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Abstract

The main aim of this paper is to obtain certain properties of generalized Rice’s matrix polynomials
such as their matrix differential equation, generating matrix functions, an expansion for them.
We have also deduced the various families of bilinear and bilateral generating matrix functions
for them with the help of the generating matrix functions developed in the paper and some of
their applications have also been presented here.
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1. Introduction and Preliminaries

An important generalization of special functions is special matrix functions. Special matrix
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368 A. Shehata

polynomials appear in connection with matrix analogues of Hermite, Chebyshev and Legendre
matrix differential equations and the corresponding polynomial families, see Aktaş et al. (2013),
Altin et al. (2014), Çekim (2013), Çekim et al. (2011), Çekim et al. (2013), Defez and Jódar
(2002), Erkus-Duman and Çekim (2014), Jódar et al. (1995), Jódar and Sastre (1998), Kargin
and Kurt (2014a, 2014b), Kargin and Kurt (2015) (for a list of references). The author has earlier
studied the Rice’s matrix polynomials Shehata (2014) and the present paper carries those studies
ahead motivated by the importance of special matrix polynomials of several recent works Aktaş
(2014), Aktaş et al. (2012), Çekim and Aktaş (2015), Shehata (2014) and Tasdelen et al. (2011).
We organize the present paper as follows: In Section 2, we give the matrix differential equation,
generating matrix functions and an expansion of generalized Rice’s matrix polynomials. The class
of bilinear and bilateral generating matrix relations for generalized Rice’s matrix polynomials
have also been established in the Sections 3 and 4.

In this section, we give some basic facts or properties, definitions, lemmas, theorems and some
notations and terminology, which has been used in the next sections.

Throughout this paper, the symbol CN×N stands for the set of all square complex matrices of
common order N and σ(A) stands for the set of all the eigenvalues of A ∈ CN×N . The matrices
I and 0 will be denoted by the identity matrix and the null matrix (zero matrix) in CN×N ,
respectively.

Definition 1.1.

If A0, A1, . . . , An are elements of CN×N and An 6= 0, then by the matrix polynomial of degree
n in x (x is a real variable or complex variable), we mean an expression of the form

P (x) = Anx
n + An−1x

n−1 + . . .+ A1x+ A0.

Theorem 1.1. (Dunford and Schwartz (1957))

If f(z) and g(z) are holomorphic functions of the complex variable z, which are defined in an
open set Ω of the complex plane, and A, B are matrices in CN×N with σ(A) ⊂ Ω and σ(B) ⊂ Ω,
such that AB = BA, then

f(A)g(B) = g(B)f(A),

where f(A) and g(B) denote the images of functions f(z) and g(z) respectively, acting on the
matrices A and B.

Definition 1.2. (Jódar and Cortés (1998a))

A matrix A in CN×N is said be a positive stable matrix if

Re(µ) > 0, for all eigenvalues µ ∈ σ(A); σ(A) := spectrum of A. (1)

Fact 1.1. (Jódar and Cortés (1998b))

For A ∈ CN×N , let us denote the real numbers M(A) and m(A) as in the following

M(A) = max{Re(z) : z ∈ σ(A)}; m(A) = min{Re(z) : z ∈ σ(A)}. (2)
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Definition 1.3. (Jódar and Cortés (1998a))

If P is a positive stable matrix in CN×N , then the Gamma matrix function Γ(P ) is defined by

Γ(P ) =

∫ ∞
0

e−ttP−Idt; tP−I = exp

(
(P − I) ln t

)
. (3)

Definition 1.4.

For A ∈ CN×N , the matrix form of the Pochhammer symbol or shifted factorial is defined by
(Jódar and Cortés (1998))

(A)n = A(A+ I)(A+ 2I) . . . (A+ (n− 1)I)

= Γ(A+ nI)Γ−1(A) ; n ≥ 1 , (A)0 = I.
(4)

Definition 1.5. (Jódar and Cortés (1998b))

The hypergeometric matrix function 2F1(A,B;C; z) is defined in the form

2F1

(
A,B;C; z

)
=
∞∑
k=0

zk

k!
(A)k(B)k[(C)k]

−1, (5)

where A, B, and C are commutative matrices in CN×N such that C + nI is an invertible matrix
for every integer n ≥ 0 and for |z| < 1.

Lemma 1.1. (Lancaster (1969))

Let ‖ . . . ‖ denotes any matrix norm for which ‖I‖ = 1. If ‖A‖ < 1 for a matrix A in CN×N ,
then

(
I − A

)−c exists and given by

(
I − A

)−c
=
∞∑
k=0

(c)k
k!

Ak, (6)

where c is a positive integer.

Fact 1.2. (Jódar and Cortés (1998b))

For any matrix A in CN×N , we give the following relation

(
1− x

)−A
= 1F0

(
A;−;x

)
=
∞∑
n=0

1

n!
(A)nx

n ; |x| < 1. (7)
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370 A. Shehata

Notation 1.1.

For A is an arbitrary matrix in CN×N and using (4), we have the following relations

(A)n+k = (A)n(A+ nI)k = (A)k(A+ kI)n,

(A)2k = 22k

(
1

2
A

)
k

(
1

2
(A+ I)

)
k

,

(−nI)k =

{
(−1)k n!
(n−k)! I, 0 ≤ k ≤ n;

0 , k > n,

(A)n−k =

{
(−1)k(A)n[(I − A− nI)k]

−1, 0 ≤ k ≤ n;
0 , k > n.

(8)

Definition 1.6. (Defez et al. (2004))

Let A and B be matrices in CN×N satisfying the conditions

Re(z) > −1, ∀ z ∈ σ(A) and Re(w) > −1, ∀ w ∈ σ(B). (9)

For n ≥ 0, the Jacobi matrix polynomials P
(A,B)
n (x) is defined by the hypergeometric matrix

function

P(A,B)
n (x) =

(B + I)n
n!

2F1

(
A+B + (n+ 1)I,−nI;B + I;

1− x
2

)
. (10)

Lemma 1.2.

In (2002), Defez and Jódar have shown that for matrices A(k, n) and B(k, n) in CN×N when
n ≥ 0, k ≥ 0, then the following relations are satisfied:

∞∑
n=0

∞∑
k=0

B(k, n) =
∞∑
n=0

n∑
k=0

B(k, n− k),

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

[ n
m
]∑

k=0

A(k, n−mk) ; m ∈ N.

(11)

Furthermore, we have the following relations

∞∑
n=0

n∑
k=0

B(k, n) =
∞∑
n=0

∞∑
k=0

B(k, n+ k),

∞∑
n=0

[ n
m
]∑

k=0

A(k, n) =
∞∑
n=0

∞∑
k=0

A(k, n+mk) ; m ∈ N,

(12)

where [x] denotes the greatest integer in x.
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2. Generalized Rice’s matrix polynomials

Definition 2.1.

Let P and Q be matrices in CN×N satisfying the condition (9), A and B are matrices in CN×N ,
B satisfying the condition

B + nI is an invertible matrix for all integers n ≥ 0. (13)

Let us consider the generalized Rice’s matrix polynomials H(P,Q)
n (A,B, z) by hypergeometric

matrix function

H(P,Q)
n (A,B, z) =

(P + I)n
n!

3F2(−nI, P +Q+ (n+ 1)I,

A;P + I, B; z) =
(P + I)n

n!

∞∑
k=0

zk

k!
(−nI)k(P +Q+ (n+ 1)I)k

× (A)k[(P + I)k]
−1[(B)k]

−1 = (P + I)n

n∑
k=0

(−1)kzk

k!(n− k)!

× (P +Q+ (n+ 1)I)k(A)k[(P + I)k]
−1[(B)k]

−1,

(14)

where 0 ≤ k ≤ n and all matrices are commutative.

Remark 2.1.

For the scalar case N = 1, taking P = Q = 0, A = ξ, B = p and z = ν in (14) gives the scalar
Rice’s polynomials Hn(ξ, p, ν) (see Rainville (1945) and Rice (1940))

Hn(ξ, p, ν) = 3F2(−n, n+ 1, ξ; 1, p; ν).

Corollary 2.1.

For the purpose of this work, with the help of Theorem 1 (see Shehata (2016b)), setting p = 3

and q = 2, we give the convergence properties for the generalized Rice’s matrix polynomials:

(1) The power series (14) is convergent for with |z| < 1 and diverges for |z| > 1.
(2) The power series (14) is absolutely convergent for |z| = 1 when

m(B) +m(P + I) > M(A) +M(P +Q+ (n+ 1)I) +M(−nI).

(3) If the power series (14) is conditionally convergent for |z| = 1 when

M(A) +M(P +Q+ (n+ 1)I) +M(−nI)− 1 < m(B) +m(P + I)

≤M(A) +M(P +Q+ (n+ 1)I) +M(−nI).

(4) The power series (14) is diverges for |z| = 1 when

m(B) +m(P + I) ≤M(A) +M(P +Q+ (n+ 1)I) +M(−nI)− 1,

where M(A) and m(B) are defined in (2).

5
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372 A. Shehata

Remark 2.1.

We mention that for special case P = Q = 0, this reduces to Rice’s matrix polynomials in
Shehata (2014).

Remark 2.2.

We note that by taking A = B in (14), we obtain the result

H(P,Q)
n (A,A, z) = P(Q,P )

n (1− 2z)

=
(P + I)n

n!
2F1

(
− nI, P +Q+ (n+ 1)I;P + I; z

)
,

(15)

where P
(Q,P )
n (x) is the Jacobi matrix polynomials defined in (10).

Theorem 2.1.

For n > 0, the generalized Rice’s matrix polynomials satisfies the following matrix differential
equation

(1− z)z2 D3H(P,Q)
n (A,B, z) +

[
z(B + P + 2I)−

z2(A+ P +Q+ 4I)

]
D2H(P,Q)

n (A,B, z) +

[
B(P + I) + n(n+ 1)zI

− z(A+ I)(P +Q+ 2I) + nz(P +Q)

]
D H(P,Q)

n (A,B, z)

+ nA(P +Q+ (n+ 1)I) H(P,Q)
n (A,B, z) = 0 ; D =

d

dz
,

(16)

where all matrices are commutative.

Proof:

Consider the differential operator θ = z d
dz

, θzk = kzk, yields that

θ (θ I + P + I − I)(θ I +B − I)H(P,Q)
n (A,B, z) =

∞∑
k=1

k zk

k!

× (kI + P + I − I)(kI +B − I)(−nI)k(P +Q+ (n+ 1)I)k(A)k

× [(P + I)k]
−1[(B)k]

−1 =
∞∑
k=1

zk

(k − 1)!
(−nI)k(P +Q+ (n+ 1)I)k

× (A)k[(P + I)k−1]
−1[(B)k−1]

−1.

Now, we replacing k by k + 1, we have

6
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θ (θ I + P )(θ I +B − I)H(P,Q)
n (A,B, z)

=
∞∑
k=0

zk+1

k!
(−nI)k+1(P +Q+ (n+ 1)I)k+1(A)k+1[(P + I)k]

−1[(B)k]
−1

= z(θ I − nI)(θ I + P +Q+ (n+ 1)I)(θ I + A)H(P,Q)
n (A,B, z).

Thus, we show that H(P,Q)
n (A,B, z) is a solution of the following matrix differential equation

[
θ (θ I + P )(θI +B − I)− z(θ I − n I)

× (θ I + P +Q+ (n+ 1)I)(θI + A)

]
H(P,Q)
n (A,B, z) = 0.

(17)

Thus, H(P,Q)
n (A,B, z), given by (14), satisfies (16) in |z| < 1. 2

Theorem 2.2.

Let A, B, P and Q be matrices in CN×N satisfying the conditions (9) and (13). Then, a generating
matrix function for generalized Rice’s matrix polynomials has the following form

∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, z)tn = (1− t)−P−Q−I

× 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4zt

(1− t)2

)
,

(18)

for |t| < 1,
∣∣∣∣ 4zt
(1−t)2

∣∣∣∣ < 1.

Proof:

Starting from (14) and using the result (12), we have

∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, z)tn

=
∞∑
n=0

n∑
k=0

(−1)kzktn

k!(n− k)!
(P +Q+ I)n+k(A)k[(P + I)k]

−1[(B)k]
−1

=
∞∑
n=0

∞∑
k=0

(−1)kzktn+k

k!n!
(P +Q+ I)n+2k(A)k[(P + I)k]

−1[(B)k]
−1.

From (8) and (7), we can write

7
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374 A. Shehata

∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, z)tn =

∞∑
n=0

∞∑
k=0

(−1)kzktn+k

k!n!

× (P +Q+ I)2k(P +Q+ (2k + 1)I)n(A)k[(P + I)k]
−1[(B)k]

−1

=
∞∑
k=0

∞∑
n=0

tn

n!
(P +Q+ (2k + 1)I)n

(−1)k(4z)ktk

k!

(
1

2
(P +Q+ I)

)
k

×
(

1

2
(P +Q+ 2I)

)
k

(A)k[(P + I)k]
−1[(B)k]

−1 =
∞∑
k=0

(1− t)−P−Q−(2k+1)I

× (−1)k(4z)ktk

k!

(
1

2
(P +Q+ I)

)
k

(
1

2
(P +Q+ 2I)

)
k

(A)k

× [(P + I)k]
−1[(B)k]

−1 = (1− t)−P−Q−I

× 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4zt

(1− t)2

)
.

Hence the proof of Theorem 2.2 is completed. 2

Now, we can use the series of generalized Rice’s matrix polynomials together with their properties
to prove the following result.

Theorem 2.3.

For a non-negative integer n, an expansion of generalized Rice’s matrix polynomials is given as
follows

znI =(P + I)n(B)n[(A)n]−1
n∑
k=0

(−1)kn!

(n− k)!
(P +Q+ (2k + 1)I)

× (P +Q+ I)k

[
(P +Q+ I)n+k+1

]−1[
(P + I)k

]−1
×H(P,Q)

k (A,B, z).

(19)

Proof:

Equation (18) can be written in the form

3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4zt

(1− t)2

)
= (1− t)P+Q+I

∞∑
k=0

(P +Q+ I)k[(P + I)k]
−1H

(P,Q)
k (A,B, z)tk.

(20)

In (20), we put that

ν = − 4t

(1− t)2
.

8
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Then,

t = 1− 2

1 +
√

1− ν
= − ν

(1 +
√

1− ν)2
,

(20) can be written

3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B; ν z

)
=
∞∑
k=0

(−1)nνk

22k

(
2

1 +
√

1− ν

)P+Q+(2k+1)I

(P +Q+ I)k[
(P + I)k

]−1
H

(P,Q)
k (A,B, z).

(21)

Now, replacing

(
2

1 +
√

1− ν

)P+Q+(2k+1)I

= 2F1

(
1

2
(P +Q+ (2k + 1)I),

1

2
(P +Q+ (2k + 2)I);P +Q+ (2k + 2)I; ν

)
,

we have

3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B; ν z

)
=
∞∑
k=0

(−1)kνk

22k 2F1

(
1

2
(P +Q+ (2k + 1)I),

1

2
(P +Q+ (2k + 2)I);P +Q+ (2k + 2)I; ν

)
× (P +Q+ I)k[(P + I)k]

−1H
(P,Q)
k (A,B, z)

=
∞∑
n=0

∞∑
k=0

(−1)kνn+k

n!22k

(
1

2
(P +Q+ (2k + 1)I)

)
n

×
(

1

2
(P +Q+ (2k + 2)I)

)
n

[
(P +Q+ (2k + 2)I)n

]−1
× (P +Q+ I)k[(P + I)k]

−1H
(P,Q)
k (A,B, z)

=
∞∑
n=0

∞∑
k=0

(−1)k

n!

νn+k

22n+2k
(P +Q+ (2k + 1)I)2n

×
[
(P +Q+ (2k + 2)I)n

]−1
(P +Q+ I)k

× [(P + I)k]
−1H

(P,Q)
k (A,B, z).

(22)

9
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376 A. Shehata

Using (8), we get

(P +Q+ (2k + 1)I)2n = (P +Q+ I)2n+2k

[
(P +Q+ I)2k

]−1
.

Thus, we obtain

∞∑
n=0

∞∑
k=0

(−1)k

22n+2k

νn+k

n!
(P +Q+ I)2n+2k(P +Q+ (2k + 1)I)

×
[
(P +Q+ I)n+2k+1

]−1
(P +Q+ I)k[(P + I)k]

−1H
(P,Q)
k (A,B, z).

Therefore,

∞∑
n=0

1

n!

(
1

2
(P +Q+ I)

)
n

(
1

2
(P +Q+ 2I)

)
n

(A)n

×
[
(P + I)n

]−1[
(B)n

]−1
νnzn =

∞∑
n=0

n∑
k=0

(−1)k

22n(n− k)!

× (P +Q+ I)2n(P +Q+ (2k + 1)I)

[
(P +Q+ I)n+k+1

]−1
× (P +Q+ I)k

[
(P + I)k

]−1
H

(P,Q)
k (A,B, z)νk,

(23)

which yields equation (19) on equating coefficients of νn and using (8). Therefore, the proof of
Theorem 2.3 is completed. 2

Now, we mention some interesting special cases of our results of this section.

Corollary 2.2.

Substituting P = Q = 0 in (14), we obtain a known result in Shehata (2014)

znI =(B)n[(A)n]−1
n∑
k=0

(−1)kn!

(n− k)!
((2k + 1)I)(I)n

×
[
(I)n+k+1

]−1
Hk(A,B, z).

(24)

Corollary 2.3.

Taking A = B and replacing z by 1−x
2

in (14), we have a known result in Defez et al. (2004)

10
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(1− x)nI = 2n(P + I)n

n∑
k=0

(−1)kn!

(n− k)!
(P +Q+ (1 + 2k)I)

× (P +Q+ I)k[(P +Q+ I)n+k+1]
−1[(P + I)k]

−1P
(Q,P )
k (x).

(25)

We now give a generating matrix function for the generalized Rice’s matrix polynomials.

Theorem 2.4.

A generating matrix function for the generalized Rice’s matrix polynomials is derived as

∞∑
n=0

1

n!
(C)nH

(P,Q)
m (−nI,B, z)tn = (1− t)−C

×H(P,Q)
m

(
C,B,− zt

1− t

)
; |t| < 1 ,

∣∣∣∣ zt

1− t

∣∣∣∣ < 1,

(26)

where PC = CP and QC = CQ.

Proof:

By using (14), (7) and (12), we have

∞∑
n=0

1

n!
(C)nH

(P,Q)
m (−nI,B, z)tn =

1

m!
(P + I)m

∞∑
n=0

m∑
k=0

zktn+k

n!k!

× (−mI)k(C)n(P +Q+ (m+ 1)I)k[(P + I)k]
−1[(B)k]

−1

=
1

m!
(P + I)m

m∑
k=0

1

k!
(−mI)k

∞∑
n=0

1

n!
(C + kI)nt

n(C)k

× (P +Q+ (m+ 1)I)k[(P + I)k]
−1[(B)k]

−1(−zt)k =
1

m!
(P + I)m

×
m∑
k=0

1

k!
(−mI)k(1− t)−C−kI(C)k(P +Q+ (m+ 1)I)k[(B)k]

−1

× [(P + I)k]
−1(−zt)k =

1

m!
(1− t)−C(P + I)m

m∑
k=0

(−mI)k
k!

× (C)k(P +Q+ (m+ 1)I)k[(P + I)k]
−1[(B)k]

−1
(
− zt

1− t

)k
=

1

m!
(1− t)−C(P + I)m 3F2

(
−mI, P +Q+ (m+ 1)I,

C;P + I, B;− zt

1− t

)
= (1− t)−CH(P,Q)

m

(
C,B,− zt

1− t

)
,

which completes the proof of formula (26). 2
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Corollary 2.4.

For C = B, Equation (26) further reduces to following generating matrix function representation:

∞∑
n=0

1

n!
(C)nH

(P,Q)
m (−nI, C, z)tn = (1− t)−C

×P(Q,P )
m

(
1 +

2zt

1− t

)
; |t| < 1 ,

∣∣∣∣ 2zt

1− t

∣∣∣∣ < 1.

(27)

3. Bilinear and bilateral generating matrix functionsfor the generalized Rice’s matrix
polynomials

The present section is a further attempt to establish a general theorem on a novel class of bilinear
and bilateral generating matrix functions of various generalized Rice’s matrix polynomials by
using the similar method considered in Aktaş (2014), Aktaş et al. (2013), Aktaş et al. (2012),
Altin et al. (2014), Çekim and Aktaş (2015), Tasdelen et al. (2011). In fact, we obtain the main
results in the following theorem.

Theorem 3.1.

Corresponding to a non-vanishing matrix function Ωµ(y1, y2, . . . , ys) of s complex variables
y1, y2, . . . , ys, s ∈ N and involving a complex parameter µ, give a order, let us consider the
following

Λµ,ν(y1, y2, . . . , ys; z) =
∞∑
k=0

akΩµ+νk(y1, y2, . . . , ys)z
k ;

ak 6= 0 , µ, ν ∈ C,
(28)

where the coefficients ak are assumed to non-vanishing in order for the matrix function on the
left-hand side to be non-null. Suppose also that the matrix polynomials

Ψn,m,µ,ν(x; y1, y2, . . . , ys; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1

×H(P,Q)
n−mk(A,B, x)Ωµ+νk(y1, y2, . . . , ys)η

k ; n,m ∈ N,

(29)

where A, B, P and Q are matrices in CN×N satisfying the conditions (9) and (13), and (as usual)
the notation [n

p
] means the greatest integer less than or equal to n

p
(n ∈ N0, p ∈ N ). Then, we

have
∞∑
n=0

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η

tm

)
tn = (1− t)−P−Q−I

× 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
× Λµ,ν(y1, y2, . . . , ys; η),

(30)

12
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provided that each member of (30) exists.

Proof:

For the sake of convenience, let S denote the member of the assertion (30) of Theorem 3.1.
Then, by substituting for the matrix polynomials

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η
tm

)
from the definition (29) into the left hand side of (30), we obtain

the familiar generating matrix function

∞∑
n=0

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η

tm

)
tn

=
∞∑
n=0

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)

× Ωµ+νk(y1, y2, . . . , ys)η
ktn−mk.

(31)

Upon changing the order of summation in (31), if we replace n by n+mk, we can write

∞∑
n=0

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η

tm

)
tn =

∞∑
n=0

∞∑
k=0

ak(P +Q+ I)n

× [(P + I)n]−1H(P,Q)
n (A,B, x)Ωµ+νk(y1, y2, . . . , ys)η

ktn

=

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

]
×
[ ∞∑
k=0

akΩµ+νk(y1, y2, . . . , ys)η
k

]
= (1− t)−P−Q−I

× 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
× Λµ,ν(y1, y2, . . . , ys; η),

which completes the proof of Theorem 3.1. 2

By expressing the multivariable matrix function Ωµ+νk(y1, y2, . . . , ys), k ∈ N0 and s ∈ N in
terms of simpler matrix function of one and more variables, we can give further applications of
Theorem 3.1. In the following, we obtain the results which provide a class of bilinear generating
matrix functions for the generalized Rice’s matrix polynomials.

Corollary 3.1.

Let

Λµ,ν(y; z) =
∞∑
k=0

ak(P +Q+ I)µ+νk[(P + I)µ+νk]
−1H

(P,Q)
µ+νk (A,B, y)zk ;

ak 6= 0 , µ, ν ∈ N0

13
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and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)

× (P ′ +Q′ + I)µ+νk[(P
′ + I)µ+νk]

−1H
(P ′,Q′)
µ+νk (A′, B′, y)ηk ; n,m ∈ N,

where P , P ′, Q and Q′ are matrices in CN×N satisfying the condition (9), and A, A′, B and B′

are matrices in CN×N , B and B′ satisfying the condition (13). Then, we have
∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y; η),

(32)

provided that each member of (32) exists.

Proof:

Equation (32) can be proved using the same method as in proof of Theorem 3.1. 2

Remark 3.1.

For the generalized Rice’s matrix polynomials, by the generating matrix functions in (18) and
taking ak = 1, µ = 0 and ν = 1, we have

∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)

× (P ′ +Q′ + I)k[(P
′ + I)k]

−1H
(P ′,Q′)
k (A′, B′, y)ηktn−mk

= (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;

P + I, B;− 4xt

(1− t)2

)
(1− η)−P

′−Q′−I
3F2

(
1

2
(P ′ +Q′ + I),

1

2
(P ′ +Q′ + 2I), A′;P ′ + I, B′;− 4yη

(1− η)2

)
.

In the next section, we proceed to discuss the various applications of the Theorem 3.1 for the
case of certain special matrix functions including the generalized Rice’s matrix polynomials.

4. Further Remarks and Applications

As we remarked above that the Theorem 3.1 provides a very generalization of certain classes of
bilateral generating matrix functions for the Chebyshev, Gegenbauer, Jacobi, Legendre, Laguerre,
modified Laguerre, Hermite and the generalized Rice’s matrix polynomials, the same are being
deduced now as known or new consequences of the Theorem 3.1.

14
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Definition 4.1.

Let D be a matrix in CN×N satisfying the condition (1). Then, the Chebyshev matrix polynomials
of the second kind are defined by means of the series (see Metwally et al. (2015))

Un(x,D) =

[ 1
2
n]∑

k=0

(−1)k(n− k)!

k!(n− 2k)!
(x
√

2D)n−2k,

and the generating matrix function

(I − xt
√

2D + t2I)−1 =
∞∑
n=0

Un(x,D)tn; |t| < 1, |x| ≤ 1, (33)

where I − xt
√

2D + t2I and xt
√

2D − t2I are invertible matrices in CN×N .

Corollary 4.1.

If

Λµ,ν(y; z) =
∞∑
k=0

akUµ+νk(y,D)zk ; ak 6= 0 , µ, ν ∈ N0,

and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1

×H(P,Q)
n−mk(A,B, x)Uµ+νk(y,D)ηk ; n,m ∈ N,

where D is a matrix in CN×N satisfying the condition (1), then we have

∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y; η),

(34)

provided that each member of (34) exists.

Remark 4.1.

Using the generating matrix function (33) for the Uk(y,D) and by taking ak = 1, µ = 0 and

15
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ν = 1, we have
∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)Uk(y,D)

× ηktn−mk =

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

]
×
[ ∞∑
k=0

Uk(y,D)ηk
]

= (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
(I − yη

√
2D + η2I)−1

for |t| < 1, |η| < 1, |x| < 1, |y| ≤ 1 and
∣∣∣∣ 4xt
(1−t)2

∣∣∣∣ < 1.

Definition 4.2. (Jódar et al. (1995))

Let D be a matrix in CN×N satisfying the condition

−1

2
x /∈ σ(D) for all x ∈ Z+ ∪ {0}. (35)

Gegenbauer matrix polynomials are defined by

CD
n (x) =

[ 1
2
n]∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
(D)n−k.

Notice that the Gegenbauer matrix polynomials are generated as follows (see Jódar et al. (1995)
and Sayyed et al. (2004)):

F (x, t,D) = (1− 2xt+ t2)−D =
∞∑
n=0

CD
n (x)tn. (36)

If r1 and r2 are the roots of the quadratic equation 1− 2xt+ yt2 = 0 and r is the minimum of
the set {r1, r2}, then the matrix function F (x, t,D) regarded as a matrix function of t, is analytic
in the disk |t| < r for every real number in |x| ≤ 1.

Corollary 4.2.

Let

Λµ,ν(y; z) =
∞∑
k=0

akC
D
µ+νk(y)zk ; ak 6= 0 , µ, ν ∈ N0

and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1

×H(P,Q)
n−mk(A,B, x)CD

µ+νk(y)ηk;n,m ∈ N,
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where D is a matrix in CN×N satisfying the condition (35). Then, we have

∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y; η),

(37)

provided that each member of (37) exists.

Remark 4.2.

Using the generating matrix function (36) for the CD
k (y) and taking ak = 1, µ = 0 and ν = 1,

we have

∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)CD

k (y)ηktn−mk

=
∞∑
n=0

∞∑
k=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)CD

k (y)ηktn

=

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

][ ∞∑
k=0

CD
k (y)ηk

]
= (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;

− 4xt

(1− t)2

)
(1− 2yη + η2)−D.

The Jacobi matrix polynomials are generated by (see Altin et al. (2014))

∞∑
n=0

(D + E + I)nP
(D,E)
n (x)[(D + I)n]−1tn = (1− t)−D−E−I

× 2F1

(
1

2
(D + E + I),

1

2
(D + E + 2I);D + I;

2t(x− 1)

(1− t)2

)
,

(38)

where D and E are matrices in CN×N all of whose eigenvalues, z, satisfy the condition Re(z) >

−1 with |t| < 1, |x| < 1 and
∣∣∣∣2t(x−1)(1−t)2

∣∣∣∣ < 1.

Corollary 4.3.

Let

Λµ,ν(y; z) =
∞∑
k=0

akP
(D,E)
µ+νk (y)zk ; ak 6= 0 , µ, ν ∈ N0,
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and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1

×H(P,Q)
n−mk(A,B, x)akP

(D,E)
µ+νk (y)ηk ; n,m ∈ N,

where D and E are matrices in CN×N satisfying the condition (9). Then, we have
∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y; η),

(39)

provided that each member of (39) exists, where DE = ED.

Remark 4.3.

Using the generating matrix function (38) for the P
(D,E)
k (y) and taking ak = (D+E+ I)k[(D+

I)k]
−1, µ = 0 and ν = 1, we have

∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)(x)

× (D + E + I)kP
(D,E)
k (y)[(D + I)k]

−1ηktn−mk =
∞∑
n=0

∞∑
k=0

(P +Q+ I)n

× [(P + I)n]−1H(P,Q)
n (A,B, x)(D + E + I)kP

(D,E)
k (y)[(D + I)k]

−1ηktn

=

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

]
×
[ ∞∑
k=0

(D + E + I)kP
(D,E)
k (y)[(D + I)k]

−1ηk
]

= (1− t)−P−Q−I

× 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
× (1− η)−D−E−I 2F1

(
1

2
(D + E + I),

1

2
(D + E + 2I);

D + I;
2η(y − 1)

(1− η)2

)
.

Definition 4.3.

Let us consider the Legendre matrix polynomials Pn(x,D) defined in Shehata (2016a) as follows:

Pn(x,D) =
n∑
k=0

(−1)k(n+ k)!

k!(n− k)!

(
1− x

2

)k
Γ−1(D + kI)Γ(D), n ≥ 0
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where D is a matrix in CN×N satisfying the condition

0 < Re(λ) < 1, for all λ ∈ σ(D). (40)

and D + kI is an invertible matrix for all integers k ≥ 0 and
∣∣∣∣1−x2 ∣∣∣∣ < 1.

The Legendre matrix polynomials in (40) are generated by (see Shehata (2016a)):

∞∑
n=0

Pn(x,D)tn = (1− t)−1 1F1

(
1

2
I;D;

2t(x− 1)

(1− t)2

)
;

|t| < 1 ,

∣∣∣∣2t(x− 1)

(1− t)2

∣∣∣∣ < 1.

(41)

Now using the Theorem 3.1, we get the following result which provides a class of bilateral
generating matrix relation for the Legendre matrix polynomials and the generalized Rice’s matrix
polynomials.

Corollary 4.4.

If

Λµ,ν(y; z) =
∞∑
k=0

akPµ+νk(y,D)zk ; ak 6= 0 , µ, ν ∈ N0,

and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n[(P + I)n]−1

×H(P,Q)
n (A,B, x)Pµ+νk(y,D)ηk; n,m ∈ N,

where D is a matrix in CN×N satisfying the condition (40), then we have

∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y; η),

(42)

provided that each member of (42) exists.

Remark 4.4.

For the case of Legendre matrix polynomials Pk(y,D), by the generating matrix function (41)
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and taking ak = 1, µ = 0 and ν = 1, we have

∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)Pk(y,D)

× ηktn−mk =

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

]
×
[ ∞∑
k=0

Pk(y,D)ηk
]

= (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
(1− η)−1

× 1F1

(
1

2
I;D;

2η(y − 1)

(1− η)2

)
; |η| < 1,

∣∣∣∣2η(y − 1)

(1− η)2

∣∣∣∣ < 1.

Next, if we set s = 2 and Λµ,ν(y, w; z) =
∑∞

k=0 akL
(D,λ)
µ+νk(y, w)zk, ak 6= 0, µ, ν ∈ N0 in Theorem

3.1, then we get the following result which provides a class of bilateral generating matrix functions
for Laguerre matrix polynomials of two variables and generalized Rice’s matrix polynomials.

Definition 4.4.

Let D be a matrix in CN×N such that

−k /∈ σ(D) for every integer k > 0, (43)

and λ is a complex number with Re (λ) > 0. Then, the Laguerre matrix polynomials are defined
by (see Jódar and Sastre (1998), Shehata (2015a, 2015b, 2015c))

L(D,λ)
n (x, y) =

n∑
k=0

(−1)k(D + I)n[(D + I)k]
−1yn−k(λx)k

k!(n− k)!
.

According to Khan and Hassan (2010), Laguerre matrix polynomials of two variables are gen-
erated by

∞∑
n=0

L(D,λ)
n (x, y)tn = (1− yt)−(D+I) exp

(
−λxt
1− yt

)
, (44)

where t, x, y ∈ C and |yt| < 1.

Corollary 4.5.

Let

Λµ,ν(y, w; z) =
∞∑
k=0

akL
(D,λ)
µ+νk(y, w)zk ; ak 6= 0 , µ, ν ∈ N0
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and

Ψn,m,µ,ν(x; y;w; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1

×H(P,Q)
n−mk(A,B, x)L

(D,λ)
µ+νk(y, w)ηk;n,m ∈ N,

where D is a matrix in CN×N satisfying the condition (43), then we have
∞∑
n=0

Ψn,m,µ,ν

(
x; y;w;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y, w; η),

(45)

provided that each member of (45) exists.

Remark 4.5.

For the Laguerre matrix polynomials L(D,λ)
k (y, w), by the generating matrix function (44) and

taking ak = 1, µ = 0 and ν = 1, we have

∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)L

(D,λ)
k (y, w)

× ηktn−mk =

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

]
×
[ ∞∑
k=0

L
(D,λ)
k (y, w)ηk

]
= (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
(1− wη)−(D+I) exp

(
−λ yη
1− wη

)
.

Further, for the application of our Theorem 3.1, we get the following result on bilateral generating
matrix relation involving modified Laguerre matrix polynomials.

Definition 4.5.

Let D be a matrix in CN×N satisfying the condition (43) and λ is a complex parameter with
Re(λ) > 0, then the nth modified Laguerre matrix polynomials f (D,λ)

n (x, y) is defined (see Khan
and Hassan (2010) and Shehata (2015b))

f (D,λ)
n (x, y) =

n∑
k=0

(D)n−k(λ x)kyn−k

k!(n− k)!
.

We recall that the modified Laguerre matrix polynomials of two variables are defined by the
generating matrix function in Khan and Hassan (2010)

∞∑
n=0

f (D,λ)
n (x, y)tn = (1− yt)−Deλxt , t, x, y ∈ C , |yt| < 1. (46)
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Corollary 4.6.

If we put s = 2 in the above theorem, we get the following result. Let

Λµ,ν(y, w; z) =
∞∑
k=0

akf
(D,λ)
µ+νk (y, w)zk ; ak 6= 0 , µ, ν ∈ N0

and

Ψn,m,µ,ν(x; y, w; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1

×H(P,Q)
n−mk(A,B, x)f

(D,λ)
µ+νk (y, w)ηk ; n,m ∈ N

where D is a matrix in CN×N satisfying the condition (43), then we have
∞∑
n=0

Ψn,m,µ,ν

(
x; y, w;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y, w; η),

(47)

provided that each member of (47) exists.

Remark 4.6.

Using the generating matrix function (46) for the modified Laguerre matrix polynomials f (D,λ)
k (y, w)

and taking ak = 1, µ = 0 and ν = 1, we have

∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)f

(D,λ)
µ+ν k(y, w)

× ηktn−mk =

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

]
×
[ ∞∑
k=0

f
(D,λ)
µ+ν k(y, w)ηk

]
= (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
(1− wη)−Deλyη,

for
∣∣∣∣ 4yη
(1−η)2

∣∣∣∣ < 1, |η| < 1.

We now consider the Hermite matrix polynomials Hn(y, w,D) of two variables satisfying the
following generating matrix function in Shehata (2015c)

∞∑
n=0

tn

n!
Hn(y, w,D) = exp

(
yt
√

2D − wt2I
)

; |t| <∞, (48)
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where D is a positive stable matrix in CN×N satisfying the condition (1), then we obtain
the following result which provides a class of bilateral generating matrix functions for the
matrix version of the Hermite matrix polynomials of two variables and generalized Rice’s matrix
polynomials.

Corollary 4.7.

Let

Λµ,ν(y, w; z) =
∞∑
k=0

akHµ+νk(y, w,D)zk ; ak 6= 0 , µ, ν ∈ N0

and

Ψn,m,µ,ν(x; y, w; η) =

[ 1
m
n]∑

k=0

ak(P +Q+ I)n−mk[(P + I)n−mk]
−1

×H(P,Q)
n−mk(A,B, x)Hµ+νk(y, w,D)ηk ; n,m ∈ N,

where D is a matrix in CN×N satisfying the condition (1). Then, we have
∞∑
n=0

Ψn,m,µ,ν

(
x; y, w;

η

tm

)
tn = (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I)

,
1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
Λµ,ν(y, w; η),

(49)

provided that each member of (49) exists.

Remark 4.7.

Using the generating matrix function (48) for the Hermite matrix polynomials Hk(y, w,D) and
taking ak = 1

k!
, µ = 0 and ν = 1, we have

∞∑
n=0

[ 1
m
n]∑

k=0

(P +Q+ I)n−mk[(P + I)n−mk]
−1H

(P,Q)
n−mk(A,B, x)

1

k!
Hk(y, w,D)

× ηktn−mk =

[ ∞∑
n=0

(P +Q+ I)n[(P + I)n]−1H(P,Q)
n (A,B, x)tn

]
×
[ ∞∑
k=0

1

k!
Hk(y, w,D)ηk

]
= (1− t)−P−Q−I 3F2

(
1

2
(P +Q+ I),

1

2
(P +Q+ 2I), A;P + I, B;− 4xt

(1− t)2

)
exp

(
yη
√

2D − wη2I
)
.
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Aktaş, R., Çekim, B. and Şahin, R. (2012). The matrix version for the multivariable Humbert
polynomials, Miskolc Mathematical Notes, Vol. 13, No. 2, pp. 197 - 208.
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Çekim, B. and Aktaş, R. (2015). Multivariable matrix generalization of Gould-Hopper polyno-
mials, Miskolc Mathematical Notes, Vol. 16, No. 1, pp. 79 - 89.
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Defez, E., Jódar, L. and A. Law, A. (2004). Jacobi matrix differential equation, polynomial
solutions, and their properties, Computers and Mathematics with Applications, Vol. 48, pp.
789 - 803.

Dunford, N. and Schwartz, J.T. (1957). Linear Operators, Part I, General Theory. Interscience
Publishers, INC. New York.
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Tasdelen, F., Aktaş, R. and Çekim, B. (2011). On a multivariable extension of Jacobi matrix
polynomials, Computers and Mathematics with Applications, Vol. 61, No. 9, pp. 2412 -
2423.

25

Shehata: Some relations on generalized Rice's matrix polynomials

Published by Digital Commons @PVAMU, 2017


	Some relations on generalized Rice's matrix polynomials
	Recommended Citation

	tmp.1627079345.pdf.A8aqm

