµv)Pn,0 = λPn−1,0 + (n+ 1)µvPn+1,0, if 1 ≤ n ≥ 1, (103)

λP0,1 = θp0,0, (104)

(λ+ nµb)Pn,1 = λPn−1,1 + (n+ 1)µbPn+1,1 + θPn,0, if 1 ≤ n ≤ c− 2. (105)

Hence, we need two another independent equations to compute all 2c-1 unknowns. From equation
(88), we have

P0,0 =
Kµb

µv − θ(1− c)K
P1,1, (106)

implies that

P1,1 = δP0,0, (107)
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where

δ =
µv − θ(1− c)K

Kµb
. (108)

Substituting equation (90) into equation (95), we get

P0,0 +
µb
θ
P1,1 − cP0,0 =

(cµb − λ)(θ + µv)

cµbθ + µv(cµb − λ)
− θ(θ + µv)(2− c)P0,0

cµbθ + µv(cµb − λ)

− µb(θ + µv)

cµbθ + µv(cµb − λ)
R(1).

(109)

Hence, we have another two independent equations (107) and (109). Therefore for solving 2c − 1

unknowns , we have 2c−1 independent equations. We analytically solve these equations as follows:

(λ+ cθ − µbδ)P0,0 = µvP1,0, (110)

(−θ + (λ+ µb)δ)P0,0 = θp1,0 + 2µbP2,1. (111)

Thus, Pj,0, j = 1, 2, ..., c − 1, and Pj,1, j = 2, 3, ..., c − 1, satisfy equations (103), (105), (110), and
(111). These equations can be written as equations in matrix form. We have

AP0 = GP0,0,

BP0 + CP1 = HP0,0. (112)

Note that G and H are defined as follows:

G = (λ+ cθ − µbδ,−λ, 0, ..., 0)T ,

H = (−θ + (λ+ µb)δ,−λδ, 0, ..., 0)T . (113)

Then as in MWV case, we have

P1,0 = (λ+ cθ − µbδ)x1,1P0,0, (114)

Pj,0 = [(λ+ cθ − µbδ)xj,1 − λxj,2]P0,0, j = 2, 3, ..., c− 1, (115)

Pj+1,1 = (b1yj,1 − λyj,2)δP0,0 − θyj,1P0,0 − θ
j∑

k=1

yj,kPk,0, j = 1, 2, ..., c− 2. (116)

Using equation (116), we obtain

R(1) =

c−1∑
j=1

(c− j)Pj,1 = U ′(φ)P0,0, (117)

R′(1) =

c−1∑
j=1

j(c− j)Pj,1 = U ′(Ψ)P0,0. (118)
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(a) (b) (c)

Figure 5. Mean queue length E [L] versus service rate µv in working vacation period when ρ = 0.6 and µb = 5.

where

U ′(φ) = δφ0 − θ
c−2∑
j=1

(c− j − 1)pj,1 − θ
c−2∑
k=1

φk[(λ+ cθ − µbδ)xk,1 − λxk,2], (119)

U ′(Ψ) = δΨ0 − θ
c−2∑
j=1

(j + 1)(c− j − 1)pj,1 − θ
c−2∑
k=1

Ψk[(λ+ cθ − µbδ)xk,1 − λxk,2]. (120)

Substituting equations (107) and (117) into equation (109), we obtain

P0,0 =
Kθ(θ + µv)(cµb − λ)

µv[cµbθ + µv(cµb − λ)] +Kθ2(θ + µv)(2− c) +Kθµb(θ + µv)U ′(φ)
. (121)

4.3. Numerical Results

In this section, we present some numerical examples to illustrate the impact of system parameters
on system performance indices. Figures 5 and 6 demonstrates the effect of vacation service rate µv
on the mean number of customers in the system E(L) at different values of θ and ρ respectively.
Figure 7 explains the impact of vacation service rate µv on the state probability of the servers at
different values of θ.

(a) (b) (c)

Figure 6. Mean queue length E [L] versus service rate µv in working vacation period when θ = 0.4 and µb = 5.

From Figure 5, we observe that the mean queue length E(L) decreases evidently with the increase
in vacation service rate µv and it decreases as the value of θ increases. From Figure 6, we observe
that the mean queue length E (L) decreases with the increase in vacation service rate µv and it
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(a) (b) (c)

Figure 7. The state probability of the server versus service rate µv in working vacation period when ρ = 0.6 and
µb = 2.

increases as the value of ρ increases. Figure 7 illustrates the state probability of the servers and
the probability that the servers remains in normal busy period, i.e. P (J = 1), decreases with an
increase in vacation service rate µv. The probability that the servers remain in vacation period
increases with an increasing value of µv, therefore, the utilization of the system idle time becomes
bigger. Note that the vacation rate θ has also some impact on the state probability of servers. For
example, when θ=0.5, P (J = 1) are evidently smaller than those when θ=1.5. It also shows that it
is reasonable to establish the vacation period or lower speed operation period.

5. Comparison of the models

In this section, we compare the mean queue lengths of the MWV model and SWV model for the
different values of θ and ρ respectively. The main findings in this study are itemized as,

• Figure 8(a) illustrates that when θ=0.2, the mean queue length of SWV model is greater than
MWV model and when θ = 0.7, the MWV model gives larger queue length but for θ=0.4, the
mean queue length of MWV and SWV models almost coincides. Hence, MWV model works
better than compared to SWV when θ=0.2 and for θ=0.4, SWV model becomes better. There-
fore, when the mean of vacation rate is large, the SWV model gives better performance than the
corresponding MWV model.

• In Figures 8(b), 8(c) and 8(d), the mean queue length of MWV model is greater than SWV
model. Note that, it is clear from the Figures 8(b), 8(c) and 8(d) that as we increase the value of
c, the difference between the mean queue lengths of MWV and SWV models increases for the
corresponding values of θ respectively. Hence a SWV model is better than a MWV model in the
sense that mean queue length in MWV model is always greater than that in the SWV model for
the corresponding value of c.

• Figure 9(a) demonstrates that when ρ = 0.4, the mean queue length of MWV and SWV model
have the same values. But for ρ = 0.6 and ρ = 0.8, the SWV model gives better performance than
the corresponding MWV model.

• Similarly, Figures 9(b), 9(c) and 9(d) shows that SWV model works better than the MWV model
and the difference between the queue lengths increases as we increase the value of c gradually
for the corresponding values of ρ.
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(a) (b)

(c) (d)

Figure 8. Mean queue length E [L] versus service rate µv in working vacation period when ρ = 0.4 and µb = 5.

6. Conclusion

We have investigated the synchronous working vacation policy in a M/M/c model. Two differ-
ent types of WV policies are discussed, the multiple working vacation (MWV) policy and single
working vacation (SWV) policy. We have obtained some performance measures based on the two
indexes R(1 ) and R′(1 ) and derived some results regarding the limiting behavior of some per-
formance measures. We have provided some numerical examples which illustrate that the above
obtained theoretical results are reasonable and can be applied directly to solve the practical prob-
lems. This work underlines the fact that when the vacation rate θ is small, average number number
of customers in the system in SWV model is greater than the MWV model for c = 1. For c ≥ 2,
average number of customers in SWV model is always less than the MWV model.
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