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Abstract 
 

This paper considers an exponential chain dual to ratio cum dual to product estimator for 

estimating finite population mean using two auxiliary variables in double sampling scheme when 

the information on another additional auxiliary variable is available along with the main 

auxiliary variable. The expressions for bias and mean square error of the asymptotically optimum 

estimator are identified in two different cases. The optimum value of  the  first  phase  and 

second  phase sample size has  been  obtained  for  the fixed  cost of  survey. To illustrate the 

results, theoretical and empirical studies have also been carried out to judge the merits of the 

suggested estimator with respect to strategies which utilized the information on two auxiliary 

variables.
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1. Introduction 
 

The use of an auxiliary variable x at the estimation stage improves the precision of an estimate 

of the population mean of a character y under study. Using the information on the auxiliary 

variable x, we often use classical ratio and product estimators depending upon the condition 

/ 2xyx yC C   and  respectively, where yC and xC  denote the coefficients of variation of 

the variable y and x and yx is the correlation coefficient between y and x . However, in many 

situations of practical importance, the population mean X  is not known before the start of a 

survey. In  such  a  situation, the  usual  thing  to do is to  estimate  it  by  the  sample  mean 1x  

  / 2xyx yC C  
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based on a preliminary sample of size 1n of  which n is  a subsample . If  the  population  

mean Z of another  auxiliary variable z , closely  related  to x but compared to x  remotely  

related  to  y  is  known,  it  is  advisable  to  estimate  X  by 
1 1X x Z z  ,  which  would  

provide  better  estimate of X than 1x   to  the  terms  of  order  1o n   if . 

 

Sukhatme and Chand (1977) proposed a technique of chaining the available information on 

auxiliary characteristics with the main characteristics. Kiregyera (1984) also proposed some 

chain type ratio and regression estimators based on two auxiliary variables. Al-Jararha and 

Ahmed (2002) defined two classes of estimators by using prior information on parameter of one 

of the two auxiliary variables under double sampling scheme.  

 

Consider a finite population  1 2, ,..., NU U U U of N  units, let y  be the study variable, x and z  

are the two auxiliary variables. Let X  be unknown, but Z  the population  mean  of  another  

cheaper auxiliary  variable z closely  related  to x but  compared  to x remotely  related  to  y  

(i.e., 
yx yz  ) is known. In this case, Chand (1975) defined the chain ratio estimator 

 

( ) 1

1

c

R

x Z
y y

x z
 , 

 

where x  and y  are the sample means of x and ,y  respectively based on a sample size n out of  

the population N units and 

 
1

1 1

1

1/
n

i

i

x n x


  , 

denotes the sample mean of x based on the first-phase sample of the size 1n and 

 

 
1

1 1

1

1/
n

i

i

z n z


  , 

 

denote the sample mean based on 1n  units of the auxiliary variable z . 

 

Using the transformation  

 

 
 

,
i

i

NX nx
x

N n







 1,2,3,...,i N . 

 

 Srivenkataramana (1980) proposed dual to ratio estimator to estimate population mean as 

 

,R

x
y y

X



  

 

where  

1( )n n

1 2xz x zC C 
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.
NX nx

x
N n





  

 

 Bandyopadhyay (1980) obtained dual to product estimator as 

 

P

X
y y

x
 . 

 

Kumar et al. (2006) used the transformation 

 

 
 
1

1

,
i

i

n X nx
x

n n







 1,2,3,...,i N , 

 

and proposed a dual to ratio estimator in double sampling as  

 

,d

R

x
y y

X



  

 where  

 

 
1 1

1

,
n x nx

x
n n

 



 

 

and is an unbiased estimator of X . 

 

Singh and Choudhury (2012) proposed dual to product estimator for estimating population mean 

in double sampling as 

 

d

P

X
y y

x
 . 

 

Using an additional auxiliary variable z in dual to ratio and product estimators in double 

sampling of Kumar et al. (2006) and Singh and Choudhury (2012) estimators converts to chain 

dual to ratio and chain dual to product estimators in double sampling as 

 

 

 

1
1

1

1
1

1

c

dR

x
n Z nx

z
y y

x
n n Z

z

 
 

 
 
  

 

and  
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  1
1

1

1
1

1

c

dP

x
n n Z

z
y y

x
n Z nx

z

 
 

 
 
  

, 

 

  respectively. 

 

The chain linear regression estimator in double sampling suggested by Kiregyera (1984) is given 

as 

 

      . 1

c

reg yx xzy y b x b Z z x      
, 

 

where
yxb and xzb  are the regression coefficients of y on x and x on z , respectively. 

 

Bahl and Tuteja (1991) suggested the exponential ratio and product type estimators as 

 

Re
exp

X x
y y

X x

 
  

 
, 

 

 and   

expPe

x X
y y

x X

 
  

 
, 

 

for the population mean .Y  

 

Saini and Kumar (2015) also proposed some exponential type product estimator for finite 

population mean with information on auxiliary attribute. 

 

Singh and Vishwakarma (2007) suggested an exponential ratio and product-type estimators for Y 

in double sampling as 

 

             1
Re

1

expd x x
y y

x x

 
  

 
, 

 

and    

                         1
Pe

1

expd x x
y y

x x

 
  

 
. 

 

Singh and Choudhury (2012) suggested the exponential chain ratio and product type estimators 

under double sampling scheme as 
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1

1
Re

1

1

exp ,c
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x x

z
y y

Z
x x
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and    

1

1
e

1

1

expc

P

Z
x x

z
y y

Z
x x

z

 
 

 
 

 
 

. 

 

Singh et al. (2013) again generalized the above estimators to a class of exponential chain ratio-

product type estimator in double sampling scheme as 

 

 

1 1

1 1
R e

1
1

1
1

exp expc

P

Z Z
x x x x

z z
y y

ZZ x xx x
zz

 

    
     
     
    

          

, 

 

where  and  are unknown constants such that 1   . Singh et al. (2014) proposed 

exponential ratio cum exponential dual to ratio estimator in double sampling. 

 

Motivated by Singh et al. (2013), Srivenkataramana (1980) and Bandyopadhyay (1980) and with 

an aim to provide a more efficient estimator, we have proposed a class of exponential chain dual 

to ratio cum dual to product estimator in double sampling for estimating population mean Y
using two auxiliary characters. Throughout the paper simple random sampling without 

replacement (SRSWOR) scheme has been considered. Theoretical comparisons of the proposed 

estimator are carried out to demonstrate the performance of the suggested estimator over others 

and empirical studies have also been carried out in the support of the present study. 

 

2. The Proposed Estimator 

 

Let instead of ,X the population mean Z of another auxiliary variable z , which has a positive 

correlation with x  (i.e., 0)xz   be known.  We further assume , 0.yx yz    Let   ̅  and  1z  be 

the sample means of x and z respectively based on a preliminary sample of size 1n  drawn from 

the population of size N with simple random sampling without replacement strategy in order to 

get an estimate of X . Then, we suggest a class of estimators for Y  as 
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d Py T T   
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where  is unknown constant to be determined and 
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 and     

            

1
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T y y
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To obtain the bias (B) and MSE of
R e

c

d Py , we write 
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     0 1 1 21 , 1 , 1y Y e x X e x X e       

 

and  

 1 3 z 1Z e  . 

 

Expressing 
R e

c

d Py  in terms of e’s, we have 

 

 

 

     

                         ,   
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        R e 1 2(1 ) 1 (1 )c
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 0 2 1 2(1 ) 1 ( )Y e i i i     , 

 

or  

    2 2

R e 0 3 4 5 6

1 3

2 8
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,                              (2) 
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 2
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 2 2 2 2
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                                          . 

 

To obtain the bias (B) and MSE of
R e

c

d Py , let 

 
2 2 22 2 2 2 2 2, , ,
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,
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2 22 2

1 1

1 1
, ,

1 1

N N

y i x i

i i

S y Y S x X
N N 
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1

1

1

N
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i

S y Y z Z
N 

  



 

and 

        
 

  
1

1
.

1

N

zx i i

i

S x X z Z
N 

  

   

 

In this paper the following two cases will be considered separately. 

 

Case I: When the second phase sample of size n is a subsample of the first phase sample of size

1n . 

 

Case II: When the second phase sample of size n is drawn independently of the first phase 

sample of size 1n . 

 

3. Case I 
 

3.1. Bias, MSE and Optimum value of α for  R e

c

d P I
y  

 

In case I, we get the following results 

1

1

(1 )
n

g
n n
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                           (3)                         

 

 

Taking expectations in (2) and using the results of (3), we get the bias of   R e

c

d P I
y  to the first 

order of approximation as 

 

                       

                  

               

                                      , 

 

or  

                          R e 2,2 2,3

1 3
( )

2 8 2 2

c

d P I

gP
B y Yg Q gP A A

 


  
       

  
,                                  (4)    

  

where 

 

                                                1,1 2,2 3,3P A A A     

 

and  

                                                0,1 0,2 0,3Q A A A   . 

 

Again from Equation (2), we have 
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1

2

c
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 .                                  (5)    

                                                                                             

Squaring both the sides of Equation (5), taking expectations and using the results of (3),  

we obtain the MSE of the estimator  R e

c

d P I
y  to the first order of approximation as 

 

                    

             , 

 

or  

                          
2

2 2

R e 0,0

1
2

2

c

d P I
MSE y Y A g P gQ gQ 

  
      

   

,                       (6)                           

 

The MSE of  R e

c

d P I
y   is minimum when 

                     

                         
2

.2

2
( )

2
Iopt

gQ g P
say

g P
 


   .                                                                     (7) 

 

Putting the value of α from (7) in (1) yields the ‘asymptotically optimum estimator’ (AOE) as 

      

                             R e ( ) 1 ( ) 2( )
1c

d P I opt I optI opt
y T T     , 

 

Thus, the resulting MSE of  is given by 

 

                                      
2

2

R e 0,0( )

c

d P I opt

Q
MSE y Y A

P

 
  

 
  .                                                       (8) 

 

Remarks:  
 

1. When 0  , the estimator  R e

c

d Py  in (1) reduces to the exponential chain dual to product 

estimator  c

dPe I
y  in double sampling. The bias and MSE of  c

dPe I
y is obtained by putting 0 

in (4) and (6), respectively as 

 

1 3
( )

2 8

c

dPe IB y Yg Q gP
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2

2 2
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2

c

d P I
MSE y Y A g A A A
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c
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2. When 1   , the estimator  R e

c

d Py   in (1) reduces to the exponential chain dual to ratio 

estimator  c

dRe I
y in double sampling. The bias and MSE of  c

dRe I
y  is obtained by putting 1   

in (4) and (6) respectively as 
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2
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4. Efficiency Comparisons in Case I 

 

4.1. Comparison with sample mean per unit estimator  ̅ 

 

The variance of usual unbiased estimator y is given by 

 

                                                             2 21 1
yV y Y C
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 .                                                  (11) 

 

From (8) and (11), we have 

 

                              
2

2

R e ( )
0,c

d P I opt

Q
V y MSE y Y

P
                                           (12) 

 if 
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4.2. Comparison with the chain dual to ratio estimator  c

dR I
y  

 

The MSE of the chain dual to ratio estimator  c

dR I
y is given by  
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4.3. Comparison with the chain dual to product estimator  c
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The MSE of the chain dual to product estimator  c

dP I
y  is given by  
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From (8) and (15), we have 
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4.4. Comparison with the exponential chain dual to ratio estimator  Re
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 From (8) and (10), we have 
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4.5. Comparison with the exponential chain dual to product estimator  c

dPe I
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 From (8) and (9), we have 
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4.6. Comparison with the chain linear regression estimator  .c

reg I
y  
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 The MSE of the chain linear regression estimator  .c

reg I
y  is given by  
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 From (8) and (19), we have 
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Now, we state the following theorem: 

 

Theorem.    
 
To the first order of approximation, the proposed strategy under optimality condition (7) is 

always more efficient than   ,V y  and

 . .c

reg I
MSE y  

 

5. Case II 

 

5.1. Bias, MSE and Optimum Value of for  R e

c

d P II
y  

 

In case II, we have 

 

  ,c

dR I
MSE y   ,c

dP I
MSE y  Re ,c

d I
MSE y  c

dPe I
MSE y
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                                                  (21)        

 

Taking expectations in (2) and using the results of (21), we obtain the bias of  R e

c

d P II
y  up to the 

terms of order 1n  as 

 

                         

                

, 

 

or  

                          0,1

R e 0,1 2,2 2,3

3
2

2 8 2 2

c

d P II

A gP gP
B y Yg A A A

  
      

 

.                                 (22)   

 

Since the population size N is large as compared to the sample sizes n and 1n
 
so the finite 

population correction (FPC) terms 1/N and 2/N are ignored. 

 

Ignoring the FPC in (22), the bias of  R e

c

d P II
y   is given by    

 

                                   0,1

R e 0,1 2,2 2,3

3
2

2 8 2 2

c

d P II

A gP gP
B y Yg A A A

    
        

 

,                               (23)                    

                                                                                            

where  

 

1,1 2,2 3,3P A A A       

 

and 

 

0 1 2 3

2 2 2 2

0 y 0,0 1 x 1,1

2 2 2 2

2 x 2,2 3 z 3,3

1 1

2 2

0 1 0,1 2 3

1

E(e )=E(e )=E(e )=E(e )=0 ,

1 1 1 1
E(e )= C =A ,    E(e )= C ,

1 1 1 1
E(e )= C , E(e )= C ,

1 1 1 1
E(e e )= ,E(e e )=yx x xz z

A
n N n N

A A
n N n N

C C A C C A
n N n N

   
     

   

   
      

   

  
     

   
2,3

0 2 0 3 1 2 1 3

,

E(e e )= E(e e )=E(e e )=E(e e ) 0 .














 

 R e 0,1 0,2 0,3

1
( )

2

c

d P IIB y Yg A A A


  


 1,1 2,2 3,3

3

8
g A A A  

2,3 2,2 0,2 0,3 0,1

1 1

2 2
A A A A A

 
     

 

2,2 3,3 1,1

1 1 1

2 2 2
g A A A
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2 2 2 2

0,0 1,1 x 2,2 x 3,3

1 1

2 2

0,1 2,3

1

1 1 1 1
C , C , C , C ,

1 1
, .

y z

yx x xz z

A A A A
n n n n

A C C A C C
n n

      
             

        


             

   

              (24) 

 

Squaring both the sides in (5), taking expectations and using the results from (24), we obtain the 

MSE of the estimator  R e

c

d P II
y  to the first order of approximation as 

 

                     , 

 

or  

     

                      
2

2 2

R e 0,0 0,1 0,1

1
2

2

c

d P II
MSE y Y A g P gA gA 

  
         

   

 .                              (25) 

 

Differentiation of (25) with respect to   yields its optimum value as 

              

                             0,1

.( )IIopt

A
say

gP
 


 


.                                                                         (26) 

 

Thus, the resulting optimum MSE of  R e ( )

c

d P II opt
y  is given by 

 

                               
 

2

0,12

R e 0,0( )

c

d P II opt

A
MSE y Y A

P

 
  

 
 

 .                       (27)    

                                                                         

Remarks: 

 

1. When 0  , the estimator  R e

c

d Py  in (1) reduces to the exponential chain dual to product 

estimator  c

dPe II
y  in double sampling. The MSE of   c

dPe II
y  is obtained by putting 0   in (25) 

as 

                                        
2

2

0,0 0,1
4

c

dPe II

g P
MSE y Y A gA

 
    

 

.                                                      (28) 

 

2. When 1  , the estimator  R e

c

d Py  in (1) reduces to the exponential chain dual to ratio 

estimator  Re

c

d II
y  in double sampling. Thus by putting 1  in (25), we obtain the MSE of 

 Re

c

d II
y  to the first order of approximation as 

   
2

2 2

R e 0,0 1,1 2,2 3,3 0,1 0,1

1
2

2

c

d P II
MSE y Y A g A A A gA gA 
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2

2

Re 0,0 0,1
4

c

d II

g P
MSE y Y A gA

 
    

 
.                                              (29) 

 

 

6.    Efficiency Comparisons in Case II  
 
6.1. Comparison with sample mean per unit estimator  ̅ 

 

The variance of usual unbiased estimator y  is given by 

 

  2

0,0V y Y A .                                                            (30) 

                                  

From (27) and (30), we have 

 

                                         
 

2

0,12

R e ( )
0c

d P II opt

A
V y MSE y Y

P


  


 ,                                         (31) 

 

if  

                                                        
1,1 3,3 2,2A A A    ,  

 

where 

                                                       
1,1 2,2 3,3P A A A      . 

 

6.2.  Comparison with the chain dual to ratio estimator  c

dR II
y  

 

The MSE of the chain dual to ratio estimator  c

dR II
y  is given by  

 

                                   2 2

0,0 0,12c

dR II
MSE y Y A gA g P       .                                             (32) 

 

From (27) and (32), we have 

 

                                  
2

2

R e 0,1( )
0c c

dR d PII II opt

Y
MSE y MSE y A gP

P
    


.       (33)

  
 

6.3.  Comparison with the chain dual to product estimator  c

dP II
y  

 

The MSE of the chain dual to product estimator  c

dP II
y

 
is given by  
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                                2 2

0,0 0,12c

dP II
MSE y Y A gA g P       .                                                (34)   

 

From (27) and (34), we have 

 

                       
2

2

R e 0,1( )
0c c

dP d PII II opt

Y
MSE y MSE y A gP

P
    


.                    (35)

  
                             

                                              
                                                                                                                                                    

6.4.  Comparison with the exponential chain dual to ratio estimator  Re

c

d II
y  

 

From (27) and (29), we have 

 

              
   

 
2

0,12

Re R e ( )

2
0

4

c c

d d PII II opt

gP A
MSE y MSE y Y

P

 
  


 .                         (36)  

                                             

6.5.  Comparison with the exponential chain dual to product estimator  c

dPe II
y  

 

From (27) and (28), we have 

 

          
   

 
2

0,12

R e ( )

2
0

4

c c

dPe d PII II opt

gP A
MSE y MSE y Y

P

 
  


.                    (37)  

  

6.6.  Comparison with the chain linear regression estimator  .c

reg II
y  

 

The MSE of the chain linear regression estimator  .c

reg II
y  is given by  

 

  2 2 2 2 2 2

. 0,0

1 1

1 1 1c

reg yx x yx xz zII
MSE y Y A C C C C C

n n n

    
       

    
,   (38) 

 

 From (27) and (38), we have 

 

    
 

2

0,12 2 2

. R e ( )
1

1 1c c

reg d P yx xII II opt

A
MSE y MSE y Y C C

P n n

   
    

  

  

2 2 2

1

1
0yx xz zC C C

n

 
  
  

, 

                                                                                                                                                       

if  
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2

0,1 2 2 2 2 2

1 1

1 1 1
yx x yx xz z

A
C C C C C

P n n n

    
     

    
 .                   (39)                                                             

 

Theorem. 

 
To the first order of approximation, the proposed strategy under optimality condition (27) is 

always more efficient than   ,V y   ,c

dR I
MSE y   ,c

dP I
MSE y  Re ,c

d I
MSE y  c

dPe I
MSE y and

 . .c

reg I
MSE y  

 

7.  Cost Aspect 
 

The different estimators reported in this paper have so far been compared with respect to their 

MSE. However, in practical applications the cost aspect should also be taken into account. In the 

literature, therefore, convention is to fix the total cost of the survey and then have to find 

optimum sizes of preliminary and final samples so that the variance of the estimator is 

minimized. In most of the practical situations, total cost is a linear function of samples selected at 

first and second phases. 

 

In this section, we shall consider the cost of the survey and find the optimum sizes of the 

preliminary and second-phase samples in Case I and Case II separately. 

 

Case I: When one auxiliary variable x is used then the cost function is given by 

 

     1 1 2C nC n C  , 

where 

    C = the total cost,  

              1C = the cost per unit of collecting information on the study variable y, 

and 

               2C = the cost per unit of collecting information on the auxiliary variable x. 

 

When we use additional auxiliary variable z  to estimate  R e

c

d P I
y , then the cost function is given 

by    

                                  1 1 2 3( )C nC n C C   ,                                                                          (40) 

 

where 3C is the cost per unit of collecting information on the auxiliary variable z . 

 

Ignoring FPC, the MSE of   R e

c

d P I
y  in (6) can be expressed as 

 

                         R e 1 2

1

1 1c

d P I
MSE y V V

n n
   , 
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where     

  
2

2

1 0,0 1,1 1,0

1
1 2

2
V A g A A 

   
        

   

, 

                    
2

2

2 3,3 2,2 0,3 0,2

1
1 2

2
V g A A g A A 

   
          

   

. 

 

It is assumed that 1 2 3.C C C 
 
The optimum values of n and 1n for fixed cost 0C C , which 

minimizes the variance of  R e

c

d P I
y  in (6) under cost function are given by 

 

                                    
 

0 1 1

.

1 1 2 2 3

opt

C V C
n

V C V C C


 
 

 

and   

 

 
 

 

0 2 2 3

1 .

1 1 2 2 3

opt

C V C C
n

V C V C C




 
. 

 

Hence, the resulting MSE of  R e

c

d P I
y  is given by 

 

    
2

R e 1 1 2 2 3( )
0

1c

d P I opt
MSE y V C V C C

C
    .                   (41) 

 

If all the resources were diverted towards the study variable y only, then we would have 

optimum sample size as below 

 

**

1

C
n

C
 . 

 

Thus, the variance of sample mean y  for a given fixed cost 0C C  in case of large population is 

given by 

                                                            

  21

( )
0

yopt

C
V y S

C
  .                                                           (42) 

Now, from (41) and (42), the proposed sampling strategy would be profitable if 

 

 

                                             
, 

 

or equivalently 

   R e ( )( )

c

d P optI opt
MSE y V y
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2

12 3

1 2

yS VC C

C V

 
  
  

. 

 

Case II: We assume that y  is measured on n units; x and z  are measured on 1n units. 

We consider a simple cost function 

 

                                             1 1 2 3( ) ,C nC n C C   
                                                                  (43) 

 

where 2C and 3C denotes costs per unit of observing x and z values respectively.  

 

The MSE of  R e

c

d P II
y  in (25) can be written as 

 

                                         R e 1 3

1

1 1c

d P II
M y V V

n n
  ,                                                                   (44) 

  where 

                                         
2

2

3 3,3 2,2

1

2
V g A A

 
    

 
. 

 

To obtain the optimum allocation of sample between phases for a fixed cost 0C C , we minimize 

(25) with condition (43). It is easily found that this minimum is attained for 

 

                                       
 

0 1 1

.

1 1 3 2 3

opt

C V C
n

V C V C C


  
 , 

and     

                                      
 

 

0 3 2 3

1 .

1 1 3 2 3

opt

C V C C
n

V C V C C

 


  
. 

 

Thus, the optimum MSE corresponding to these optimum values of n  and 1n  are given by 

 

                                    
 

 
  

2

R e 1 1 3 2 3

0

1c

d P II opt
MSE y V C V C C

C
     .                              (45)                                                                      

From (42) and (45), it is obtained that the proposed estimator   R e

c

d P II
y

 
yields less MSE than 

that of sample mean y  for the same fixed
 
cost if 

 

                                           

2

12 3

1 3

yS VC C

C V

  
  
  

. 
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8. Empirical Study 

 
To examine the merits of the proposed estimator, we have considered the three natural 

population data sets. The descriptions of the population are given as follows: 

 

Population I (Source: Cochran (1977)) 

Y: Number of ‘placebo’ children 

X: Number of paralytic polio cases in the placebo group 

Z: Number of paralytic polio cases in the ‘not inoculated’ group 

1

2 2 2

N=34, n 10,  n 15, 4.92, 2.59, 2.91, 0.7326,

0.6430, 0.6837, 1.0248, 1.5175, 1.1492.

yx

yz xz y x z

Y X Z

C C C



 

     

    
 

 

Population II (Source: Srivastava et al. (1989, Page 3922)) 

Y: The measurement of weight of children 

X: Mid arm circumference of children 

Z: Skull circumference of children 

155, 18, 30, 17.08N n n Y    kg, 16.92 cmX  , 50.44Z  cm, 
2 2 20.54, 0.51, 0.08, 0.0161, 0.0049, 0.0007yx yz xz y x zC C C          . 

 

Population III (Source: Srivastava et al. (1989, Page 3922)) 

Y: The measurement of weight of children 

X: Mid arm circumference of children 

Z: Skull circumference of children 

182, 25, 43, 5.60N n n Y     Kg,  cm, 39.80Z   cm, 

2 20.09, 0.12, 0.86, 0.0107, 0.0052yx yz xz y xC C        and 2 0.0008.zC 
 

 

To see the efficiency of the proposed estimator, the Percent Relative Efficiencies (PREs) of the 

proposed estimator along with other estimators under considerations are computed with respect 

to the usual unbiased estimator y  using the given formula below in case I and case II.  

 

                                             
( )

( , ) 100
( )

V y
PRE y

MSE
  


, 

 

where     

 

                                             = y ,  c

dR I
y ,  c

dP I
y ,  Re

c

d I
y ,  c

dPe I
y ,  .c

reg I
y ,  R e ( )

c

d P I opt
y  

and 

                                                  c

dR II
y ,   ,c

dP II
y  Re ,c

d II
y   ,c

dPe II
y  .c

reg II
y ,  R e ( )

c

d P II opt
y  . 

 

They are presented in Tables 1 and 2. 

 

11.90X 
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 Table 1. Percentage relative efficiency of different estimators with respect to  ̅ in Case I 

Estimators y   c

dR I
y   c

dP I
y   Re

c

d I
y   c

dPe I
y   .c

reg I
y   R e ( )

c

d P I opt
y  

Population I 100 136.91    * 135.99    * 185.53 188 

Population II 100 131.91    * 128.21    * 123.53 132.45 

Population III 100      *    * *    * 100.99 148.5 

 

 

Table 2. Percentage relative efficiency of different estimators with respect to  ̅ in Case II 

Estimators y   c

dR II
y   c

dP II
y   Re

c

d II
y   c

dPe II
y   .c

reg II
y   R e ( )

c

d P II opt
y  

Population I 100     *    * 123.4   * 162.83 277.87 

Population II 100 116.68    * 157   * 121.08 248.8 

Population III 100      *    *     *   * 100.73 101.66 

 

*Percent relative efficiency is less than 100% 

 

9.  Conclusions 

 
The use of auxiliary information to increase the precision of the estimate has received numerous 

attentions from several authors. In this paper, we continued this research by developing a new 

estimator under SRSWOR. The proposed estimator has been analyzed and its bias and MSE 

equations have been obtained in two different cases. The MSE of the proposed estimator has 

been compared with the MSEs of  the usual  unbiased estimator   ̅   chain dual ratio estimator
c

dRy , chain dual to product  estimator c

dPy , exponential chain dual to ratio estimator 
Re

c

dy , 

exponential chain dual to product estimator e

c

dPy and  regression estimator .

c

regy on a theoretical 

basis and also conditions for obtaining minimum MSE has been derived. The estimator in its 

optimality is compared theoretically and numerically with other estimators under considerations. 

The percentage relative efficiencies of different estimators with respect to  ̅ have been computed 

and is shown in Tables 1 and 2. Theoretically, the proposed estimator is found to be more 

efficient than the other estimators under certain conditions. Three population data sets are taken 

to check the efficiency of the proposed estimator over others estimators. Numerically in all 

population sets, the proposed estimator is found to be more efficient than other estimators viz., 

usual unbiased estimator, chain dual to ratio and product estimators, exponential chain dual to 

ratio and exponential chain dual to product estimators and regression estimator in both the cases 

of second phase sample selection. Thus, it is preferred to use the proposed estimator  

 

R e

c

d Py or  R e ( )

c

d P I opt
y


 R e ( )

or c

d P II opt
y 

 , 

 
in practice. 
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