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Abstract  

Error correcting codes are required to ensure reliable communication of digitally encoded 

information. One of the areas of practical importance in which a parallel growth of the subject 

error correcting codes took place is that of burst error detecting and correcting codes. The nature 

of burst errors differs from channel to channel depending upon the behavior of channels or the 

kind of errors which occur during the process of transmission. The rate of transmission is 

efficient if the number of parity-check digits are as minimum as possible. It is usually not 

possible to give the exact number of parity-check digits required for a given code. However, 

bounds can be obtained over the number of parity-check digits. An upper bound for a linear code 

capable of detecting/ correcting burst errors or its variants is many a times established by the 

technique used to establish Varsharmov-Gilbert-Sacks bound by constructing a parity-check 

matrix for the requisite code. This technique not only ensures the existence of such a code but 

also gives a method for constructing such a code. The synthesis method using this technique is 

cumbersome and to the best of our knowledge, there is no systematic way to construct a parity-

check matrix for a burst error correcting non-binary linear code.  Extending the algorithm for 

binary linear codes given by the authors to non-binary codes, the paper proposes a new algorithm 

for constructing a parity-check matrix for any  linear code over GF(q) capable of detecting and 

correcting a new kind of burst error called `m-repeated burst error of length b or less'. Codes 

based on the proposed algorithm have been illustrated.  
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1. Introduction  
 

In coding theory one of the important aspects of study is the detection and correction of errors. 

Codes have been constructed to combat such errors and many of the codes developed have found 

applications in numerous areas of practical interest. Hamming (1950) dealt with construction of 

codes capable of detecting and correcting random errors as well as bounds. Extending the work 

of Hamming, Abramson (1959) constructed a single error and double-adjacent error correcting 

code which can be considered as the starting point for all the other work on burst codes. Fire 

(1959) depicted a more general concept of clustered errors and defined two types of burst errors 

viz., ‘open-loop burst errors’ or simply a burst and ‘closed-loop burst errors’. A burst of length b 

may be defined as follows (see Fire (1959) and Peterson and Weldon (1972)):  

 

Definition 1.1.  
 

A burst of length b is a vector whose only non-zero components are among some b consecutive 

components, the first and the last of which is non-zero.  

 

A closed-loop burst error may be defined as follows (see Fire (1959) and Peterson and Weldon 

(1972)): 

 

Definition 1.2. 
 

Let b be an integer and ξ = (ξ1, ξ2,…, ξn) be a vector in V
n
(q), a vector space of n-tuples over 

GF(q). If 2 ≤ b ≤ (n + 1)/2, then ξ is called a `closed-loop burst vector of length b', whenever 

there is an i such that 1 ≤ i ≤ b − 1, ξi .ξn−b+i+1 ≠ 0, ξi+1 = ξi+2 = … = ξn−b+i = 0. 

 

Since the development of various burst error detecting and correcting codes, several variants and 

modifications of the definition of a burst error came up depending upon the various kinds of 

channels which were in use. A low-density burst (see Wyner (1963)) may be defined as follows: 

 

Definition 1.3. 
 

A low-density burst of length b with weight w is an n-tuple whose only non-zero components are 

confined to some b consecutive positions, the first and the last of which are non-zero, with w (w 

≤ b) non-zero components within such b consecutive digits. 

 

Chien and Tang (1965) considered a kind of burst error which has drawn attention of many 

researchers. Such bursts have been termed as CT bursts defined as follows: 

 

Definition 1.4. 
 

A burst of length b is a vector whose only non-zero components are confined to some b 

consecutive components, the first of which is non-zero. 
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Dass (1980) further modified this definition as follows: 

 

Definition 1.5. 
 

A burst of length b (fixed) is an n-tuple whose only non-zero components are confined to b 

consecutive positions, the first of which is non-zero and the number of its starting positions in an 

n-tuple is among the first n − b + 1 components. 

 

This definition is useful for channels not producing burst errors near the end of a code word. 

Still amongst the various generalizations of bursts, there are codes which have been developed 

for the correction of multiple bursts, bursts of bursts, random multiple bursts, low-density bursts 

etc. The initial contributors in the area of burst error detecting/correcting codes have been 

Bridwell and Wolf (1970), Burton (1969), Dass (1974, 1975, 1980), Elspas and Short (1962), 

Kasahara and Kasahara (1967), Kasami (1962), Melas (1960), Melas and Gorog (1963), Posner 

(1965), Reiger (1960), Sharma and Dass (1974) and Stone (1961) amongst others.  

 

It has been observed that in very busy communication channels, errors repeat themselves. So 

there is a need to develop codes which can detect and correct repeated burst errors. Recently, 

repeated burst error detecting and correcting codes have been studied by the authors (2008, 

2009) and by Berardi et al. (2009). An m-repeated burst of length b has been defined as follows 

(Dass and Verma (2008)): 

 

Definition 1.6. 
 

An m-repeated burst of length b is a vector of length n whose only non-zero components are 

confined to m distinct sets of b consecutive components, the first and the last component of each 

set being non-zero. 

 

For example, (001020024100314030100) is a 4-repeated burst of length 3 over GF(5). 

 

Lower and upper bounds on the number of parity-check digits required for a linear code that is 

capable of detecting errors which are 2-repeated burst errors have been obtained by Berardi et al. 

(2009). In the same paper, codes capable of detecting and simultaneously correcting such errors 

have been dealt with. A lower bound on the number of parity-check digits required for m-

repeated burst error detecting linear code and for codes capable of detecting and simultaneously 

correcting such errors have also been dealt with by the authors (2009). Lower and upper bounds 

on the number of parity-check digits for codes that can correct 2-repeated bursts of length b or 

less have been obtained by the authors (2008) and then codes capable of correcting m-repeated 

bursts have also been considered. Bounds on the number of check digits required for codes 

correcting such errors have been obtained. In the same paper, the authors have also considered an 

illustration of a (5b, b) binary code correcting 2-repeated bursts of length b or less with parity-

check matrix  
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H   [   

  
  
  
  

]  

 

To the best of the knowledge of the authors, there was no systematic way to construct a parity-

check matrix for a burst error correcting linear code. Binary codes capable of correcting m-

repeated burst errors have been constructed by the authors (2012). Illustrations with particular 

value of m have also been provided. For m = 1, the code constructed by this technique helps 

in resolving a long standing problem of devising a systematic algorithm for the 

construction of a burst error correcting code (see Example 2.4, Dass and Verma (2012) ). 
There is no need to construct parity-check matrix by the laid down synthesis procedure as given 

by Campopiano (1962) and Theorem 4.17 (Peterson and Weldon (1972)). Such a matrix can 

always be constructed once the value of b is known. 

 

The study of these codes is important not only from a mathematical point of view as a 

generalization of burst but also because of the occurrence of such errors in other subject areas. In 

a recent study by Srinivas et al. (2007), the changes in the neuronal network properties during 

epileptiform activity in vitro in planar two-dimensional neuronal networks cultured on a 

multielectrode array, using the in vitro model of stroke-induced epilepsy have been explored. 

Neuronal networks in culture show spontaneous firing activity with short phases of synchronized 

firing known as network bursts. A network burst represents the period of synchronized activity in 

the network. For the detection of network burst, a threshold value was calculated as product of 

number of spikes per time bin and number of active channels. An active channel was defined as a 

channel presenting two bursts in an acquisition time of 300 sec. In other words, an active channel 

presents 2-repeated burst in an acquisition time of 300 sec. Further, experiments performed on 

hippocampal networks showed synchronized network bursts of similar duration. Glutamate-

injured networks also showed network bursts of similar durations, but the bursts occurred more 

frequently. In other words, the value of m for m-repeated bursts is much higher in glutamate-

injured networks as compared to control networks. 
 

The purpose of this paper is to present an easy and new method for the construction of a parity-

check matrix of m-repeated burst error correcting linear code in the non-binary case. The parity-

check matrix of 2m-repeated burst error detecting non-binary code has been deduced as a 

particular case from the case of m-repeated burst error correcting code. In Section 2, we state the 

results that are required to construct the required parity-check matrix. In Section 3, illustrations 

of parity-check matrix have been provided. Section 4 consists of conclusion. In what follows, a 

linear code will be considered as a subspace of the space of all n-tuples over GF(q). The distance 

between two vectors shall be considered in the Hamming's sense. 
 

 

2. Results  
 

In this section we state few results that are required for the construction of codes capable of 

detecting and correcting repeated burst errors. An upper bound on the number of parity-check 
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digits for a code capable of detecting a burst error is as follows (see Theorem 4.14, Peterson and 

Weldon (1972)): 

 

Result 2.1.  
 

For detecting all burst errors of length l or less with a linear block code of length n, l parity check 

symbols are necessary and sufficient. 

 

An upper bound on the number of parity-check digits for a burst error correcting code was 

obtained by Campopiano (1962) which may be stated as follows: 

 

Result 2.2.  
 

There exists an (n, k) linear code that corrects any single burst of length b < n/2 or less provided 

that 

 

              [               ]. 
 

This bound was derived by constructing a parity-check matrix of the code by a synthesis 

procedure. Generalizing Result 2.1 and Result 2.2 for the detection and correction of m-repeated 

burst errors respectively as obtained in Theorem 4.1 and Theorem 3.2 by Dass and Verma 

(2008), we have the following:  

 

Result 2.3.  
 

There shall always exist an (n, k) linear code over GF(q) that has no m-repeated burst of length b 

or less as a code word provided that 

 

                     ((
          

   
)                  

 ∑ (
      

 
)                 

   

   

)                                                            

 

 

Result 2.4.  
 

There shall always exist an (n, k) linear code over GF(q) that corrects all m-repeated bursts of 

length b or less as (n > 2mb ) provided that 
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                    ((
            

    
)          

 ∑ (
       

 
)                  

    

   

)                                                

 

The existence of such codes has again been proved as in Result 2.1 and Result 2.2 by  

constructing a parity-check matrix for m-repeated burst error detecting and correcting code 

respectively by using the technique to establish Varsharmov-Gilbert-Sacks bound (Theorem 

4.17, Peterson and Weldon (1972)). 

 

 

3.  Illustrations of Repeated Burst Error Detecting and Correcting Non-

binary Linear Codes 
 

In this section we provide an example of non-binary linear code that can correct m-repeated burst 

errors of any length followed by illustrations with a specified value of m and length of burst. We 

shall also consider repeated burst error detecting non-binary linear codes for even values of m. 

 

Example 3.1(a).  
 

Consider the following matrix H over GF(q): 

 

     H   =  [

 
 
 
 

 
 
 
 

 
  
 

 
 
 
 

  
  
 
  

  
   
 

       

]  , (q – 1) ≥ 2m.                                                    (3.1) 

 

Such a matrix considered as a parity-check matrix shall give rise to a ((q + 1)b, 2b) linear code. 

Such a code corrects m-repeated bursts of length b or less over GF(q) for (q − 1) ≥ 2m. 

 

 

Justification:  
 

For (q − 1) = m, according to the condition laid down in Result 2.4 (see Theorem 3.2, Dass and 

Verma (2008) ), a column hj can be added to H provided that it is not a linear combination of 

immediately preceding b − 1 or fewer columns together with any (2m − 1)b or less consecutive 

columns from the remaining first j − b columns. 

 So we start with (100...0) and keep on adding the columns in H to get a 2mb X (2m + 2)b matrix 

as defined above. It can be easily verified that the requisite condition is satisfied. Now we prove 
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that none of the q
2mb 

− 1
 
non-zero tuples over GF(q) can be added further to H to get ((2m + 2)b 

+ 1) –th column. Now a q
2mb 

non-zero tuple can be considered as consisting of 2m sets of b 

consecutive components. Let ai denote the i-th digit of any q
2mb

 tuple. We consider the following 

cases. 

 

Case 1.  
 

When ai = 0 for at least one i, i = 1, b + 1, 2b + 1,…, (2m − 1)b + 1.  

 

The digits ai + 1, ai + 2…and ai + (b − 1) are linear combination of  h(2m + 1)b + 2,…, h(2m + 2)b −1 and h(2m + 

2)b. The remaining (2m − 1) components a1, a2,…, ai − 1,  ai + b, ai + b +1,…,a2mb will be a linear 

combination of at most (2m − 1) distinct sets of b or less consecutive  columns amongst the  first 

2mb columns of H. Thus, any tuple with 0 at ai-th digit, i = 1, b + 1, 2b + 1,…, (2m − 1)b + 1 

cannot be added as (2m + 2)b + 1-th column of H. 

  

Case 2.  
 

When ai ≠ 0 for each i, i = 1, b+1, 2b+1,…, (2m−1)b+1. This case is further divided into 

following two subcases. 

 

Case 2(a).  
 

When ai = aj  ≠ 0 for some i, j = 1, b + 1, 2b + 1,…, (2m − 1)b + 1, i ≠ j.  

 

The two sets of b consecutive digits viz., ai , ai + 1, ai + 2…and ai + (b − 1),  aj, aj + 1,aj + 2…and aj + (b − 1)  

are linear combination of h2mb + 1, 2mb + 2,…, h(2m + 1)b,  h(2m + 1)b + 2,…, h(2m + 2)b − 1 and h(2m + 2)b. The 

remaining (2m − 2)b  components viz., a1, a2,…, ai − 1,  ai + b, ai + b + 1,…, aj − 1, aj + b, aj + b + 1…, 

a2mb will be a linear combination of at most (2m − 2) distinct sets of b or less consecutive 

columns amongst the  first 2mb columns of H. 

   

Case 2(b).  
 

When ai  ≠ 0  is distinct for each i,  i = 1, b + 1, 2b + 1,…, (2m − 1)b + 1.  

 

We observe that ai, aj for some i, j = 1, b + 1, 2b + 1,…, (2m − 1)b + 1, i ≠ j coincide with a 

multiple of h(2m + 1)b + 1. The two sets of b consecutive digits viz., ai , ai + 1, ai + 2…and ai + (b − 1),  aj, 

aj + 1, aj + 2…and aj + (b − 1)  are linear combination of h2mb + 2,…, h(2m + 1)b, h(2m + 1)b + 1, h(2m + 1)b + 2,…, 

h(2m + 2)b − 1 and h(2m + 2)b. The remaining (2m − 2)b components viz., a1, a2,…, ai − 1,  ai + b, ai + b+1, 

…, aj − 1, aj + b, aj + b+  1…, a2mb will be a linear combination of at most (2m − 2) distinct sets of b 

or less consecutive columns amongst the  first 2mb columns of H.  

 

Thus, any tuple with non-zero digit as ai-th digit , i = 1, b + 1, 2b + 1,…, (2m − 1)b + 1 cannot be 

added as (2m + 2)b + 1-th column of H.  

 

 

 

7

Dass and Verma: Burst Error Detecting and Correcting Non-binary Linear Codes

Published by Digital Commons @PVAMU, 2017



344  B. K. Dass
 
 and Rashmi Verma 

 

Therefore, no more columns can be added to H.  

 

Thus, the ((2m + 2)b, 2b) binary code which is the null space of the matrix H  as constructed 

above will correct all m-repeated bursts of length b or less over GF(q).  

 

Similarly, for (q − 1) > 2m, matrix can be constructed and condition is satisfied. 

 

 

Example 3.1(b).  
 

Consider the following matrix H over GF(q): 

 

H  = [    

  
  
 
  

]  , (q −1) < 2m.                                                                                       (3.2) 

 

Such a matrix considered as a parity-check matrix shall give rise to a ((2m + 1)b, b) linear code. 

Such a code corrects m-repeated bursts of length b or less over GF(q) for (q − 1) < 2m. 

 

Justification:  
 

For (q − 1) < 2m, Case 2(b) is not possible. Thus the matrix reduces to (3.2). 

 

It is worthwhile to note that such a code can serve dual purpose, i.e., it can be used to correct m-

repeated bursts of length b or less or it can be used to detect a 2m-repeated burst of length b or 

less (see Remark 4.4, Dass and Verma (2008)). 

 

Example 3.2.  
 

For m = 2, b = 3 and q = 5, the parity-check matrix for such a code is 

 

H =  [   

  
  
  
  

  
   
   
   

]. 

 

It may be easily verified that this code corrects 2-repeated bursts of length 3 or less over GF(5). 

The various linear combinations of columns of parity-check matrix corresponding to the required 

digits of vector according to Case 1 and Case 2 as discussed above in Example 3.1(a) have been 

provided in the following tables. 

 

Case 1.  
 

At least one of the digits a1, a4, a7 and a10 is zero 

8
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Table 3.1: Linear combinations of columns of parity-check matrix for Case 1of Example 3.2.  

For  a1 = 0 

 

a2 a3 h17 h18 

0 0 0 0 

0 1 0 1 

0 2 0 2 

0 3 0 3 

0 4 0 4 

1 0 1 0 

1 1 1 1 

1 2 1 2 

1 3 1 3 

1 4 1 4 

2 0 2 0 

2 1 2 1 

2 2 2 2 

2 3 2 3 

2 4 2 4 

3 0 3 0 

3 1 3 1 

3 2 3 2 

3 3 3 3 

3 4 3 4 

4 0 4 0 

4 1 4 1 

4 2 4 2 

4 3 4 3 

4 4 4 4 
 

For  a4 = 0 

 

a5 a6 h17 h18 

0 0 0 0 

0 1 0 3 

0 2 0 1 

0 3 0 4 

0 4 0 2 

1 0 3 0 

1 1 3 3 

1 2 3 1 

1 3 3 4 

1 4 3 2 

2 0 1 0 

2 1 1 3 

2 2 1 1 

2 3 1 4 

2 4 1 2 

3 0 4 0 

3 1 4 3 

3 2 4 1 

3 3 4 4 

3 4 4 2 

4 0 2 0 

4 1 2 3 

4 2 2 1 

4 3 2 4 

4 4 2 2 
 

For  a7 = 0 

 

a8 a9 h17 h18 

0 0 0 0 

0 1 0 2 

0 2 0 4 

0 3 0 1 

0 4 0 3 

1 0 2 0 

1 1 2 2 

1 2 2 4 

1 3 2 1 

1 4 2 3 

2 0 4 0 

2 1 4 2 

2 2 4 4 

2 3 4 1 

2 4 4 3 

3 0 1 0 

3 1 1 2 

3 2 1 4 

3 3 1 1 

3 4 1 3 

4 0 3 0 

4 1 3 2 

4 2 3 4 

4 3 3 1 

4 4 3 3 
 

For  a10 = 0 

 

a11 a12 h17 h18 

0 0 0 0 

0 1 0 4 

0 2 0 3 

0 3 0 2 

0 4 0 1 

1 0 4 0 

1 1 4 4 

1 2 4 3 

1 3 4 2 

1 4 4 1 

2 0 3 0 

2 1 3 4 

2 2 3 3 

2 3 3 2 

2 4 3 1 

3 0 2 0 

3 1 2 4 

3 2 2 3 

3 3 2 2 

3 4 2 1 

4 0 1 0 

4 1 1 4 

4 2 1 3 

4 3 1 2 

4 4 1 1 
 

 

 

Case 2.  
 

At least one of the pair of digits a1, a4; a1, a7; a1, a10; a4, a7; a4, a10 and a7, a10  is non-zero. 
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Table 3.2.  Linear combinations of columns of parity-check matrix for Case 2 of Example 3.2. 

 

    For  a1 ≠ 0, a4 ≠ 0 

 

a2 a5 h14 h17 

0 0 0 0 

0 1 4 1 

0 2 3 2 

0 3 2 3 

0 4 1 4 

1 0 2 4 

1 1 1 0 

1 2 0 1 

1 3 4 2 

1 4 3 3 

2 0 4 3 

2 1 3 4 

2 2 2 0 

2 3 1 1 

2 4 0 2 

3 0 1 2 

3 1 0 3 

3 2 4 4 

3 3 3 0 

3 4 2 1 

4 0 3 1 

4 1 2 2 

4 2 1 3 

4 3 0 4 

4 4 4 0 
 

    For  a1 ≠ 0, a7 ≠ 0 

 

a2 a8 h14 h17 

0 0 0 0 

0 1 2 3 

0 2 4 1 

0 3 1 4 

0 4 3 2 

1 0 4 2 

1 1 1 0 

1 2 3 3 

1 3 0 1 

1 4 2 4 

2 0 3 4 

2 1 0 2 

2 2 2 0 

2 3 4 3 

2 4 1 1 

3 0 2 1 

3 1 4 4 

3 2 1 2 

3 3 3 0 

3 4 0 3 

4 0 1 3 

4 1 3 1 

4 2 0 4 

4 3 2 2 

4 4 4 0 
 

    For  a1 ≠ 0, a10 ≠ 0 

 

a2 a11 h14 h17 

0 0 0 0 

0 1 3 2 

0 2 1 4 

0 3 4 1 

0 4 2 3 

1 0 3 3 

1 1 1 0 

1 2 4 2 

1 3 2 4 

1 4 0 1 

2 0 1 1 

2 1 4 3 

2 2 2 0 

2 3 0 2 

2 4 3 4 

3 0 4 4 

3 1 2 1 

3 2 0 3 

3 3 3 0 

3 4 1 2 

4 0 2 2 

4 1 0 4 

4 2 3 1 

4 3 1 3 

4 4 4 0 
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    For  a4 ≠ 0, a7 ≠ 0 

 

a5 a8 h14 h17 

0 0 0 0 

0 1 3 1 

0 2 1 2 

0 3 4 3 

0 4 2 4 

1 0 3 4 

1 1 1 0 

1 2 4 1 

1 3 2 2 

1 4 0 3 

2 0 1 3 

2 1 4 4 

2 2 2 0 

2 3 0 1 

2 4 3 2 

3 0 4 2 

3 1 2 3 

3 2 0 4 

3 3 3 0 

3 4 1 1 

4 0 2 1 

4 1 0 2 

4 2 3 3 

4 3 1 4 

4 4 4 0 
 

      For  a4 ≠ 0, a10 ≠ 0 

 

a5 a11 h14 h17 

0 0 0 0 

0 1 4 3 

0 2 3 1 

0 3 2 4 

0 4 1 2 

1 0 2 2 

1 1 1 0 

1 2 0 3 

1 3 4 1 

1 4 3 4 

2 0 4 4 

2 1 3 2 

2 2 2 0 

2 3 1 3 

2 4 0 1 

3 0 1 1 

3 1 0 4 

3 2 4 2 

3 3 3 0 

3 4 2 3 

4 0 3 3 

4 1 2 1 

4 2 1 4 

4 3 0 2 

4 4 4 0 
 

     For  a7 ≠ 0, a10 ≠ 0 

 

a8 a11 h14 h17 

0 0 0 0 

0 1 2 1 

0 2 4 2 

0 3 1 3 

0 4 3 4 

1 0 4 4 

1 1 1 0 

1 2 3 1 

1 3 0 2 

1 4 2 3 

2 0 3 3 

2 1 0 4 

2 2 2 0 

2 3 4 1 

2 4 1 2 

3 0 2 2 

3 1 4 3 

3 2 1 4 

3 3 3 0 

3 4 0 1 

4 0 1 1 

4 1 3 2 

4 2 0 3 

4 3 2 4 

4 4 4 0 
 

 

The linear combinations for pair of digits a3, a6; a3, a9; a3, a12; a6, a9; a6, a12 and  a9, a12 are 

obtained by replacing h14 and h17 with h15 and h18 respectively in above tables.  

 

Example 3.3.  

 
For q = 3, Case 2(b) is not possible. Therefore the parity-check matrix for such a code is 

 

H     [    

  
  
 
  

]  

 

Remark  
 

The parity-check matrix for m-repeated burst error correcting linear code is same for q = 2 (see 

Dass and Verma (2012)) and q = 3. 

11

Dass and Verma: Burst Error Detecting and Correcting Non-binary Linear Codes

Published by Digital Commons @PVAMU, 2017



348  B. K. Dass
 
 and Rashmi Verma 

 

Example 3.4.  
 

For m = 2, b = 3 and q = 3, the parity-check matrix for such a code is 

 

H =  [   

  
  
  
  

]  

 

It has been verified that this matrix corrects 2-repeated bursts of length 3 or less over GF(3). 

 

4. Conclusion  
 

The main purpose of the paper is to present an algorithm for constructing a parity-check matrix 

for any non-binary linear code capable of correcting m-repeated burst error of any given length b.  

The algorithm not only simplifies the construction of such codes but also provides a systematic 

way for the construction of parity-check matrix for linear codes dealing with detection and 

correction of repeated burst errors and in particular, burst errors. The cumbersome synthesis 

procedure given in Theorem 3.2, Dass and Verma (2008) to construct a parity-check matrix for 

the requisite code using the technique to establish Varsharmov-Gilbert-Sacks bound has been 

replaced by considering a matrix of the type given in Examples 3.1(a) and 3.1(b). It is clear that 

for given feasible integer values of the parameters q, m and b, a matrix of the type H as in (3.1) 

and (3.2) can always be constructed. 
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