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Abstract 
 

The article investigates the time-reversal thermoelasticity of a hollow elliptical cylinder for 

determining the temperature distribution and its associated thermal stresses at a certain point 

using integral transform techniques by unifying classical orthogonal polynomials as the 

kernel. Furthermore, by considering a circle as a special kind of ellipse, it is seen that the 

temperature distribution and the comparative study of a circular cylinder can be derived as a 

special case from the present mathematical solution. The numerical results obtained are 

accurate enough for practical purposes. 

 

Keywords: Hollow elliptic cylinder; circular cylinder; temperature distribution; thermal 

stresses; integral    transform 
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1.  Introduction 
  

The determination of initial temperature distribution from a known physical distribution of 

temperature at any instant is known as the time-reversal problem. This has aided in finding 

the temperature distribution of a prior state when it can be determined at any position and at 

any instant. It is not surprising that a considerable amount of work has been done over the 

past decades of the time-reversal heat conduction challenge due to technical interest.  
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During the past years, time-reversal heat conduction problems with circular boundary have 

been worked out by many authors. Masket (1965) considered Green’s functions or Influence 

functions and discussed a class of heat conduction problem which he has termed as ‘Time-

reversal problem’. Sabherwal (1965) has considered the time-reversal problems in heat 

conduction for (i) semi-infinite medium, (ii) rectangular plate. Choubey (1969) has studied a 

time-reversal heat conduction problem of heat conduction for a solid elliptical cylinder by 

applying a finite Mathieu transform. Mehta (1976) tackled some time-reversal heat 

conduction with the help of integral transform for evaluating (i) heat flow in a cylindrical 

shell of infinite height with heat generation and radiation, (ii) heat flow in a truncated wedge 

of finite height, (iii) heat flow on a semi-infinite solid containing an exterior plane crack with 

circular boundary and an infinitely long cylindrical cavity. Under the title of ‘time-reversal 

problem’, Patel (1978) investigated time-reversal heat conduction problem of the circular 

cylinder with radiation type boundary conditions applying the unconventional finite integral 

transform.  

 

Recently, Bagde (2013) investigated the time-reversal inverse heat conduction problem of an 

elliptical plate for determining the temperature distribution and unknown temperature 

gradient at a particular point at any time using Mathieu transform and unconventional finite 

integral transform. However, the aforementioned researchers have not considered any 

thermoelastic problem using the above principle, particularly in elliptical coordinates system.  

 

Although the aforementioned time-reversal concept can be applicable to the field of 

underwater acoustics (Fink 1996, 2006), Thermo and photo-acoustic tomography (Kawakatsu 

2008), Non-Destructive Evaluation (Reyes-Rodríguez 2014), Electromagnetic Fields (Mora 

2012) and Ultrasonic Fields (Fink 1992) etc., few authors (Fink 1997, Larmat 2010, 

Montagner 2012) have proposed an analytical analysis of the method, especially in the case 

of an elastic medium and for a finite body such as the Earth. Similarly, time-reversal of wave 

propagation (Fouque 2007) analysis in a randomly layered medium using the asymptotic 

theory of ordinary differential equations can also be beneficial to source estimation of layered 

media.  

 

In solid mechanics, there is an ample number of cases in which heat production in solids has 

led to various technical problems of mechanical applications wherein heat produced is rapidly 

sought to be transferred or dissipated. Reviewing the previous studies, it was observed that no 

analytical procedure has been established in the realm of solid mechanics, considering 

internal heat source generated within the body. The main objective here is to theoretically 

treat the time-reversal thermoelastic problem of heat transfer in the region where heat is 

generated within the system.  

 

To establish the time-reversal formulation, the following assumptions need to be made. 

 

1. The material of the cylinder is elastic, homogeneous, and isotropic. 

2. Thin walled cylinder has been considered during the investigation with a ratio of length to 

the thickness greater than 8. 

3. The deflection (the normal component of the displacement vector) of the mid-plane is 

small as compared to the thickness of the plate. 

4. The stress perpendicular to the middle plane is small compared to the other stress 

components and may be neglected in the stress-strain relations. 
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In this paper, extended repeated integral transformation involving ordinary and modified 

Mathieu functions of first and second kind of order n and Jacobi transform are defined. 

Inversion formula has been established and some properties are mentioned. The transform 

has been used to investigate thermoelasticity problem of the hollow elliptical cylinder 

occupying the space 

 

 :3),,{( RzD   ,oi   ,20   },11  z   

 

having compounded effect with known surrounding temperature at time   and internal heat 

source generated within the material.  

 

2.  Statement of the problem 
 

The thermoelastic problem of an elliptical cylinder can be rigorously analysed by introducing 

the elliptical coordinates ),,( z , which are related to the rectangular coordinates ),,( zyx . 

For convenience, we transform to an elliptic cylindrical coordinate system i.e., 

,coscosh cx    sinsinhcy   and zz  . The curves  constant represent a family of 

confocal hyperbolas while the curves  constant represent a family of confocal ellipses. 

The length 2c is the distance between their common foci. Both sets of curves intersect each 

other orthogonally at every point in space. The parameter   defines the interfocal line taking 

the range ),( oi   , the coordinate   is an angular coordinate taking the range )2,0[ 

, and thickness as )1,1(z .   

 

2.1. Heat conduction problem 

 

The governing differential equation for heat conduction can be defined as 

 

 tTtzzzTzTTh ,),,,(],)21(),,(2[                                               (1) 

                                            

and has to be solved with the conditions 

 

),,(),,,( zfzT    (known)  for 0 ,                                                             (2) 

0),,,( tzT     at   o  ,                                                                           (3) 

0),,,(, tzT    at   i  .                                                                                     (4) 

 

We consider the hollow elliptical cylinder occupying the space D which ends at z = ±1 and 

whose lateral surface is insulated. Thus, the thermal conductivity vanishes at the ends; it 

follows that the ends are also insulated. We assume the initial conditions as 

 

),,(),,,( zgtzT    at 0t  (unknown) for all 11  z ,                                   (5) 

 

where ),,( zg   is a suitable function so that the Mathieu-Jacobi transform of ),,( zg   

exists, ),,,( tz  is the heat source function for the problem, C /  represents the 

thermal diffusivity in which   is the thermal conductivity of the material,   is the density,   

is any time greater than zero, C  is the calorific capacity which is assumed to be constant. 
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For the sake of brevity, we consider heat generated in the solid per unit volume as 

 

zTztz ,])2()[(),,,(   ,                                                                       (6) 

 

and 

 

           )2cos2(cosh)2/2(2   ch . 

 

 

2.2. Associated thermal stress problem 

 

The medium is defined by 

 

 )2( z , oi   ,  20  .  

 

Compiling various boundary conditions, elliptical coordinates are defined to determine the 

influence of thermal boundary conditions on the thermal stresses. Since we have assumed that 

the cylinder is sufficiently thin, we can assume that the plane, initially normal to the middle 

or neutral plane (z = 0) before bending, remains straight and normal to the middle surface 

during the deformation. The length of such elements is not altered.  This means that the axial 

stress is negligible compared to the other stress components. This can be neglected in the 

stress-strain relations. According to the aforesaid assumption, the potential function   for 

such a system satisfies the equation  

  

Tth 










1

1
),,(2 ,                                                                                        (7) 

  

where  denotes the Poisson’s ratio, t  the coefficient of linear expansion. 

 

The components of the stresses given by Misra (1971) are represented by the use of the stress 

function   and is illustrated as 

 



















].,2sinh,2sin,)2cos2(cosh[)2/2(2)4/1(

,],2sin,2sinh,)2cos2[(cosh)2/2(2)4/1(

,],2sin,2sinh,)2cos2[(cosh)2/2(2)4/1(







cGh

cGh

cGh

     

(8) 

   

It is to be noted that the condition on the boundary of the plate should be stress-free and is yet 

to be satisfied. To this end, we find the complementary stresses ij  satisfying the following 

relations 

 

0,0      on  0  .                                                               (9) 

   

To solve the isothermal elastic problem, let us make use of the Airy stress function which 

satisfies the bilaplacian equation 
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02)],,(2[  h .                                                                                             (10) 

 

Then, the complementary stresses are given by 

   



















].,2sinh,2sin,)2cos2(cosh[)2/2()4/1(

],,2sin,2sinh,)2cos2[(cosh)2/2()4/1(

],,2sin,2sinh,)2cos2[(cosh)2/2()4/1(







ch

ch

ch

        (11) 

 

Thus, the final stresses can be represented as 

 
















.

,

,







                                                                                                (12) 

   

Equations (1) to (12) constitute the mathematical formulation of the problem under 

consideration. 

 

3.    Solution for the Problem 
 
3.1.  Solution of the heat conduction problem 

 

In order to solve fundamental differential Equation (1), first we introduce the extended 

transformation (refer Appendix) over the variables ),,( z  as 

 

.)(
),(

)1()1(

)
,2

,(2)
,2

,(2

1
1

2
0 )2cos2(cosh),,()

,2
,,,,,(

dzddzPzz

mn
qnce

mn
qnB

o
i

zM
mn

qoiM












 





   

                (13) 

 

In this way, we may define the inversion theorem of (13) in the form 

  

.,/)(
),(

)
,2

,(2

0

)
,2

,(2)
,2

,,,,,(

0 1

),,(









mnCzP
mn

qnce

mn
qnBe

mn
qoiM

n m

zM


















                    (14) 

 

Performing above integral transformation under the conditions (3) to (4), we obtain 

 

),,
,2

,,,,,()]1(2
,2

[, t
mn

qoiT
mn

ktT                                  (15) 
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in which  

 

          .2/,242
,2

cmnq
mn
  

 

Simplifying Equation (15) and using condition (2), one obtains 

 

2 , 2 ,

2

2 ,

( , , , , , , ) ( , , , , , )

exp{ [ ( 1)]( )},

i o n m i o n m

n m

T q t f q

k t

         

     



      
                      (16) 

 

and then, using the inversion theorems of the transform rules defined by Equation (14) on 

Equation (16), yields  

 

,,/)}()]1(2
,2

[exp{

)
,2

,(2)
,2

,(2

0

)
,2

,,,,,()(
),(

0 1

),,,(

mCnt
mn

k

mn
qnce

mn
qnBe

mn
qoifzP

n m

tzT






























                            (17) 

 

and the required unknown temperature using condition (5) is derived as 

  

.,/})]1(2
,2

[exp{

)
,2

,(2)
,2

,(2

0

)
,2

,,,,,()(
),(

0 1

),,(

mnC
mn

k

mn
qnce

mn
qnBe

mn
qoifzP

n m

zg






























                                 (18) 

 

3.2. Solution of the thermal stress problem 

 

Referring to the fundamental Equation (1) and its solution (17) for the heat conduction 

problem, the solution to the displacement function is represented by the Goodier’s 

thermoelastic displacement potential  , which is given by Equation (7) as 

 

.,,24/)]())1(2
,2

(exp[

)
,2

,(2)
,2

,(2

0

)
,2

,,,,,()(
),(

0 1

22

1

1
),,(

mnCmnqt
mn

k

mn
qnce

mn
qnBe

r
mn

qoifzP

n m

hct










































 

       (19) 

 

Now assume Airy’s stress function  which satisfies Equation (10) as, 
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,,/)}()]1(2
,2

[exp{

)
,2

,(2)
,2

,(2

)]2cos2(cosh,)2cos2(cosh,[

0

)
,2

,,,,,()(
),(

,2
0 1

),,(

mnCt
mn

k

mn
qnce

mn
qneB

mnYmnX

r
mn

qoifzP
mn

q

n m

t

































                             (20) 

 

in which mnX , and mnY ,  are the arbitrary functions that can be determined finally by using 

condition (9).  

 













































].02tanh2cos02sec3[24

1

1

,,28
,

],02tanh2cot02sinh2cos

02sec2cos31[24

1

1

,,28
,













echhc
mnCmnq

tG
mnY

ec

hhc
mnCmnq

tG
mnX

                   (21) 

 

Substituting mnX , and mnY ,  in Equations (20), (8), and (11), we get 

   

)}.()]1(2
,2

[exp{

)}
,2

,(2)
,2

,(2)]2cos2(cosh

)02tanh2cos02sec3()2cos2)(cosh02tanh2cot

02sinh2cos02sec2cos31{[(

0

)
,2

,,,,,()(
),(24

1

1

2
,2

80 1

),,(

t
mn

k

mn
qnce

mn
qnBe

ech

ech

r
mn

qoifzPhc

mn
C

tG

n m

t





















































      (22) 

 

Using Equations (8), (11), (19) and (22), one obtains the solution for thermal stresses as 

 

)},()]1(2
,2

[exp{

)}
,2

,(2',2
,(22sin

)
,2

,(2)
,2

,(2'2sinh

)
,2

,(2")
,2

,(2)2cos2(cosh{

0

)
,2

,,,,,(
,2,24

)(
),(

0 1

64

1

1

t
mn

k

mn
qnce

mn
qnBe

mn
qnce

mn
qnBe

mn
qnce

mn
qnBe

r
mn

qoif
mnCmnq

zP

n m

hctG





















































         (23) 
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4.  Transition to hollow circular cylinder 
 

When the elliptical cylinder tends to a circular cylinder of inner radius a and outer radius b is 

considered then, the semi-focal 0c . We can say that m  is the root of the transcendental 

equation 0)(0 mJ  . Also,  

0e  [as  ],  dd sinh2cosh22cosh2  ,2/2 crdr   

 coshsinh  , rcoshh [as 0h  ], drrd cosh , .sinhh drd   
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Using results from McLachlan (1947, p.330), 
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Taking into account the aforesaid parameters, the temperature distribution in cylindrical 

coordinate is finally represented by 
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in which 
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a drrmJprmC   

 

The aforementioned degenerated results of  Equation (29) agree with the results of Varghese 

and Khobragade (2007). 

 

5.  Numerical Results, Discussion and Remarks 
 

For the sake of simplicity of calculation, we set 

 

.)0()0(),,(  zzf                                                                            (30) 

 

The numerical computations have been carried out for Aluminum metal with parameter a = 

0.73 cm, b = 0.93 cm,   = 2 cm, Modulus of Elasticity E = 6.9  10
6
 N/cm

2
, Shear modulus 

G = 2.7  10
6
 N/cm

2
, Poisson’s ratio   = 0.281, Thermal expansion coefficient   = 25.5  

10
-6

 cm/cm-
0
C, Thermal diffusivity  = 0.86 cm

2
/sec, Thermal conductivity  = 0.48 cal sec

-

1
/cm 

0
C with mnq , 0.0986, 0.3947, 0.8882, 1.5791, 2.4674, 3.5530, 4.8361, 6.3165, 7.9943, 

9.8696, 11.9422, 14.2122, 16.6796, 19.3444, 22.2066, 25.2661, 28.5231, 31.9775, 35.6292 

etc.,  are the positive & real roots of the transcendental equation (A3).   

 

In order to examine the influence of heating on the plate, the numerical calculation for all 

variables was performed. The same has been depicted in the following figures applying 

MATHEMATICA software. Figures 1–3 illustrates the numerical results of temperature and 
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stresses on the elliptical plate due to interior heat generated within the solid, under thermal 

boundary condition subjected to the known temperature at any instant time.  
 

As shown in Figure 1(a), the temperature increases as the time proceeds along the radial 

direction and is the greatest at the other edge of the plate due to the known initial 

temperature. The variation of normal stresses ,  ,  and   is shown in Figures 1(b), 

1(c) and 1(d), respectively. From Figure 1(b), the large compressive stress occurs on the inner 

heated surface and the tensile stress occurs on the inner surface which drops along the radial 

direction for radial stress satisfying Equation (9). From Figure 1(c), it is observed that the 

maximum tensile stress occurs while heating inside the core of the plate due to the combined 

energy of internal heat generation and the known temperature at . From Figure 1(d), it is 

seen that the negative shear stress profile further deepens the value in the mid-core due to the 

compressive stress, which attains the absolute value zero satisfying the traction free property 

as declared in Equation (9) at 0  .  

 

Figure 2 illustrates the temperature and thermal stresses along the axial direction. Figure 2(a) 

indicates the time variation of temperature distribution along z direction of the plate for 

different values of . The maximum value of temperature magnitude occurs at the outer edge 

due to available internal heat energy throughout the body. The distribution of temperature 

gradient at each time decreases in the unheated area of the central part of ellipse boundary 

tending below zero in one direction. Figures 2(c) and 2(d) indicate that the stresses   and

  have maximum tensile force on the outer surface due to maximum expansion at the 

outer part of the plate and its absolute value increases with radius. Figure 2(b) depicts that the 

radial stress   attains minimum at the outer core due to the compressive stress occurring 

at the outer region.   

 

Figure 3(a) shows that the temperature distribution along the time series for different values 

of known surrounding temperature at any instant which maximizes its magnitude towards 

outer edge may be due to energized heat supply. Figure 3(b) depicts that the temperature 

distribution along  direction attains maximum expansion at its central core. 

 

 

 
Figure 1(a). Temperature distribution along   for different values of z 
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Figure 1(b).   along   for different values of z 

 

Figure 1(c).   along  for different values of z 

 

 
Figure 1(d). 

 
along   for different values of z 
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Figure 2(a). Temperature distribution along z for different values of  

 

 
Figure 2(b).

   along z for different values of  

 

 

 
Figure 2(c).   along z for different values of  
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Figure 2(d). 

 
along z for different values of  

 

 
Figure 3 (a). Temperature distribution along t for different values of  

 

 
Figure 3(b). Temperature distribution along   for different values of  
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6. Conclusion 
 

The proposed operational method explains retrospective (i.e. time-reversal ones) heat 

conduction and its associated thermal stresses with heat generation in the elliptical coordinate 

system. In this paper, initially we considered the known temperature distribution at a given 

time  and we needed to determine the initial temperature distribution.  

 

The results obtained while carrying out our research can be generalized as follows, 

 The advantage of this method is its generality and its mathematical power to handle 

different types of mechanical and thermal boundary conditions during time-reversal 

process. 

 The maximum tensile stress shifts from the outer surface due to maximum expansion at 

the outer part of the plate and its absolute value increases with radius. This could be due 

to heat, stress, concentration or available internal heat sources under the known 

temperature field. 

 Finally, the maximum tensile stress occurs in the circular core on the major axis 

compared to elliptical central part indicating the distribution of weak heating. It might be 

due to insufficient penetration of heat through the elliptical inner surface. 
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Appendix   
  

The required integral transforms 

 

(I)  Gupta (1964) has defined an integral transform analogous to finite Hankel transform for 

a continuous and single valued function ),( f  in the region ,oi    20   

which vanishing on both the boundaries i   and ,o   as  
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and mnq ,2
 is the  root of the transcendental equation  
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Here 0),0(2 qnCe  , ),( qnce  [McLachlan (1947, pp.21)] is a Mathieu function of the 

first kind of order n, ),( qnCe  [ McLachlan (1947, pp.27)]  is a modified Mathieu 

function of the first kind of order n. Hence the inversion formula for aforementioned 

transform is given as 
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in which the sum is extended over all the positive roots of equation (A3), 
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(II) Debnath (1963) introduced the Jacobi transform with  )1()1( zz   as weight function 

of the Kernel as 
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and its anti-transforming formula as 
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in which )(
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  is the Jacobi polynomial of degree   and orders )1(   and 

)1(   and 

 

)1()12(!

)1()1(12










 ,                                                              (A9)  

 

satisfying the differential equation 
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Moreover the integral transform has the following orthogonal property for )(
),(
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(III)  The extended transformation and its essential property 

 

Following Fujiwara (1966) and Bhonsle (1976) we explicitly show in this paper that the 

study of integral transforms involving classical orthogonal polynomials as kernel can be 

unified. Analogous to the finite Mathieu transform defined by Gupta (1964) in above 

section 3, we introduce a repeated integral transform with 
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as a kernel defined over the range ,oi    20   and 11  z .  
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transformation can be proposed as (13) and its inversion theorem can be defined as (14). 

The basic operational properties holds - if (i) the function ),,( zM   is in the domain 
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,oi    20  . (iii) ),,( zM  , zM  / are bounded in the above said domain. 
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Then, from equation (A11), we obtain 
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