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Abstract 
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accessed by the predator while both the prey and predator are being subjected to Beddington-

DeAngelis functional response. It is observed that a Hopf-bifurcation may occur around the 
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1. Introduction 

 

The central goal in ecology is to understand the dynamical relationship between predator and 

prey, Clark (1976) and Kot (2001). The most significant factor of the prey predator relationship  

is the predator’s rate of feeding upon prey, known as predator’s functional response, which is the 

average number of prey killed per individual predator per unit of time. 

 

In 1965, Holling gave three different types of functional response for different kinds of species to 

model the phenomena of predation, making the standard Lotka-Volterra system, Lotka (1925) 

and Volterra (1926) more realistic.  

 

Beddington (1975) and DeAngelis et al. (1975) independently proposed a functional response 

which is similar to Holling type II which contained an extra term describing mutual interference 

by predators. Thus, a predator prey model with Beddington-DeAngelis response is of the form, 

 

 

1 1 1 1 2
1 1

1 2

2 1 1 2
2

1 2

1 ,

.

dx x m x x
r x

dt l A Bx Cx

dx m x x
kx

dt A Bx Cx



 
   

  

  
 

     (1.1) 

Here, 1x  and 2x  are the population density of the prey species and the predator species 

respectively, 1r  is the intrinsic growth rate of the prey, l  is the carrying capacity of the prey 

population, 1m  is the catching rate of the predator species,   is the efficiency with which 

resources are converted to new consumers, A  is the saturation constant, C  scales the impact of 

predator’s mutual interference, k  is the mortality rate of the predator. B (Units: 1/prey) 

describes the effort of handling time on the feeding rate. 

 

In 2004, Fan and Kuang (2004) used the model to study the dynamics of a non-autonomous prey 

predator system. Wei and Chen (2012) modeled the periodic solution of Prey-Predator system 

using form  1.1   

 

Later on, Mehta et al. (2012) modified the response to study prey predator model with reserved 

and unreserved transmission function. 

 

In the present paper, along with the above mentioned conditions, we further assume that the prey 

species is subjected to a harvesting effort, which is of major interest to researchers, Sharma and 

Samanta (2015), Daga et al. (2014), Mehta et al. (2012), Kar and Chakraborty (2010), Chaudhuri 

(1988), Kar and Chaudhuri (2003, 2003), Das et al. (2009, 2009, 2009), Mukherjee (2012), 

Chattopadhyay et al. (1999) and we consider the universally prevalent intra-specific competition 

among the predator species. This intra-specific competition is assumed to bring in an additional 

instantaneous death rate only to the predator population and is proportional to the square of the 

said population which further modifies the model suggested in  1.1 .  
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Although some similar kind of models have appeared in recent literature, the main distinctive 

feature in the proposed model is the inclusion of prey species being harvested while the predator 

prey model is being subjected to Beddington-DeAngelis functional response. Incorporation of 

prey species under harvesting leaves a fraction of them to be accessible to the predators. Under 

this additional effect, the model becomes more ecologically realistic than the existing models. 

 

The construction and model assumptions are discussed in Section 2. In Section 3, positivity and 

existence of the solutions of the equilibrium points are discussed using Cardan’s Method and 

Descartes’ rule of signs along with their existence and stability analysis. In the next section, our 

analysis shows the existence of Hopf Bifurcation around the interior equilibrium. All our 

important findings are numerically verified using Maple in Section 5. Finally, Section 6 contains 

the general discussions of the paper and the implications of our findings.  

 

2. Formulation of the problem 

 
Let us consider a prey and predator population whose growth obeys the given dynamical system: 
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with initial conditions  

 

                                                                  .00,00 21  xx
                             

 2.2  
 

Here )(1 tx  and )(2 tx  are the density of the prey and predator species; 1c  is the catchability 

coefficient; E  is the effort; BAmklr ,,,,,, 11  and C are positive constants and have usual 

meanings as discussed in Section1; 2r is the growth rate of the predator species and 22r defines 

the intra specific competition rate among predators. 

 

3. Equilibrium points: their existence and stability 
 

In this section we will discuss the dynamical behavior of the possible equilibrium points of the 

system  1.2  which are: 

 

1. Trivial equilibrium:  .0,00E  

2. Axial equilibrium:  0,11 xE , where  

 

 
.

1

11
1

r

Ecrl
x


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3. Interior equilibrium:  ., *

2

*

12 xxE  

 

3.1. Local stability analysis 

 

Analyzing the existence of the non trivial interior equilibrium of the model system  1.2 , i.e., on 

solving  
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dt dt
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we find 
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The variational matrix corresponding to the system  1.2  is  
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3.1.1. Trivial equilibrium 0E  

 

The variational matrix of the system   1.2  at  0,00E is given by  
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The roots of the corresponding characteristic equation are given by  

 

                                           

., 22111 krEcr    
 

Here,  
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c
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1

  

(i.e., effort exceeds the BTP of the 1x  species) and  

2. 02   if kr 2   (i.e., the mortality rate exceeds the growth rate of the 2x species).  
 

Hence, we arrive at the following theorem.

  

Theorem 3.1.1.  
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1
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The roots of the corresponding characteristic equation are  

 

                                                  Ecr 111    
and 
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Hence, we arrive at the following theorem. 

 

Theorem 3.1.2. 

 

The axial equilibrium 1E of the system  1.2  is a stable node provided  
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Under this circumstance the trivial equilibrium at  0,00E becomes an unstable saddle point. 

 

3.1.3. Interior equilibrium 2E  
 

The variational matrix of the system  1.2  at  *

2
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12 , xxE  is given by  
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The corresponding characteristic equation is given by   
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It follows from Routh Hurwitz criterion; all eigenvalues of equation  2.3  have negative real 

parts if and only if  
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Hence, we arrive at the following theorem.   

                                      

Theorem 3.1.3. 

 

The interior equilibrium is locally asymptotically stable if and only if inequalities  3.3  are 

satisfied. 

 

3.2. Global stability analysis 

 

Here, we will analyze the global stability behavior of the interior equilibrium point  *
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where 1k is a constant, whose value is to be determined in the subsequent steps. It can be easily 

shown that the function V  is zero at the equilibrium point  *
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1 , xx  and is positive for all other 

values of 21, xx . Differentiating V with respect to t we get 
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Also, we have set the equilibrium equations  

 

                                             

,01 1*

2

*

1

*

21

*

1
1 













 Ec

CxBxA

xm

l

x
r  

 

                                                 

.0
*

2

*

1

*

11*

2222 


 k
CxBxA

xm
xrr



                                           

 5.3  

 

 
dt

dV
is negative semidefinite in some neighborhood of  *

2

*

1 , xx  provided  

 

                                                 .21

*

2

*

1 CxBxACxBxA                                                  6.3   
 

Hence, we arrive at the following theorem.                                                   

 

Theorem 3.2. 

 

The interior equilibrium point 3E  of the system  1.2  is globally asymptotically stable if 
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



 k

CxBxA

xmBxA
xrr

2*

2

*

1

11

*

1*

2222 2


 

 

               

   
 

.
4*

2

*

1

*

11

*

1

*

21

*

2

CxBxA

xmBxAxmCxA








 
 

To check whether the system  1.2 is stable or not, let us consider l  as the bifurcation parameter. 

For this purpose, let us state the following theorem. 

 

Theorem 4.1. (Hopf bifurcation theorem Murray (1989)) 

  

If  lai , 2,1i are smooth functions of l in an open interval about Rlc   such that the 

characteristic equation  1.4  has a pair of complex eigenvalues     

 

                     ),( 2121 Rlblbwithliblb   
 

so that they become purely imaginary at  

 

                        cll 
  

and 

                  

01 
 clldl

db
,  

 

then a Hopf Bifurcation occurs around 2E  at cll   (i.e. a stability change of 2E will be 

accompanied by the creation of a limit cycle at cll  ). 

 

Theorem 4.2. 

 

 The system  1.2  possesses Hopf Bifurcation around 2E  when l  passes through cl  
provided 

    .0,0 12  lala  
 

Proof: 

 

At cll  , the characteristic equation of  1.2  for 2E becomes 02

2  a , giving roots 

 

           
., 2221 aiai  
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Hence, there exists a pair of purely imaginary eigenvalues. Also  2,1' isai  are smooth 

functions of l . Taking l  in a neighborhood of ,cl the roots are  

 

                                                   liblbliblb 212211 ,     

 

where  

 

                                                    2,1, ilbi  are real. 

 

We are going to verify the condition  

 

                                                  .2,1,0|Re  il
dl

d
clli  

 

Substituting      liblbl 21   in  1.4  we get 

 

                                                  .02211

2

21  aliblbaliblb                                         2.4  
 

Taking derivative of both sides of  2.4 w.r.t l , we have 

 

                2                   .022112112121 







 












 




 aliblbaliblbaliblbliblb
    

)3.4(  

 

Comparing real and imaginary parts of  3.4 , we have 

 

                                      

.022

,022

21212112

211112211






 















 













bababbbb

abababbbb

 

That is, 

 

                                               ,032211 





DbDbD                                                                              4.4          

                                           ,042112 





DbDbD                                                                   5.4  

 

where  

 

         ,2 111 abD   

        ,2 22 bD   

       
,2113





 abaD  

      .214 baD


  
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Now, from  4.4 and  5.4 , we have, 

 

                                                     

1 3 2 4
1 2 2

1 2

,
D D D D

b
D D

  


                                                            

 6.4  

 

at ,cll 
 

 

Case I:  

 

At  ,,0 221 abb   

      ,11 aD  ,2 22 aD  ,23


 aD .214 aaD


  

 

So,  

 

    
02 21214231 





 aaaaDDDD  at .cll 
 

 

Case II:  

 

At ,,0 221 abb   

 ,11 aD  ,2 22 aD  ,23


 aD ,214 aaD




 
 

So  

 

02 21214231 





 aaaaDDDD  at .cll 
 

 

Therefore,  

 

             

   
cc lllli

DD

DDDD
l

dl

d





 ||Re

2

2

2

1

4231
 

                                                           .0  

 

Hence, by theorem  1.4 , the result follows. 

 

5. Numerical results 
 

Analytical studies remain incomplete without verification of the derived results. So, in this 

section, we consider two numerical examples: 
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Example 1. 

 

We take the parameter values as  

 

,0.12,0.12,1.0,1000,0.13,0.14 121  BAmlrr  

006.0,50.0,0.1,01.0,0.12 221  rEcC   

 

in appropriate units. For the above values we find that the equilibrium points are 

 

00009727.27,2706342.999 21  xx . 

 

 
Figure 1.  Phase plane trajectories of the prey predator system with different initial 

values corresponding to data set, Example1 

 

 Example 2. 

  

On taking the parameter values as  

 

,1.0,0.12,0.12,5.2,110,0.3 111  cBAmlr  

0.1,006.0,01.0,4.0,0.1 222  CrrE   

 

in appropriate units and find the equilibrium points  

 

,4912777.1031 x  

11996529.402 x . 
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Further, the phase plane trajectory is given by  

 

 
 

Figure 2. Phase plane trajectories of the prey predator system with different initial values 

corresponding to data set, Example 2 

 

Plotting the prey and predator population w.r.t time t  we find the curve  

 

21, xx  

                                               t  

 

Figure 3. Solution curve of the prey-predator population for a period of 0t to 10 units 
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6.  Conclusion 
 

In the paper, we have developed a prey-predator model where only the prey population is being 

subjected to harvesting and the predator species is subjected to intra specific competition while 

both are under the effect of Beddington-DeAngelis functional response. Then we have discussed 

the dynamical behaviors of the system at various equilibrium points and their stability which are 

very similar to those of some recent research works. In our system there are three equilibrium 

points, 0E the trivial one, 1E the axial one and 2E the interior one. Here, 0E is a stable node 

provided  

 

,
1

1

c

r
E  2rk  .  

 

The axial equilibrium 1E  exists but is either a saddle point or an unstable node. The interior 

equilibrium 2E exists provided inequality  3.3  holds true. The global stability analysis is done 

by constructing a suitable Lyapunov function. 

 

The major difference between our work and the other recent work done is the incorporation of 

Beddington-DeAngelis functional response on a harvested prey species and a predator species 

under the effect of intra specific competition thereby enriching the dynamics of the system. We 

have further investigated the condition for limit cycle to arise by Hopf bifurcation. The carrying 

capacity of the prey species l  plays a vital role to control the stability of the population and a 

Hopf bifurcation may occur at the interior equilibrium point keeping it as a bifurcation 

parameter. If the carrying capacity of the prey species, l , remains below a threshold value, the 

stability of the prey species will be affected. 

 

Since theorems remain incomplete without numerical verifications of analytical results. We 

consider some hypothetical data set and verify them using Maple. Growth curves and phase 

plane trajectories are also discussed. 
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Appendix  

 
1. Since the signs of PONM ,, are not obvious, applying Descartes’ Rule of sign on equation 

 1.3 we find that at least one positive root exists provided the following conditions are fulfilled: 

 

        .0,0,0,0  PONM  

        .0,0,0,0  PONM  

        .0,0,0,0  PONM  

        .0,0,0,0  PONM  

        .0,0,0,0  PONM  

        .0,0,0,0  PONM  

        .0,0,0,0  PONM  

        .0,0,0,0  PONM  
 

Further, by Cardan’s method, roots of equation  1.3  is given by   

 

                        ,
3

4
2

1
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1 3
1

32
3

1

32
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HGGHGGx 
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2

93 M
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O
H   and 

3

2

2
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27 3

N ON
G P

M M
    

 

which are real provided 04 32  HG  and positive provided  
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1 3
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M

N
HGGHGG  

 

2. Corresponding to the equilibrium point  ., *

2

*

12
xxE  

 

We can write  4.3  together with  5.3  as: 

 

 

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        

    

2 2
* * * *1 1

1 1 1 22 2 2 2 1 1 1 1 2 2

1 2

* * * *1
2 1 1 1 1 2 2* *

1 2

r m
x x k r x x x x x k x x x

l A Bx Cx
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x x x k x x x
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(On choosing


1
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