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Abstract

In this article, modified (G
′

G
)-expansion method is presented to establish the exact complex

solutions of the time fractional Gross-Pitaevskii (GP) equation in the sense of the conformable
fractional derivative. This method is an effective method in finding exact traveling wave solutions
of nonlinear evolution equations (NLEEs) in mathematical physics. The present approach has
the potential to be applied to other nonlinear fractional differential equations. Based on two
transformations, fractional GP equation can be converted into nonlinear ordinary differential
equation of integer orders. In the end, we will discuss the solutions of the fractional GP equation
with external potentials.
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944 N. Taghizadeh & M.N. Foumani

1. Introduction

The investigation of exact solutions to nonlinear fractional differential equations plays an im-
portant role in various applications in physics, fluid flow, engineering, signal processing, control
theory, systems identification, biology, finance and fractional dynamics (see, Kilbas et al., 2006;
Mille and Ross, 1993; Podlubny, 1999). Recently, a large amount of literature has been provided
to construct the solutions of fractional ordinary differential equations, integral equations and
fractional partial differential equations of physical interest.

The Gross-Pitaevskii equation describes the ground state of a quantum system of identical bosons
using the HartreeFock approximation and the pseudopotential interaction model. Some numerical
methods have been proposed to obtain approximate solutions for fractional Gross-Pitaevskii
equation, such as Homotopy analysis method (see, Uzar et al., 2012; Uzar and Ballikaya, 2012).
By using the modified (G

′

G
)-expansion method (see, Taghizadeh et al., 2012), we find exact and

analytical solutions of the time fractional Gross-Pitaevskii (GP) equation with external potential
in the sense of the conformable fractional derivative.

There are several definitions for fractional differential equations. These definitions include Grunwald-
Letnikov, Riemann-Liouville, Caputo, Weyl, Marchaud, and Riesz fractional derivatives (see
Podlubny, 1999). Recently, a new modification of Riemann-Liouville derivative is proposed by
Jumarie (Jumarie, 2006),

Dα
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1

and gave some basic fractional calculus formulae, for example, formulae (4.12) and (4.13) in
Jumarie (2006),

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (1)

Dα
t f(t)[g(t)] = f(t)′g(t)[g(t)]Dα

t g(t) = Dα
g f [g(t)](g(t)′)α. (2)

The last formula (1) has been applied to solve the exact solutions to some nonlinear fractional
order differential equations. If this formula were true, then we could take the transformation
ξ = x − atα

Γ(α+1)
and reduce the partial derivative ∂αU(x,t)

∂ tα
to U ′(ξ). Therefore the corresponding

fractional differential equations become the ordinary differential equations which are easy to study.
But we must point out that Jumarie’s basic formulae (1) and (2) are not correct, and therefore the
corresponding results on differential equations are not true (see Liu, 2014). Fractional derivative
is as old as calculus. The most popular definitions are (see Kilbas et al., 2006; Mille and Ross,
1993; Podlubny, 1999):
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(i) [Riemann-Liouville definition] If n is a positive integer and α ∈ [n− 1, n) the αth derivative
of f is given by

Dα
a f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(ξ)

(t− ξ)α−n+1
dξ.

(ii) [Caputo definition] for α ∈ [n− 1, n) the α derivative of f is

Dα
a f(t) =

1

Γ(n− α)

∫ t

a

f (n)(ξ)

(t− ξ)α−n+1
dξ.

Now, all definitions are attempted to satisfy the usual properties of the standard derivative. The
only property inherited by all definitions of fractional derivative is the linearity property. However,
the following are the setbacks of one definition or another:

(1) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0(Dα

a (1)) for the Caputo
derivative if g is not a natural number.

(2) All fractional derivatives do not satisfy the known product rule:

Dα
a (fg) = fDα

a g + gDα
a f.

(3) All fractional derivatives do not satisfy the known quotient rule:

Dα
a

(
f

g

)
=
fDα

a g − gDα
a f

g2
.

(4) All fractional derivatives do not satisfy the chain rule:

Dα
a (fog)(t) = fα(g(t))gα(t).

(5) All fractional derivatives do not satisfy DαDβf = Dα+βf in general.

(6) The Caputo definition assumes that the function f is differentiable.

Authors introduced a new definition of fractional derivative as follows (see, Khalil, 2014):

Dα
t f(t) = lim

ε→0

f(t+ εt1−α)− f(t)

ε
,

for t > 0, α ∈ [0, 1) and f : [0,∞) −→ R. Dα
t f(t) is called the conformable fractional derivative

of f of order α (see, Abdeljawad et al., 2015; Abdeljawad, 2015).

3
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946 N. Taghizadeh & M.N. Foumani

Using this kind of fractional derivative and some useful formulas, we can convert differential
equations into integer-order differential equations.

Some properties for the suggested conformable fractional derivative given in (see, Abdeljawad
et al., 2015) are as follows,

Dα
t (tγ) = γ tγ−α, γ ∈ R, (3)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (4)

Dα
t f [g(t)] = f ′g[g(t)]Dα

t g(t). (5)

The rest of this paper is organized as follows: First in Sect. 2, we give the description of
the modified (G

′

G
)-expansion method. Then in Sect. 3, we apply this method to establish exact

solutions for the fractional Gross-Pitaevskii equation. Finally, some results and conclusions are
presented.

2. The modified (G
′

G
)-expansion method

Let us consider the fractional differential equation with independent variables
x = (x1, x2, . . . , xn, t) and a dependent variable u,

F (u,Dα
t u, ux1 , ux2 , ux3 , . . . , D

2α
t u, ux1x1 , ux2x2 , ux3x3 , . . .) = 0. (6)

In the following we give the main steps of the modified (G
′

G
)-expansion method.

Step 1. Using the variable transformation

u(x1, x2, . . . , xn, t) = U(ξ), ξ = a1x1 + a2x2 + . . .+ anxn +
btα

α
,

where ai and b are constants to be determined later, the fractional differential equation
(6) is reduced to nonlinear ordinary differential equation

F (U(ξ), bU ′(ξ), a1U
′(ξ), . . . , anU

′(ξ), b2U ′′(ξ), . . .) = 0, (7)

where “
′
” = d

dξ
.

Step 2. Suppose that the solution of ODE (7) can be expressed by a polynomial in (G
′

G
)

as follows:

U(ξ) =
r∑
i=0

αi(
G′

G
)i +

r∑
i=1

βi(
G′

G
)−i, (8)

4
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where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0, (9)

α0, α1, ..., αr, β1, ..., βr, λ and µ are constants to be determined later. The positive integer
r can be determined by considering the homogeneous balance between the highest order
derivatives and nonlinear terms appearing in ODE (7).

Step 3. By substituting (8) into (7) and using second order linear ordinary differential
equation (LODE) (9), collecting all terms with the same order of (G

′

G
) together, the left-

hand side of equation (7) is converted into another polynomial in (G
′

G
). Equating each

coefficient of this polynomial to zero yields a set of algebraic equations for α0, α1, ..., αr, β1,

..., βr, λ and µ.

Step 4. Assuming that the constants α0, α1, ..., αr, β1, ..., βr, λ and µ can be obtained
by solving the algebraic equations in Step 3, since the general solutions of the second order
LODE (9) have been well known for us, then substituting α0, α1, ..., αr, β1, ..., βr, a1, a2, . . . ,

an, b and the general solutions of equation (9) into (8) we have more traveling wave
solutions of the nonlinear evolution equation (6).

3. Exact solutions to the time fractional Gross-Pitaevskii (GP) equation

Now we seek the time fractional Gross-Pitaevskii (GP) equation (see, Uzar and Ballikaya, 2012),

ih
∂αu

∂tα
= − h2

2m

∂2u

∂x2
+ v(x)u+ gu|u|2, t > 0, 0 < α ≤ 1, (10)

where g,m and v(x) are the interacting parameter between particles, mass of the particles and
external potential applying to the particle systems, respectively. The interacting parameter, i.e.
coupling constant g, is defined as g = 4πh2as

m
where as the scattering length of two interacting

bosons. Fractional GP equations are built to investigate boson systems in a more realistic way.
One of them is the time-fractional GP equation. The memory effect, long-range interaction and
restriction of entropic and ergodic hypotheses (see, Greiner et al., 1995) in BEC can be taken
into account with the time-fractional GP equation.

We use the transformation

u(x, t) = U(ξ), ξ = ax+
btα

α
, (11)

where a and b are constants. Substituting (11) into equation (10), we obtain

5
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Dα
t u = Dα

t U = U(ξ) = U ′(ξ)Dα
t ξ = bUξ,

∂2u

∂x2
= a2Uξξ.

Then equation (10) is reduced into an ordinary differential equation:

ibhUξ +
a2h2

2m
Uξξ − v(ξ)U − gU |U |2 = 0. (12)

Function U is a complex function so we can write

U(ξ) = e−
imb
ha2

ξw(ξ),

where w(ξ) is a real function. Then (12) reduced to

(
mb2

2a2
− v(ξ)

)
w − gw3 +

a2h2

2m
wξξ = 0. (13)

Suppose that the solution of ODE (13) can be expressed by a polynomial in (G
′

G
) as follows:

w(ξ) =
r∑
i=0

ki

(
G′

G

)i
+

r∑
i=1

li

(
G′

G

)−i
, (14)

where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0. (15)

Considering the homogeneous balance between wξξ and w3 in equation (13) we required that
r + 2 = 3r then r = 1. So we can write (14) as

w(ξ) = k1

(
G′

G

)
+ k0 + l1

(
G′

G

)−1

. (16)

By substituting (16) into equation (13) and collecting all terms with the same power of (G
′

G
)

together the left-hand side of ODE (13) is converted into another polynomial to zero, yields a
set of simultaneous algebraic equations for k0, k1, l1, a, b, µ and λ as follows:

6
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(
G′

G

)3

: −gmk3
1 + a2h2k1 = 0,(

G′

G

)2

: −2gmk0k
2
1 + a2h2λk1 = 0,(

G′

G

)1

: −6gma2k1(k1l1 + k2
0) + a4h2k1(λ2 + 2µ) +m(mb2 − 2a2v(ξ))k1 = 0,(

G′

G

)0

: −2a2gmk3
0 − 12a2gmk0k1l1 + a4h2λµk1 + a4h2λl1 +m(mb2 − 2a2v(ξ))k0 = 0,(

G′

G

)−1

: −6gma2l1(k1l1 + k2
0) + a4h2l1(λ2 + 2µ) +m(mb2 − 2a2v(ξ))l1 = 0,(

G′

G

)−2

: −2gmk0l
2
1 + a2h2λµl1 = 0,(

G′

G

)−3

: −gml31 + a2h2µ2l1 = 0.

Solving the algebraic equation above with the aid of Maple yields

Case A:

k1 = ±

√
a2h2

gm
, k0 = ±λ

2

√
a2h2

gm
, l1 = 0, µ =

1

4
λ2 − m(mb2 − 2a2v(ξ))

2a4h2
. (17)

By using (17) expansion (16) can be written as

w(ξ) = ±

√
a2h2

gm
(
G′

G
)± λ

2

√
a2h2

gm
. (18)

Substituting the general solutions of equation (15) into equation (18), we obtain the exact solution
to equation (10).

When ∆ > 0,

U1,2(ξ) = ±1

2
e−

imb
ha2

ξ
√
T∆

(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

)
. (19)

When ∆ < 0,

U1,2(ξ) = ±1

2
e−

imb
ha2

ξ
√
−T∆

(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)
.

7
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When ∆ = 0,

U1,2(ξ) = ±e−
imb
ha2

ξ
√
T

(
α2

α1 + α2ξ

)
,

where ξ = ax+ btα

α
,∆ = λ2−4µ = 2m(mb2−2a2v(x))

a4h2
, T = a2h2

gm
and a and b are arbitrary constants.

Case B:

k1 = 0, k0 = ±λ
2

√
a2h2

gm
, l1 = ±

√
a2h2µ2

gm
, µ =

1

4
λ2 − m(mb2 − 2a2v(ξ))

2a4h2
. (20)

By using (20) expansion (16) can be written as

w(ξ) = ±λ
2

√
a2h2

gm
±

√
a2h2µ2

gm

(
G′

G

)−1

. (21)

Substituting the general solutions of equation (15) into equation (21), we obtain the exact solution
to equation (10):

When ∆ > 0,

U3,4(ξ) = ±e−
imb
ha2

ξ
√
T {λ

2
+
√
µ2[

√
∆

2
(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

)− λ

2
]−1}. (22)

When ∆ < 0,

U3,4(ξ) = ±e−
imb
ha2

ξ
√
T {λ

2
+
√
µ2[

√
−∆

2
(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)− λ

2
]−1}.

When ∆ = 0,

U3,4(ξ) = ±e−
imb
ha2

ξ
√
T {λ

2
+
√
µ2[

α2

α1 + α2ξ
− λ

2
]−1},

8
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where ξ = ax+ btα

α
,∆ = λ2−4µ = 2m(mb2−2a2v(x))

a4h2
, T = a2h2

gm
and a and b are arbitrary constants.

Case C:

k1 = ±

√
a2h2

gm
, k0 = ±λ

2

√
a2h2

gm
, l1 = ±

√
a2h2µ2

gm
, µ =

1

4
λ2−m(mb2 − 2a2v(ξ))

2a4h2
. (23)

By using (23) expansion (16) can be written as

w(ξ) = ±

√
a2h2

gm
(
G′

G
)± λ

2

√
a2h2

gm
±

√
a2h2µ2

gm
(
G′

G
)−1. (24)

Substituting the general solutions of equation (15) into equation (24), we obtain the exact solution
to equation (10):

When ∆ > 0,

U5,6(ξ) = ± e−
imb
ha2

ξ
√
T {
√

∆

2
(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

) (25)

+
√
µ2[

√
∆

2
(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

)− λ

2
]−1}.

When ∆ < 0,

U5,6(ξ) = ± e−
imb
ha2

ξ
√
T {
√
−∆

2
(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)

+
√
µ2[

√
−∆

2
(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)− λ

2
]−1}.

When ∆ = 0,

U5,6(ξ) = ±e−
imb
ha2

ξ
√
T { α2

α1 + α2ξ
+
√
µ2[

α2

α1 + α2ξ
− λ

2
]−1},

9
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where ξ = ax+ btα

α
,∆ = λ2−4µ = 2m(mb2−2a2v(x))

a4h2
, T = a2h2

gm
and a and b are arbitrary constants.

Case D:

k1 = ±

√
a2h2

gm
, k0 = ±λ

2

√
a2h2

gm
, l1 = ∓

√
a2h2µ2

gm
, µ =

1

4
λ2−m(mb2 − 2a2v(ξ))

2a4h2
. (26)

By using (26) expansion (16) can be written as

w(ξ) = ±

√
a2h2

gm
(
G′

G
)± λ

2

√
a2h2

gm
∓

√
a2h2µ2

gm
(
G′

G
)−1. (27)

Substituting the general solutions of equation (15) into equation (27), we obtain the exact solution
to equation (10):

When ∆ > 0,

U7,8(ξ) = ± e−
imb
ha2

ξ
√
T {
√

∆

2
(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

) (28)

−
√
µ2[

√
∆

2
(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

)− λ

2
]−1}.

When ∆ < 0,

U7,8(ξ) = ± e−
imb
ha2

ξ
√
T {
√
−∆

2
(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)

−
√
µ2[

√
−∆

2
(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)− λ

2
]−1}.

When ∆ = 0,

U7,8(ξ) = ±e−
imb
ha2

ξ
√
T { α2

α1 + α2ξ
−
√
µ2[

α2

α1 + α2ξ
− λ

2
]−1},

10
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where ξ = ax+ btα

α
,∆ = λ2−4µ = 2m(mb2−2a2v(x))

a4h2
, T = a2h2

gm
and a and b are arbitrary constants.

Case E:

k1 = ±

√
a2h2

gm
, k0 = ∓λ

2

√
a2h2

gm
, l1 = ∓

√
a2h2µ2

gm
, µ =

1

4
λ2−m(mb2 − 2a2v(ξ))

2a4h2
. (29)

By using (29) expansion (16) can be written as

w(ξ) = ±

√
a2h2

gm
(
G′

G
)∓ λ

2

√
a2h2

gm
∓

√
a2h2µ2

gm
(
G′

G
)−1. (30)

Substituting the general solutions of equation (15) into equation (30), we obtain the exact solution
to equation (10):

When ∆ > 0,

U9,10(ξ) = ± e−
imb
ha2

ξ
√
T {
√

∆

2
(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

)− λ (31)

−
√
µ2[

√
∆

2
(
α1 sinh

√
∆
2
ξ + α2 cosh

√
∆
2
ξ

α2 sinh
√

∆
2
ξ + α1 cosh

√
∆
2
ξ

)− λ

2
]−1}.

When ∆ < 0,

U9,10(ξ) = ± e−
imb
ha2

ξ
√
T {
√
−∆

2
(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)− λ

−
√
µ2[

√
−∆

2
(
−α1 sin

√
−∆
2
ξ + α2 cos

√
−∆
2
ξ

α2 sin
√
−∆
2
ξ + α1 cos

√
−∆
2
ξ

)− λ

2
]−1}.

When ∆ = 0,

U9,10(ξ) = ±e−
imb
ha2

ξ
√
T { α2

α1 + α2ξ
− λ−

√
µ2[

α2

α1 + α2ξ
− λ

2
]−1},

11
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where ξ = ax+ btα

α
,∆ = λ2−4µ = 2m(mb2−2a2v(x))

a4h2
, T = a2h2

gm
and a and b are arbitrary constants.

Remark 1:

• In expression (19), if α1 > 0 and α2
1 > α2

2 , then U1,2(ξ) can be written as:

U1,2(ξ) = ±1

2
e−

imb
ha2

ξ
√
T∆ tanh(

√
∆

2
(ξ + ξ0)).

• In expression (22), if α1 > 0 and α2
1 > α2

2 , then U3,4(ξ) can be written as:

U3,4(ξ) = ±e−
imb
ha2

ξ
√
T {λ

2
+
√
µ2[

√
∆

2
tanh(

√
∆

2
(ξ + ξ0))− λ

2
]−1}.

• In expression (25), if α1 > 0 and α2
1 > α2

2 , then U5,6(ξ) can be written as:

U5,6(ξ) = ± e−
imb
ha2

ξ
√
T {
√

∆

2
tanh(

√
∆

2
(ξ + ξ0))

+
√
µ2[

√
∆

2
tanh(

√
∆

2
(ξ + ξ0))− λ

2
]−1}.

• In expression (28), if α1 > 0 and α2
1 > α2

2 , then U7,8(ξ) can be written as:

U7,8(ξ) = ± e−
imb
ha2

ξ
√
T {
√

∆

2
tanh(

√
∆

2
(ξ + ξ0))

−
√
µ2[

√
∆

2
tanh(

√
∆

2
(ξ + ξ0))− λ

2
]−1}.

• In expression (31), if α1 > 0 and α2
1 > α2

2 , then U9,10(ξ) can be written as:

U9,10(ξ) = ± e−
imb
ha2

ξ
√
T {
√

∆

2
tanh(

√
∆

2
(ξ + ξ0))− λ

−
√
µ2[

√
∆

2
tanh(

√
∆

2
(ξ + ξ0))− λ

2
]−1}.

• • • In all cases; ξ = ax + btα

α
, ξ0 = tanh−1(α2

α1
),∆ = λ2 − 4µ = 2m(mb2−2a2v(x))

a4h2
, T = a2h2

gm
and

a and b are arbitrary constants.
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Remark 2:

Now we will investigate the time fractional Gross-Pitaevskii equation (10) to discuss the ground
state time-dependent dynamic of the Bose-Einstein condensation of weakly interacting system
for different potential.

1. For m = 1
2
, h = 1 and v(x) = 0, GPE of fractional order (10) can be degenerated to

the nonlinear fractional Schrödinger equation (Dhaigude and Birajdar, 2013),

i
∂αu

∂tα
+ uxx − gu|u|2 = 0, t > 0, 0 < α ≤ 1. (32)

Then, by using the modified (G
′

G
)-expansion method, we can find the exact solution of equation

(32).

2. For v(x) = 1
2
mω2x2, GPE of fractional order (10) can be degenerated to the time-fractional

Gross-Pitaevskii equation for harmonic potential (Uzar and Ballikaya, 2012),

ih
∂αu

∂tα
= − h2

2m

∂2u

∂x2
+

1

2
mω2x2u+ gu|u|2, t > 0, 0 < α ≤ 1, (33)

where ω is the frequency of harmonic potential. Then by using the modified (G
′

G
)-expansion

method, we can find the exact solution of equation (33).

3. For v(x) = ± sin2 x, GPE of fractional order (10) can be degenerated to the time-fractional
Gross-Pitaevskii equation for optical lattice potential (Uzar et al., 2012),

ih
∂αu

∂tα
= − h2

2m

∂2u

∂x2
± sin2 xu+ gu|u|2, t > 0, 0 < α ≤ 1. (34)

Then by using the modified (G
′

G
)-expansion method, we can find the exact solution of equation

(34).

4. Conclusion

In this paper, the modified (G
′

G
)-expansion method has been successfully applied to find the new

exact solutions for the time-fractional Gross-Pitaevskii equation. This method is powerful and
applicable to many nonlinear fractional partial differential equations.
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