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Abstract

In this paper, we introduce the notion of statistical (λ, µ)-summability and find its relation with
(λ, µ)-statistical convergence. We apply this new method to prove a Korovkin type approximation
theorem for functions of two variables. Furthermore, we provide an example in support to show
that our result is stronger than the previous ones.
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1. Introduction

The concept of statistical convergence for sequences of real numbers was introduced by Fast
(1951) and further studied many others.

Let K ⊆ N and Kn = {k ≤ n : k ∈ K} . Then, the natural density of K is defined by δ(K) =

limn n
−1|Kn| if the limit exists, where |Kn| denotes the cardinality of Kn.

A sequence x = (xk) of real numbers is said to be statistically convergent to L provided that for
every ε > 0 the set Kε := {k ∈ N : |xk − L| ≥ ε} has natural density zero, i.e., for each ε > 0,

lim
n

1

n
|{j ≤ n : |xj − L| ≥ ε}| = 0.

35

1

Mursaleen: Generalized statistical summability of double sequences

Published by Digital Commons @PVAMU, 2017



36 M. Mursaleen

By the convergence of a double sequence we mean the convergence in the Pringsheim’s sense
(1900). A double sequence x = (xjk) is said to be Pringsheim’s convergent (or P -convergent)
if for given ε > 0 there exists an integer N such that |xjk − `| < ε whenever j, k > N . In this
case, ` is called the Pringsheim limit of x = (xjk) and it is written as P − limx = `. For our
convenience, we will write limx instead of P − limx.

A double sequence x = (xjk) is said to be bounded if there exists a positive number M such
that |xjk| < M for all j, k.

Note that, in contrast to the case for single sequences, a convergent double sequence need not
be bounded.

The idea of statistical convergence for double sequences was introduced by Mursaleen and Edely
(2003).

Let K ⊆ N × N be a two-dimensional set of positive integers and let Km,n = {(j, k) : j ≤
m, k ≤ n}. Then, the two-dimensional analogue of natural density can be defined as follows.

In case the sequence (K(m,n)/mn) has a limit in Pringsheim’s sense, then we say that K has
a double natural density and is defined as

P − lim
m,n

K(m,n)

mn
= δ(2){K}.

For example, let K = {(i2, j2) : i, j ∈ N}. Then,

δ(2){K} = P − lim
m,n

K(m,n)

mn
≤ P − lim

m,n

√
m
√
n

mn
= 0,

i.e., the set K has double natural density zero, while the set {(i, 2j) : i, j ∈ N} has double
natural density 1

2
.

A real double sequence x = (xjk) is said to be statistically convergent to the number L if for
each ε > 0, the set

{(j, k), j ≤ m and k ≤ n :| xjk − L |≥ ε}

has double natural density zero. In this case we write st(2)- lim
j,k

xjk = L.

Remark 1.

Note that if x = (xjk) is P -convergent then it is statisically convergent but not conversely. See
the following example.

Example 2.

The double sequence x = (xjk) defined by

xjk =

{
1 , if j and k are squares;
0 , otherwise.

(1.1)

Then, x is statistically convergent to zero but not P -convergent.

2
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Moricz (2003) introduced the idea of statistical summability (C, 1, 1).

We say that a double sequence x = (xjk) is statistically summability (C, 1, 1) to some number
L, if st(2)- lim

m,n
σmn = L, where

σmn =
1

mn

m∑
j=1

n∑
k=1

xjk.

In this case, we write st(C,1,1)- limx = L. It is trivial that st(2)- lim
j,k

xjk = L implies st(2)- lim
m,n

σmn =

L.

Mursaleen et. al. (2010) defined the (λ, µ)-statistical convergence, and further studied in Kumar
and Mursaleen (2011) as follows:

We define the following.

Let λ = (λm) and µ = (µn) be two non-decreasing sequences of positive real numbers such that
each tending to ∞ and

λm+1 ≤ λm + 1, λ1 = 0,

and
µn+1 ≤ µn + 1, µ1 = 0.

Let K ⊆ N× N be a two-dimensional set of positive integers. Then, the (λ, µ)-density of K is
defined as

δλ,µ(K) = P − lim
m,n

1

λmµn
|{m− λm + 1 ≤ j ≤ m,n− µn + 1 ≤ k ≤ n : (j, k) ∈ K}|,

provided that the limit on the right hand-side exists.

A double sequence x = (xjk) is said to be (λ, µ)-statistically convergent to ` if δλ,µ(E) = 0,
where E = {j ∈ Jm, k ∈ In : |xjk − `| ≥ ε}, i.e., if for every ε > 0, lim

m,n

1
λmµn
|{j ∈ Jm, k ∈ In :

|xjk − `| ≥ ε}| = 0.

In this case, we write st(λ,µ)-lim
j,k

xjk = ` ,and we denote the set of all (λ, µ)-statistically convergent

double sequences by Sλ,µ.

In case λm = m,µn = n, the (λ, µ)-density reduces to the natural double density. Also, since
(λm/m) ≤ 1, (µn/n) ≤ 1, then δ2(K) ≤ δλ,µ(K), for every K ⊆ N× N.

2. Statistically (λ, µ)-summability

We define the generalized double de la Valée-Pousin mean by

tmn =
1

λmµn

∑
j∈Jm

∑
k∈In

xjk,

where Jm = [m− λm + 1,m] and In = [n− µn + 1, n].
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38 M. Mursaleen

A double sequence x = (xjk) is said to be (V, λ, µ)-summable to a number `, if

P - lim
m,n

tm,n = `.

A double sequence x = (xjk) is said to be statistically (λ, µ)-summable to `, if the sequence
(tmn) is statistically convergent to `. In this case, we write (λ, µ)st-lim

j,k
xjk = `.

Theorem 3.

If a sequence x = (xjk) is bounded and (λ, µ)-statistically convergent to L, then it is statistically
(λ, µ)-summable to L but not conversely.

Proof:

Let x be bounded and (λ, µ)-statistically convergent to L, and K (ε) := {j ∈ Jm, k ∈ In :

|xjk − `| ≥ ε}. Then,

|tmn − L| =

∣∣∣∣∣ 1

λmµn

∑
j∈Jm

∑
k∈In

xjk − L

∣∣∣∣∣ =

∣∣∣∣∣ 1

λmµn

m∑
j=m−λm+1

n∑
k=n−µn+1

(xjk − L)

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

λmµn

∑
(j,k)∈K(ε)

(xjk − L)

∣∣∣∣∣∣
≤ 1

λmµn

(
sup
j,k
|xjk − L|

)
| K (ε) |

→ 0 as m,n→∞.

Thus, x is (λ, µ)-convergent to L, and hence statistically (λ, µ)-summable to L.

For converse, consider the case λm = m, µn = n and the sequence x = (xjk) defined by
(1.1). Then, of course this sequence is not (λ, µ)-statistically convergent. On the other hand, x is
(V, λ, µ)-summable to 0, and hence statistically (λ, µ) -summable to 0. This completes the proof
of the theorem. 2

3. Korovkin type theorem

Let C[a, b] be the space of all functions f continuous on [a, b]. We know that C[a, b] is a Banach
space with norm

‖f‖C[a,b] := sup
x∈[a,b]

|f(x)|, f ∈ C[a, b].

The classical Korovkin approximation theorem states as follows (Korovkin (1960)):

Let (Tn) be a sequence of positive linear operators from C[a, b] into C[a, b]. Then,

lim
n
‖Tn(f, x)− f(x)‖C[a,b] = 0,∀f ∈ C[a, b]

4
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if and only if
lim
n
‖Tn(ei, x)− ei(x)‖C[a,b] = 0, i = 0, 1, 2;

where
e0(x) = 1,

e1(x) = x,

and
e2(x) = x2.

Quite recently, such type of approximation theorems have been established for functions of
one and/ or two variables, by using statistical convergence [Dirik and Demirci (2010), Gadjiev
and Orhan (2002)]; generalized statistical convergence [Aktuğlu (2014), Belen and Mohiuddine
(2013), Braha et. al. (2014), Edely et. al.(2010), Srivastava et. al. (2012) ]; A-statistical conver-
gence (Dirik and Demirci (2010)); statistical A-summability (Belen et. al. (2012), Demirci and
Karakuş (2013)); statistically summability (C, 1) (Mohiuddine et. al. (2012)); weighted statistical
convergence (Braha et. al. (2015), Kadak (2016), Mohiuddine (2016), Özarslan and Aktuğlu) and
almost convergence (Mohiuddine (2011)). In this paper, we extend the result of (Taşdelen and
Erençin (2007)) by using the notion of statistical summability (C, 1, 1) and show that our result
is stronger than those proved by Taşdelen and Erençin (2007) and Dirik and Demirci (2010).

Let I = [0, A], J = [0, B], A,B ∈ (0, 1) and K = I × J . We denote by C(K), the space of all
continuous real valued functions on K. This space is a equipped with norm

‖f‖C(K) := sup
(x,y)∈K

|f(x, y)|, f ∈ C(K).

Let Hω(K) denote the space of all real valued functions f on K such that

| f(s, t)− f(x, y) |≤ ω

(
f ;

√(
s

1− s
− x

1− x

)2

+

(
t

1− t
− y

1− y

)2 )
,

where ω is the modulus of continuity, i.e.,

ω(f ; δ) = sup
(s,t),(x,y)∈K

{|f(s, t)− f(x, y)| :
√

(s− x)2 + (t− y)2 ≤ δ}.

It is to be noted that any function f ∈ Hω(K) is continuous and bounded on K.

The following result was given by Taşdelen and Erençin (2007).

Theorem A.

Let (Tj,k) be a double sequence of positive linear operators from Hω(K) into C(K). Then, for
all f ∈ Hω(K),

P - lim
j,k→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

= 0, (1)

if and only if

P - lim
j,k→∞

∥∥∥∥Tj,k(fi;x, y)− fi
∥∥∥∥
C(K)

= 0 (i = 0, 1, 2, 3), (2)

5
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where
f0(x, y) = 1,

f1(x, y) =
x

1− x
,

f2(x, y) =
y

1− y
,

and

f3(x, y) =

(
x

1− x

)2

+

(
y

1− y

)2

.

Recently, Dirik and Demirci (2010) proved the following theorem.

Theorem B.

Let (Tj,k) be a double sequence of positive linear operators from Hω(K) into C(K). Then, for
all f ∈ Hω(K)

st(2)- lim
j,k→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

= 0, (1)′

if and only if

st(2)- lim
j,k→∞

∥∥∥∥Tj,k(fi;x, y)− fi
∥∥∥∥
C(K)

= 0(i = 0, 1, 2, 3), (2)′

Now, we prove the following result.

Theorem 4.

Let (Tj,k) be a double sequence of positive linear operators from Hω(K) into C(K). Then, for
all f ∈ Hω(K),

(λ, µ)st − - lim

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

= 0, (3.1)

if and only if

(λ, µ)st − - lim

∥∥∥∥Tj,k(1;x, y)− 1

∥∥∥∥
C(K)

= 0, (3.2)

(λ, µ)st − - lim

∥∥∥∥Tj,k( s

1− s
;x, y

)
− x

1− x

∥∥∥∥
C(K)

= 0, (3.3)

(λ, µ)st − - lim

∥∥∥∥Tj,k( t

1− t
;x, y)− y

1− y

∥∥∥∥
C(K)

= 0, (3.4)

st(C,1,1)- lim

∥∥∥∥Tj,k(( s

1− s

)2

+

(
t

1− t
)2;x, y

)
−
((

x

1− x

)2

+

(
y

1− y

)2)∥∥∥∥
C(K)

= 0. (3.5)

6
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Proof:

Since each 1, x
1−x ,

y
1−y , (

x
1−x)2 + ( y

1−y )2 belong to Hω(K), conditions (3.2)–(3.5) follow immedi-
ately from (3.1). Let f ∈ Hω(K) and (x, y) ∈ K be fixed. Then, after using the properties of
f, a simple calculation gives that

| Tj,k(f ;x, y)− f(x, y) |≤ Tj,k(| f(s, t)− f(x, y) |;x, y)+ | f(x, y) || Tj,k(f0;x, y)− f0(x, y) |

≤ ε+ (ε+N +
2N

δ2
) | Tj,k(f0;x, y)− f0(x, y) | +4N

δ2
| Tj,k(f1;x, y)− f1(x, y) |

+
4N

δ2
| Tj,k(f2;x, y)− f2(x, y) | +2N

δ2
| Tj,k(f3;x, y)− f3(x, y) |

≤ ε+M{ | Tj,k(f0;x, y)− f0(x, y) | + | Tj,k(f1;x, y)− f1(x, y) |

+ | Tj,k(f2;x, y)− f2(x, y) | + | Tj,k(f3;x, y)− f3(x, y) | },

where N =‖ f ‖C(K) and

M = max

{
ε+N +

2N

δ2

((
A

1− A

)2

+

(
B

1−B

)2)
,
4N

δ2

(
A

1− A

)
,
4N

δ2

(
B

1−B

)
,
2N

δ2

}
.

Now, replacing Tj,k(f ;x, y) by 1
λmµn

∑
j∈Jm

∑
k∈In Tj,k(f ;x, y) and taking sup(x,y)∈K , we get∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f ;x, y)−f(x, y)

∥∥∥∥
C(K)

≤ ε+M

(∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f0;x, y)−f0(x, y)

∥∥∥∥
C(K)

+

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f1;x, y)−f1(x, y)

∥∥∥∥
C(K)

+

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f2;x, y)−f2(x, y)

∥∥∥∥
C(K)

+

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f3;x, y)− f3(x, y)

∥∥∥∥
C(K)

)
. (3.6)

For a given r > 0, choose ε > 0 such that ε < r. Define the following sets:

D :=

{
(m,n),m ≤ p and n ≤ q :

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

≥ r

}
,

D1 :=

{
(m,n),m ≤ p and n ≤ q :

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f0;x, y)− f0(x, y)

∥∥∥∥
C(K)

≥ r − ε
4K

}
,

D2 :=

{
(m,n),m ≤ p and n ≤ q :

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f1;x, y)− f1(x, y)

∥∥∥∥
C(K)

≥ r − ε
4K

}
,

D3 :=

{
(m,n),m ≤ p and n ≤ q :

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f2;x, y)− f2(x, y)

∥∥∥∥
C(K)

≥ r − ε
4K

}
,

D4 :=

{
(m,n),m ≤ p and n ≤ q :

∥∥∥∥ 1

λmµn

∑
j∈Jm

∑
k∈In

Tj,k(f3;x, y)− f3(x, y)

∥∥∥∥
C(K)

≥ r − ε
4K

}
.

7

Mursaleen: Generalized statistical summability of double sequences

Published by Digital Commons @PVAMU, 2017



42 M. Mursaleen

Then, from (3.6), we see that D ⊂ D1 ∪ D2 ∪ D3 ∪ D4, and therefore δλ,µ{D} ≤ δλ,µ{D1} +

δλ,µ{D2}+ δλ,µ{D3}+ δλ,µ{D4}. Hence, conditions (3.2)–(3.5) imply the condition (3.1).

This completes the proof of the theorem. 2

4. Example

We show that the following double sequence of positive linear operators satisfies the conditions
of Theorem 3.1 but does not satisfy the conditions of Theorem A and Theorem B.

Example 5.

Consider the following Meyer-König and Zeller (1960) operators:

Bm,n(f ;x, y) := (1−x)m+1(1−y)n+1

∞∑
j=0

∞∑
k=0

f

(
j

j +m+ 1
,

k

k + n+ 1

)(
m+ j

j

)(
n+ k

k

)
xjyk,

(4.1)

where f ∈ Hω(K), and K = [0, A]× [0, B], A,B ∈ (0, 1). Since, for x ∈ [0, A], A ∈ (0, 1),

1

(1− x)m+1
=
∞∑
j=0

(
m+ j

j

)
xj,

it is easy to see that
Bm,n(f0;x, y) = f0(x, y).

Also, we obtain

Bm,n(f1;x, y) = (1− x)m+1(1− y)n+1

∞∑
j=0

∞∑
k=0

j

m+ 1

(
m+ j

j

)(
n+ k

k

)
xjyk

= (1− x)m+1(1− y)n+1x
∞∑
j=0

∞∑
k=0

1

m+ 1

(m+ j)!

m!(j − 1)!

(
n+ k

k

)
xj−1yk

= (1− x)m+1(1− y)n+1x
1

(1− x)m+2

1

(1− y)n+1
=

x

(1− x)
,

and similarly
Bm,n(f2;x, y) =

y

(1− y)
.

Finally, we get

Bm,n(f3;x, y) = (1−x)m+1(1−y)n+1

∞∑
j=0

∞∑
k=0

{(
j

m+ 1

)2

+

(
k

n+ 1

)2}(
m+ j

j

)(
n+ k

k

)
xjyk

= (1− x)m+1(1− y)n+1 x

m+ 1

∞∑
j=0

∞∑
k=0

j

m+ 1

(m+ j)!

m!(j − 1)!

(
n+ k

k

)
xj−1yk

+(1− x)m+1(1− y)n+1 y

n+ 1

∞∑
j=0

∞∑
k=0

k

n+ 1

(
m+ j

j

)
(n+ k)!

n!(k − 1)!
xjyk−1

8
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= (1− x)m+1(1− y)n+1 x

m+ 1

{
x
∞∑
j=0

∞∑
k=0

(m+ j + 1)!

(m+ 1)!(j − 1)!

(
n+ k

k

)
xj−1yk

+
∞∑
j=0

∞∑
k=0

(
m+ j + 1

j

)(
n+ k

k

)
xjyk

}

+(1− x)m+1(1− y)n+1 y

n+ 1

{
y
∞∑
j=0

∞∑
k=0

(n+ k + 1)!

(n+ 1)!(k − 1)!

(
m+ j

j

)
xjyk−1

+
∞∑
j=0

∞∑
k=0

(
n+ k + 1

k

)(
m+ j

j

)
xjyk

}

=
m+ 2

m+ 1

(
x

1− x

)2

+
1

m+ 1

x

1− x
+
n+ 2

n+ 1

(
y

1− y

)2

+
1

n+ 1

y

1− y

→
(

x

1− x

)2

+

(
y

1− y

)2

.

Therefore, the conditions of Theorem A are satisfied, and we get for all f ∈ Hω(K) that

P - lim
j,k→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

= 0.

Now, define w = (wmn) by wmn = (−1)m for all n. Take λn = n, µm = m. Then, this sequence
is neither P–convergent nor (λ, µ)-statistically convergent but it is statistically (λ, µ)-summable
to 0 (since (C, 1, 1)–limw = 0). Let Lm,n : Hω(K)→ C(K) be defined by

Lm,n(f ;x, y) = (1 + wmn)Bm,n(f ;x, y).

It is easy to see that the sequence (Lm,n) satisfies the conditions (3.2)–(3.5). Hence by Theorem
3.1, we have

(λ, µ)st-- lim
m,n→∞

‖Lm,n(f ;x, y)− f(x, y)‖ = 0.

On the other hand, the sequence (Lm,n) does not satisfy the conditions of Theorem A and Theorem
B, since (Lm,n) is neither P–convergent nor (λ, µ)-statistically convergent. That is, Theorem A
and Theorem B do not work for our operators Lm,n. Hence, our Theorem 3.1 is stronger than
Theorem A and Theorem B.

5. Conclusion

We introduced a new method of summability, namely, statistical (λ, µ)-summability and obtained
its relation with (λ, µ)-statistical convergence. As an application of our method, we have used it
to prove a Korovkin type approximation theorem for functions of two variables. Through Meyer-
König and Zeller operators, we have shown that our result is stronger than the previous results
proved for P–convergence and statistical convergence.
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