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Abstract 
 

In this paper, we present a numerical method for solving fractional integro-differential equations 

with nonlocal boundary conditions using Bernstein polynomials. Some theoretical considerations 

regarding fractional order derivatives of Bernstein polynomials are discussed. The error analysis 

is carried out and supported with some numerical examples. It is shown that the method is simple 

and accurate for the given problem. 
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1. Introduction 

Integro-differential equations (IDEs) appear in modeling some phenomena in science and 

engineering. For example, the kinetic equations, which form the basis in the kinetic theories of 

rarefied gases, plasma, radiation transfer, coagulation, are expressed by IDEs (Grigoriev et al., 

2010). In recent years, various numerical methods have been developed for solving these kind of 
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equations, for example see (Babolian and Shamloo, 2008; Cuesta and Palencia, 1983; Zhu and 

Fan, 2012) and the references therein. 

This paper is concerned with providing a numerical scheme for the solution of the fractional 

integro-differential equations of the form (Nazari and Shahmorad, 2010) 

    ( )   ( )    ∫   (   ) ( )  
 

 

   ∫   (   ) ( )  
 

 

  (1) 

for        with integral boundary conditions given by 

 ∑(    
(   )( )      

(   )( )) 

 

   

   ∫   ( ) ( )  
 

 

     (2) 

for          where,     ⌈ ⌉  (                 ),    denotes the fractional 

derivative of order   in the Caputo sense as defined in (11), each   ( ) is a known continuous 

function,  ( ),   (   ),   (   ) are holomorphic functions,     ,     ,    and    are constants 

and  ( ) is the unknown function. For      or      , Equation (1) is reduced to a fractional 

Fredholm or Volterra IDE, respectively. 

In this paper, we use Bernstein polynomials as the basis to approximate the solution of the 

problem (1)-(2). Properties and applications of these polynomials have been discussed by various 

authors. For example, Cheng 1983, discussed the rate of convergence of Bernstein polynomials 

expansion of a certain class of functions. Farouki and Goodman, 1996, proved that a Bernstein 

polynomial basis on a given interval is an optimally stable basis, in the sense that no other non-

negative basis yields systematically smaller condition numbers for the values or roots of arbitrary 

polynomials on that interval. Applications of Bernstein polynomials in different aspects of 

computer aided geometric design such as Bezier technique, rational techniques, approximation in 

spaces of geometric objects and surface construction have been discussed in detail by Farin et al., 

2002. Bhatta, 2008, used modified Bernstein polynomials to solve KdV-Burgers equations. The 

work by Delgado et al., 2009, presents the optimal conditioning of collocation matrices related to 

Bernstein polynomials known as Bernstein_Vandermonde matrices. Saadatmandi, 2014, derived 

Bernstein operational matrix of fractional derivatives and he applied it to the collocation method 

for solving multi-order fractional differential equations. Also, the authors recently derived the 

exact operational matrices of Bernstein polynomials and applied it to the fractional advection-

dispersion equations (Jani et al., 2017). 

This paper is organized as follows. In section 2, after providing basic definitions of Bernstein 

polynomials and fractional calculus, some theoretical properties for fractional order integrals and 

derivatives involving Bernstein polynomials are derived. Section 3 is devoted to numerical 

aspect with some applications and a discussion of error estimation of the method. 
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2. Mathematical Formulation 
 

2.1. Bernstein Polynomial Approximation 

 

Definition 1.  

 

Bernstein polynomials of degree   are defined on the interval       as follows. 

     ( )  
(
 
 
) (   ) (   )   

(   ) 
                (3) 

Higher-order derivatives of Bernstein polynomials can be obtained using the next theorem (See 

also Doha et al., 2011). 

 

Proposition 1. 

 

Let   be any positive integer and      . Then, 

 

     
( )( )      ∑(  ) (

 
 
)        ( )          

 

   

  (4) 

with 

 

     
(  )   

(   ) (   ) 
. 

 

Proof: 

 

We provide a simple proof based on the Leibniz formula. 

 

 

    
( )

( )  
 

(   ) 
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) ∑ (
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(   ) 

    

     
(   )   

 

   

  

               
  (  ) 

(   ) (   ) 
 ∑(  ) (

 
 
) (

   
   

)
(   )   (   )       

(   )   

 

   

  

                   ∑(  ) (
 
 
)        ( )

 

   

  

 

 

Definition 2.  
 

Let   be a continuous function on the interval      . Then, 
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   ( )( )  ∑ (
 

 
) (   )( )

 

   

               

 

is called the Bernstein polynomial of order   with respect to the function  . 

 

Proposition 2. 
 

(Bernstein's Theorem, Voronovskaya, 1932). For any bounded function   on the interval 

       ,     ,          ( )( )   ( ). 

 

Moreover, if   is continuous, then the convergence is uniform. The error bound given by Devore 

and Lorentz, 1993, 

 |  ( )( )   ( )|  
 

  
 (   )‖   ‖   

where, ‖  ‖ is the max norm, shows that the rate of convergence for twice continuously 

differentiable functions, is at least 
 

 
. Also, the following asymptotic formula holds 

(Voronovskaya, 1932) 

    
   

 (  ( )( )   ( ))  
 

 
 (   )‖   ‖   

Note that Bernstein polynomials at the endpoints of interval is either zero or one, i.e., 

     ( )       {
         
        

            ( )       {
         
        

   (5) 

This provides a good flexibility to impose boundary conditions. By the beta function, it is easily 

verified that the integral over       is independent of  , (Farouki, 1988) 

                                       ∫     ( )  
 

 
 

   

   
             (6) 

Let    . Using Definition (3) and taking   
   

   
 , we obtain (     ) 

 ∫       ( )  
 

 

 ∑    (
 
 
)

 

   

∑(  )   
(
 
 
) (

   
   

)

     

(   )     

(   ) 
 

 

   

    (7) 

   

For the standard Bernstein polynomials, i.e.,    , it is reduced to 

 ∫       ( )  
 

 

 (
 
 
)∑(

   
   

)
(  )         

  (     )
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Specially, for    , it reads as 

 ∫     ( )  
 

 

 (   )∑
(  )   

   
(
 
 
) (

 
 
) (

   

   
)

   

  

 

   

           (8) 

 

Remark 1. 

  

Substituting     and using (6), we have the following combinatorics formula: 

 

 ∑(  )   (
 
 
) (

   
   

)

 

   

    

 

2.2. Fractional Integral and Derivative 

 

We give some basic definition and properties from the fractional order operators, which are used 

further in the paper. 

 

Definition 3. 

 

The Riemann-Liouville fractional integral of order    (   ) is defined as 

 

 
  
 
 ( )  

 

 ( )
∫ (   )    ( )  

 

 

         

  
      

(9) 

 

It is easily proved that for    , the operator   
 
 is the iterated operator of     ∫  ( )  

 

 
. 

 

Definition 4. 

 

Riemann-Liouville and Caputo fractional derivative of order     are defined as (see, for 

instance, Diethelm, 2010) 

 

   
  ( )      

    ( )  (10) 

   
 

 
  ( )    

      ( )  (11) 

where,              

Proposition 3.  

 

Let      and   ⌈ ⌉. Then, the Riemann-Liouville fractional integral of Bernstein 

polynomials of order   is obtained as 
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or equivalently, 

 

   
     ( )  (  ) (   ) ∑ (

 
 
) (
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 (     )
     

 

   

  

where,   
   

   
. 

 

Proof.  

 

By relation (9) and taking   
   

   
, we have 
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 ( )(   ) 
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) (  )   ∫     (   )     
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(  )   

 (     )
    

 

   

  

 

This completes the proof. 

The Caputo fractional derivative of Bernstein polynomials is obtained as follows. 

 

Theorem 1. 

 

Let   be any non-negative real number and   ⌈ ⌉. Then, 

 

 

  
 

 
     ( )      (  ) (   )   ∑ (

 
 

)

 

   

∑ (
   

 
) (

 
   

)

   

     

 

                                
(  )   

 (       )
        

(13) 

 

where, as before   
   

   
  and      is as defined in Proposition 1. 

 

Proof. 

 

Using (4), we have 
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Finally, using (13), it is seen that 

 

∫   
 

 
     ( )  

 

 

     (  ) (   )     ∑ (
 
 

)

 

   

∑ (
   

 
) (

 
   

)

   

     

 

                                     
(  )   

 (       )
           

 

3. Applications to Fractional Integro-differential Equations and Error 

Analysis 

Let  ( ) be the solution of (1)-(2) and   ( ) be the approximate solution written in terms of 

Bernstein polynomial basis as 

   ( )  ∑      ( )

 

   

  (14) 

Let              |  (   )|    for       and let   ( )   ( )    ( ) be the error 

function. Let    is defined as 

     ( )    ∫   (   )  ( )  
 

 

   ∫   (   )  ( )  
 

 

  ( )    ( )   

Then, using equation (1), we have 

     ( )    ∫   (   )  ( )  
 

 

   ∫   (   )  ( )  
 

 

    ( )   

and so we obtain the following error bound 

 |  ( )  |    ( )|  (   )‖  ‖(  |  |    |  |)  (15) 
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On the other hand, for          , it can be shown that |    |   
    

 (     )
  (See Theorem 6. 

in Khosravian and Torres, 2013). So, relation (15) presents the error bound for the perturbation 

function.  

Substituting (14) in equation (1) and using the collocation nodes as         (        

 ) with   
   

 
, the matrix form is obtained as     , where,   is a square matrix of order 

    and for            , (in the case that   is an even number, assume       
 

 
 

and when   is odd,         
   

 
) 

      [                  ]                  (  )   (16) 

where,            (  ) is obtained using the relation (13) and     stand for Volterra and 

Fredholm parts respectively with      ∫   (    )    ( )  
  

 
 and     ∫   (    )    ( )  

 

 
. 

Depending on  , the first and the last row of the matrix A is obtained using the boundary 

conditions. This is explained in the numerical examples. 

Now we consider several examples to illustrate the effectiveness of the proposed method. The 

computations were performed by Maple 18 on a Levovo Ci3-1.90GH RAM 4 G. 

Example 1. 

 

We consider the following fractional differential equation (Nazari and Shahmorad, 2010) 

  
 
  ( )  

√ 

 (
 
 )

 
    

 
 ( )  

 

 
     ∫   ( )  

 

 

 ∫    ( )   
 

 

 (17) 

with the nonlocal condition 

  ( )   ( )   ∫   ( )  
 

 

    (18) 

Using the boundary values (5) and the relation (6), this condition is simplified as 

        
(
 
 
)

(
   
   

)

 

   
      

For the fractional term, using relation (13), we have 

 

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 12 [2017], Iss. 1, Art. 7

https://digitalcommons.pvamu.edu/aam/vol12/iss1/7



106   M. Jani et al. 

 

 

       

 
 

 
     (  )  (  )     ∑ (

   
 

) (
 
 
)

(  )   

 (  
 
 )

   

   

 
 

  
 
  

                                        ∑ (
   

 
) (

 
   

)
(  )   

 (  
 
 )

   

     

 
 

  
 
    

 

Now substituting the collocation equidistant nodes    
 

 
          in (18) with    , the 

approximate solution is as 

 
 ( )                                     
                                         

(19) 

The exact solution of the problem is  ( )   . Table 1. shows the exact, approximate and 

absolute error with comparison to results of the paper (Nazari and Shahmorad, 2010). 

Table 1. Exact solution, approximate solution and absolute error for Example 1 

  Exact Approximate  ( ) 
Absolute Error 

(Present study, N = 4) 

Absolute Error 

(Nazari et al.,2010, 

N = 20) 

0.0 0.0 8.000000000000E-11 8.0000E-11 9.6658E-7 

0.2 0.2 1.9999999992768E-1 7.2352E-11 9.2362E-7 

0.4 0.4 3.9999999995408E-1 4.5952E-11 7.3108E-7 

0.6 0.6 6.0000000001218E-1 1.2128E-11 3.5394E-7 

0.8 0.8 8.0000000000788E-1 7.8080E-12 1.9065E-7 

1.0 1.0 9.9999999999999E-1 1.0000E-10 8.8091E-7 

 

  -norm of the error   ( )  | ( )    ( )| is defined by 

 ‖  ( )‖  (∫    ( )    
 

 

)

 
 

   

In this example, ‖  ‖             with   . 

Example 2. 

 

We consider the following fractional integro-differential equation 

 

  
 
  ( )  (         ) ( )   ( )  ∫       ( )   

 

 

  (20) 

 

with the nonlocal conditions 
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  ( )   ( )  (
   

   
)  ( )  

 

 
  ( )  ∫   ( )  

 

 

    (21) 

   ( )    ( )  (
 

   
)   ( )    ( )      

and choose  ( ) so that the exact solution is  ( )    . 

To use the collocation, similar to the previous example, we have 

 

 

       
 

 

 
     (  )   (   )(  ) ∑ (

 
 
) ∑ (

   
 

)

   

     

 

   

 

                  (
 

   
)

(  )   

 (  
 
 )

 
 

  
 
   

 

The given conditions (21) are simply reduced to the following equations 

       (
   

   
) (     )  

 

 
 (       )  

(
 
 
)

(
   
   

)

 

   
      

         (
 

   
) (     )   (       )       

Using the present method with    , the approximate solution is 

  ( )                                         (22) 

                                                                     

Table 2. shows the exact, approximate and absolute error with comparison to results of the paper 

Nazar et al., 2010. 

Table 2. Exact solution, approximate solution and absolute error for Example 2 

  Exact Approximate  ( ) 
Absolute Error 

(Present study, N = 4) 

Absolute Error 

(Nazari et al. 2010, 

 N = 30) 

0.0 0.00 2.225000000000E-8 2.2250E-8 2.9447E-7 

0.2 0.04 4.000002570976E-2 2.5709E-8 1.1055E-7 

0.4 0.16 1.6000003140456E-1 3.1404E-8 1.3766E-6 

0.6 0.36 3.6000003495776E-1 3.4957E-8 3.5376E-6 

0.8 0.64 6.4000004016616E-1 4.0166E-8 6.5280E-6 

1.0 1.00 1.000000059 5.9000E-8 1.0149E-5 

 

In this example, ‖  ‖            with    . 

 

Example 3.  

 

We consider the following problem (Nazari et al., 2010) 
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  ( )  

 

 

 
 
 

 (
 
 )

      
      

 ∫       ( )  
 

 

  (23) 

   

with the nonlocal conditions 

 

  ( )    ( )   ∫   ( )  
 

 

   (24) 

   

The given condition is simplified as 

 

 
        

(
 
 
)

(
   
   

)

 

   
    

 

 

For the fractional part we have 

 

 

       
     (  )   

 (  )     ∑ (
   

 
) (

 
   

)
(  )   

 (  
 
 )

   

   

 
 

  
 
  

                                        ∑ (
   

 
) (

 
   

)
(  )   

 (  
 
 )

   

     

 
 

  
 
    

 

 

Using a similar formulation like the previous example with    , we obtain the matrix   as 

follows: 

  

[
 
 
 
 

                                                
                                                      
                                                    
                                                     
                                                    ]

 
 
 
 

 

and the approximate solution is 

 
 ( )                                              

                                     
(25) 

The exact solution of the problem is  ( )   . Table 3. shows the exact, approximate and 

absolute error with comparison to results of the paper Nazari et al. 2010. 
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Table 3. Exact solution, approximate solution and absolute error for Example 3 

  Exact Approximate  ( ) 
Absolute Error 

(Present study, N = 4) 

Absolute Error 

(Nazari et al. 2010, 

N = 20) 

0.0 0.0 9.829000000000E-7 9.8290E-7 1.4247E-5 

0.2 0.2 1.999994825336E-1 5.1746E-7 8.2823E-6 

0.4 0.4 3.999996552968E-1 3.4470E-7 2.5271E-6 

0.6 0.6 5.999999786872E-1 2.1312E-8 2.9990E-6 

0.8 0.8 7.999998654344E-1 1.3456E-7 8.8544E-6 

1.0 1.00 9.999996635000E-1 3.3650E-7 1.6811E-5 

In this example, ‖  ‖            with    . 

Example 4.  

 

Consider the following problem 

 

 
 
  ( )  ∫   ( )  

 

 

 ∫    ( )  
 

 

  ( )           

 ( )  ∫   ( )  
 

 

    

where,  ( )  (   √     )       and      is the error function. The exact solution of 

the problem is  ( )     ( ). Table 4. shows the relative error for different values of  . From 

this table it is seen that the error tends to zero as   increases. 

4. Conclusion 

In this paper, we have proposed a numerical approach for solving fractional integro-differential 

equations with nonlocal boundary conditions. After deriving some analytical results involving 

fractional derivatives of Bernstein basis, we have implemented the collocation method to 

transform the problem to a system of algebraic equations. We also discuss error estimate of the 

method. Finally, by using some numerical examples, it has been shown that the method 

described in the paper is simple and accurate to implement for solving fractional integro-

differential equations. Comparison with the method in Nazari et al. 2010, indicate a better 

performance of the proposed scheme. 

Table 4. Exact solution, approximate solution and absolute error for Example 4 

  Exact                   

0.0 1 1.82E-05 4.39E-08 5.22E-17 1.50E-18 

0.2 1.2214027581601 1.05E-04 1.57E-07 1.78E-16 4.50E-18 

0.4 1.4918246976412 2.91E-05 9.36E-08 1.00E-16 2.41E-18 

0.6 1.8221188003905 2.85E-05 4.92E-08 6.21E-17 1.48E-18 

0.8 2.2255409284924 1.50E-05 4.45E-08 3.69E-17 8.53E-19 

1.0 2.7182818284590 4.20E-06 8.85E-09 9.01E-18 3.05E-18 

For Example 4, Figure 1 illustrates the spectral accuracy of the method. 
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Figure 1.   Convergence of the method for some fractional orders 
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