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Abstract

In this present work, the Kudryashov method is used to construct exact solutions of the (1+1)-
dimensional and the (1+2)-dimensional form of the generalized Ito integro-differential equation.
The Kudryashov method is a powerful method for obtaining exact solutions of nonlinear evolution
equations. This method can be applied to non-integrable equations as well as integrable ones.
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1. Introduction

The study of nonlinear evolution equations (NLEE) has been going on for the past few decades,
see Ebadi et al. (2012), Ceaser and Gomez (2010), Li and Zeng (2007), Li and Zhao (2009),
Liu (2000), and Wazwaz (2008). During this time, there has been a measurable progress that has
been made. There are lots of equations that have been integrated. There are various methods of
integrability that have been developed so far. In addition to NLEEs, there has been a growing

136

1

Akbari: Application of Kudryashov method for the Ito equations

Published by Digital Commons @PVAMU, 2017



AAM: Intern. J., Vol. 12, Issue 1 (June 2017) 137

interest in the nonlinear integro-differential evolution equations. Some of these commonly studied
integro-differential evolution equations are the Ito equation, the generalized shallow water wave
equation and many others. There are various analytical methods of solving these NLEEs that
has also been developed in the past couple of decades. Some of these methods are the exp-
function method (see He and Wu (2006), Aminikhah et al. (2009)), the F-expansion method
(see Abdou (2007), Wang and Li (2005), Ren and Zhang (2006)), the Jacobi elliptic function
expansion method (see Dai and Zhang (2006), Fan and Zhang (2002), Liu et al. (2001)), the
modified simplest equation method (see Zayed (2011), Vitanov et al. (2010), Vitanov (2011),
Jawad et al. (2010), Akbari (2013)), the first integral method (see Raslan (2008), Abbasbandy
and Shirzadi (2010), Feng (2002), Feng and Wang (2003)), the functional variable method (see
Zerarka et al. (2010), Zerarka and Ouamane (2010), Cevikel et al. (2012)), and many others.
In this paper, we propose a Kudryashov method to construct exact travelling wave solutions for
nonlinear evolution equations (see Kudryashov (2004), Kudryashov (1990), Ryabov (2010)). First,
we reduce the nonlinear evolution equations to ODEs by travelling wave variable transformation.
Secondly, we suppose the solution can be expressed in a polynomial in a variable, where it
satisfies the Riccati equation. At the end, the degree of the polynomial can be determined by the
homogeneous balance method, and the coefficients can be obtained by solving a set of algebraic
equations.

In this work, by using the Kudryashov method, we aim to investigate the (1+1)-dimensional and
the (1+2)-dimensional form of the generalized Ito integro-differential equation.

This paper is organized as follows: In Section 2, we describe briefly the Kudryashov method. In
Sections 3 and 4, we apply the proposed method to solve the (1+1)-dimensional and the (1+2)-
dimensional form of the generalized Ito integro-differential equation. In Section 5, the conclusion
will be presented.

2. Modification of truncated expansion method

We consider a general nonlinear partial differential equation (PDE) in the form

P (u, ut, ux, utt, uxt, uxx, . . .) = 0. (1)

Using traveling wave u(x, t) = U(ξ), ξ = kx− ωt carries equation (1) into the following ODE:

P (U,−ωU ′, kU ′, k2U ′′, . . .) = 0. (2)

The main steps of the modification of the truncated expansion method are the following:

Step 1. Determination of the dominant term with highest order of singularity. To find dominant
terms, we substitute

U = ξ−p, (3)

to all terms of equation (2). Then we compare degrees of all terms of equation (2) and choose
two or more with the lowest degree. The maximum value of p is the pole of equation (2) and
we denote it as N . This method can be applied when N is integer. If the value N is non-integer,
one can transform the equation studied.
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Step 2. We look for exact solution of equation (2) in the form

U(ξ) =
N∑
i=0

aiQ
i(ξ), (4)

where ai(i = 0, 1, . . . , N) are constants to be determined later, such that aN 6= 0 while Q(ξ) has
the form

Q(ξ) =
1

1 + d exp(ξ)
, (5)

which is a solution to the Riccati equation

Q′(ξ) = Q2(ξ)−Q(ξ),

where d is arbitrary constant.

Step 3. We can calculate the necessary number of derivatives of the function U . It is easy to do
using a Maple or Mathematica package. Using the case N = 1 we have some derivatives of the
function U(ξ) in the form

U = a0 + a1Q,

Uξ = −a1Q+ a1Q
2,

Uξξ = a1Q− 3a1Q
2 + 2a1Q

3, (6)

Uξξξ = −a1Q+ 7a1Q
2 − 12Q3 + 6a1Q

4.

Step 4. We substitute expressions given by equations (4)-(6) in equation (2). Then we collect
all terms with the same powers of function Q(ξ) and equate the expressions to zero. As a result
we obtain algebraic system of equations. Solving this system we get the values of unknown
parameters.

3. New exact travelling wave solution of the (1+1)-dimensional form of the generalized

Ito integro-differential equation

The (1+1)-dimensional form of the generalized Ito integro-differential equation that is going to
be studied in this section is given by

qtt + qxxxt + a(2qxqt + qqxt) + aqxx

∫ x

−∞
qtdx

′ = 0, (7)

Here, in (7), q is the dependent variable while x and t are the independent variables. The
coefficient a is constant. Equation (7) can reduced to

vttx + vxxxxt + a(2vxxvxt + vxvxxt + vxxxvt) = 0, (8)

using the potential q = vx. Equation (8) is converted to the ODE

c2eu′′′ − ce4u(v) + a(−2ce3u′′u′′ − ce3u′u′′′ − ce3u′′′u′) = 0. (9)
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Equivalently,
cu′′′ − e3u(v) − ae2((u′)2)′′ = 0, (10)

by the wave variables v = u(ξ), ξ = ex− ct, where primes denote the derivatives with respect
to ξ, and e, c are real constants to be determined later. Equation (10) is then integrated twice.
This converts it to

cu′ − e3u′′′ − ae2(u′)2 = 0. (11)

The pole order of equation (11) is N = 1. So we look for the solution of equation (11) in the
following form

u(ξ) = a0 + a1Q. (12)

Substituting equation (12) into equation (11), we obtain the system of algebraic equations in the
following form

Q1 : −ca1 + e3a1 = 0,

Q2 : ca1 − 7e3a1 − ae2a21 = 0,

Q3 : 12e3a1 + 2ae2a21 = 0,

Q4 : −6e3a1 − ae2a21 = 0.

Solving the algebraic equations above, this yields:

a1 =
−6e
a
, c = e3. (13)

From (12) and (13), we obtain the following travelling wave solution of equation (11),

u(ξ) = a0 −
6e

a

(
1

1 + d exp(ξ)

)
, (14)

where a0 and d are arbitrary constants.

Then the exact solution to equation (7) is written as

q(x, t) =
6e2d

a

(
exp(ex− e3t)

(1 + d exp(ex− e3t))2

)
.

4. New exact travelling wave solution of the (1+2)-dimensional form of the generalized

Ito integro-differential equation

The (1+2)-dimensional form of the generalized Ito integro-differential equation to be studied in
this section is given by

qtt + qxxxt + a(2qxqt + qqxt) + aqxx

∫ x

−∞
qtdx

′ + bqyt + dqxt = 0, (15)

Here, in (15), q is the dependent variable while x, y, and t are the independent variables. The
coefficient a, b, and d are constants. Equation (15) can reduced to

vttx + vxxxxt + a(2vxxvxt + vxvxxt + vxxxvt) + bvxyt + dvxxt = 0, (16)
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by using the potential q = vx. Equation (16) is converted to the ODE

c2eu′′′ − ce4u(v) + a(−2ce3u′′u′′ − ce3u′u′′′ − ce3u′′′u′)− cbefu′′′ − cde2u′′′ = 0. (17)

Equivalently,
(c− bf − de)u′′′ − e3u(v) − ae2((u′)2)′′ = 0, (18)

by the wave variables v = u(ξ), ξ = ex + fy − ct, where primes denote the derivatives with
respect to ξ, and e, f , and c are real constants to be determined later. The equation (18) is then
integrated twice. This converts it to

(c− bf − de)u′ − e3u′′′ − ae2(u′)2 = 0. (19)

The pole order of equation (19) is N = 1. So we look for solution of equation (19) in the
following form

u(ξ) = a0 + a1Q. (20)

Substituting equation (20) into equation (19), we obtain the system of algebraic equations in the
following form

Q1 : −(c− bf − de)a1 + e3a1 = 0,

Q2 : (c− bf − de)a1 − 7e3a1 − ae2a21 = 0,

Q3 : 12e3a1 + 2ae2a21 = 0,

Q4 : −6e3a1 − ae2a21 = 0.

Solving the algebraic equations above, this yields

a1 =
−6e
a
, c = e3. (21)

From (20) and (21), we obtain the following travelling wave solution of equation (19)

u(ξ) = a0 −
6e

a

(
1

1 + d exp(ξ)

)
, (22)

where a0 and d are arbitrary constants.

Then the exact solution to equation (15) is written as

q(x, y, t) =
6e2d

a

(
exp(ex− (bf + de+ e3t)

(1 + d exp(ex− (bf + de+ e3t))2

)
.

5. Conclusion

Modification of the truncated expansion method is applied successfully for solving the Ito
equation, which is a nonlinear integro-differential evolution equation. Compared to the methods
used before, one can see that this method is direct, concise and effective. Moreover, the method
can also be applied to many other nonlinear evolution equations.
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