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Abstract

In this article, we study the fractional diffusion equation with spatial Riesz fractional derivative.
The continuation of the solution of this fractional equation to the solution of the corresponding
integer order equation is proved. The series solution is obtained based on properties of Riesz
fractional derivative operator and utilizing the optimal homotopy analysis method (OHAM).
Numerical simulations are presented to validate the method and to show the effect of changing
the fractional derivative parameter on the solution behavior.

Keywords: Fractional diffusion equation; Riesz derivative; Caputo derivative; Optimal homotopy
analysis method; Residual error

MSC 2010 No.: 14F35, 26A33, 76R50

1. Introduction

Fractional derivatives have found numerous applications in different fields of applied science.
One process, in which fractional derivatives have been successfully applied, is called anomalous
diffusion. This type of diffusion is characterized by the nonlinear dependence of the mean square
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displacement x(t) of a diffusing particle over time t: x2(t) ∝ kαt
α and it can be interpreted as

the Lévy stable densities. On the other hand, in the case of classical diffusion, linear dependence
x2(t) ∝ kt occurs and it follows Gaussian statistics and Fick’s second law for running processes
at time t. A detailed discussion of anomalous diffusion is presented in (Metzler and Klafter,
2000).

Anomalous diffusion is described by fractional partial differential equations (FPDEs) in which
classical derivatives are replaced by derivatives of fractional order. Studies have been devoted for
a type of anomalous diffusion modeled by the fractional diffusion equation with spatial Riesz
and Riesz-Feller fractional derivatives (see (Gorenflo et al., 2002), (Gorenflo and Vivoli, 2003),
(Tarasov and Zaslavsky, 2006), (Ciesielski and Leszczynski, 2006), (Zhang and Liu, 2007), (Lin
et al., 2009), (Yang et al., 2010), (Elsaid, 2010) and (Elsaid, 2011)).

Yet very few articles dealt with applying iterative techniques to Riesz FPDEs. This is due to the
difficulty in repeated application of Riesz fractional derivative to solution components. This work
is based on properties that show repetitive behavior for complex exponential function, hence sine
and cosine functions, when Riesz fractional derivative is applied to them (see (Elsaid, 2010) and
(Elsaid, 2011)). By representing a function by its Fourier series or Fourier integral, an iterative
scheme is deduced for this type of FPDEs.

In this work, the motivation is to establish the continuation of the solution of the fractional-order
diffusion equation with spatial derivative in Riesz sense to the exact solution of the corresponding
integer-order equation as the order of the fractional derivative approaches its integer limit. This
objective is carried out theoretically then via approximate series solution obtained iteratively by
applying the OHAM. We consider the space-fractional diffusion equation of the form

{
∂
∂t
u(x, t) = k(u) Rα

xu(x, t) + p(u), −∞ < x <∞, t > 0,

u(x, 0) = f(x),
(1)

where Rα
x denotes the Riesz fractional derivative (in space) of order α. The parameter α is

restricted to the conditions 0 < α < 2 and α 6= 1. The two functions k and p are continuous
functions in u.

This paper is organized as follows. In section two, basic definitions of fractional derivative
operators involved are presented. Proof of solution continuation is presented in section three.
The OHAM is illustrated in section four. The results of numerical experiments are presented in
section five. Section six contains the conclusion of this work.

2. Fractional derivatives and integrals

Definition.

A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R, if there exists a real number
p > µ, such that f(x) = xpf1(x), where f1(x) ∈ C(0,∞), and it is said to be in the space Cm

µ

if fm ∈ Cµ, m ∈ N.

2
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Definition.

The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function f(x) ∈ Cµ,

µ ≥ −1 is defined as Jαf(x) = 1
Γ(α)

x∫
0

(x− τ)α−1f(τ)dτ, α > 0, x > 0,

J0f(x) = f(x).
(2)

Definition.

The fractional derivative in Riemann-Liouville sense of f(x),m ∈ N, x > 0 is defined as

Dα
xf(t) =

dm

dxm
Jm−βf(x), m− 1 < β < m. (3)

Definition.

The fractional derivative in Caputo sense of f(x) ∈ Cm
−1, m ∈ N, x > 0 is defined as

CDβ
xf(x) =

{
Jm−β dm

dxm
f(x), m− 1 < β < m,

dm

dxm
f(x), β = m.

(4)

Definition.

The Riesz partial fractional derivative Rα
x is defined as (Gorenflo et al., 2002)

Rα
xu(x) = −

1

2 cos(απ/2)
[Dα

+u(x) +Dα
−u(x)], 0 < α < 2, α 6= 1, (5)

where Dα
±u(x) are the Weyl fractional derivatives

Dα
±u(x) =

{
± d
dx
W 1−α
± u(x), 0 < α < 1,

d2

dx2
W 2−α
± u(x), 1 < α < 2,

(6)

and W β
± denote the Weyl fractional integrals of order β > 0, given by

W β
+u(x) =

1
Γ(β)

x∫
−∞

(x− z)β−1u(z)dz,

W β
−u(x) =

1
Γ(β)

∞∫
x

(z − x)β−1u(z)dz.
(7)

When α = 0 the Weyl fractional derivative degenerates into the identity operator

D0
±u(x) = u(x). (8)

For continuity we have

D1
±u(x) = ±

d

dx
u(x), D2

±u(x) =
d2

dx2
u(x). (9)

Evidently, in case α = 2 , we define

Rα
xu(x) =

d2

dx2
u(x). (10)
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For the case α = 1 we have

R1
xu(x) =

d

dx
Hu(x) (11)

=
d

dx

1

π

∞∫
−∞

u(z)

z − x
dz, (12)

where H is the Hilbert transform and the integral is understood in the Cauchy principal value
sense.

3. Continuation of the solution

In this section, we prove the continuation of the solution to fractional-order diffusion equation
with Riesz spatial derivative to the solution of the corresponding integer-order equation. We begin
by defining Riesz fractional derivative in Caputo sense on unbounded domain.

Definition.

The Riesz fractional derivative in Caputo sense is defined by

CRα
t f(t) = −

[CDα
+f(t) +

C Dα
−f(t)]

2 cos(απ/2)
, 0 < α < 2, α 6= 1, (13)

where CDα
+ and CDα

− are Weyl fractional derivatives defined in Caputo sense for α ∈ (0, 2),

α 6= 1 as
CDα
±f(t) =

{
±W 1−α

±
d
dt
f(t), 0 < α < 1,

W 2−α
±

d2

dt2
f(t), 1 < α < 2,

(14)

and defined for α = 0, 1, and 2 as 
CD0
±f(t) = f(t),

CD1
±f(t) = ± d

dt
f(t),

CD2
±f(t) =

d2

dt2
f(t).

(15)

In the following lemma, we establish the equivalence between the classical definition of Riesz
fractional derivative and the definition we proposed in Caputo sense.

Lemma 1.

Let f belong to the class of ”good functions” ((Miller and Ross, 1993)). Then for α ∈ (0, 2),

α 6= 1,
CRα

xf(x) ≡ Rα
xf(x).

Proof:

Consider the case α ∈ (0, 1), Riesz fractional derivative is defined by

Rα
xf(x) =

−C(α)
2

d

dx
[

x∫
−∞

f(z)

(x− z)α
dz −

∞∫
x

f(y)

(y − x)α
dy]. (16)

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 2, Art. 21

https://digitalcommons.pvamu.edu/aam/vol11/iss2/21



AAM: Intern. J., Vol. 11, Issue 2 (December 2016) 819

where C(α) = 1
cos(απ/2)Γ(1−α)

. Substituting x−z = λ and y−x = µ in first and second integrals,
respectively,

Rα
xf(x) =

C(α)

2

d

dx
[

0∫
∞

f(x− λ)
λα

dλ+

∞∫
0

f(x+ µ)

µα
dµ], (17)

which can be written as

cRα
xf(x) =

C(α)

2

d

dx

∞∫
0

f(x+ τ)− f(x− τ)
τα

dτ

=
C(α)

2

∞∫
0

∂

∂x

[
f(x+ τ)− f(x− τ)

τα

]
dτ. (18)

For CRα
x , we have

CRα
xf(x) =

−C(α)
2

[

x∫
−∞

f ′(z)

(x− z)α
dz −

∞∫
x

f ′(y)

(y − x)α
dy], (19)

which by the same substitution yields

CRα
xf(x) =

C(α)

2

∞∫
0

[
f

′
(x+ τ)− f ′

(x− τ)
τα

]
dτ, (20)

which is the same as (18). The Case α ∈ (1, 2) can be proved in a similar manner. �

As the equivalence between the Riemann and Caputo definitions of Riesz fractional derivative is
deduced, in the following theorem, the continuation of the solution obtained is proved.

Theorem 1.

If f(x) is a function in L1(−∞,∞), then the exact solution uα of the space fractional diffusion
equation

{
∂
∂t
u(x, t) = Rα

xu(x, t), −∞ < x <∞, t > 0,

u(x, 0) = f(x),
(21)

is given by

uα(x, t) =
1

π

∞∫
0

∞∫
−∞

exp(−ωαt)f(v) cos(ω(x− v))dvdω. (22)

Theorem 2.

Let α ∈ (1, 2), f(x) be a function in L1(−∞,∞), and uα displayed in (22) be the solution of
the space-fractional problem (21), then

lim
α→2

uα(x, t) = u(x, t),

5
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where u(x, t) is the exact solution of the integer-order diffusion equation

{
ut(x, t) = uxx(x, t), −∞ < x <∞, t > 0,

u(x, 0) = f(x).
(23)

Proof:

Consider the set of functions

ϕn(ω) =
1

π
exp(−ω2− 1

n+1 t)

∞∫
−∞

f(v) cos(ω(x− v))dv,

ω ∈ (0,∞), n = 1, 2, .... (24)

Then,

|ϕn(ω)| ≤
1

π

∣∣∣exp(−ω2− 1
n+1 t)

∣∣∣ ∞∫
−∞

|f(v)| dv,

and as f(x) ∈ L1(−∞,∞), there exists a constant M > 0 such that

|ϕn(ω)| ≤
M

π
exp(−ω2− 1

n+1 t). (25)

Then, for a fixed time t > 0 and n = 1, 2, ...

|ϕn(ω)| ≤ g(ω), ω ∈ (0,∞), (26)

where
g(ω) =

M

π
exp(−ω3/2).

Since g(ω) belongs to L1(0,∞) and setting α = 2− 1
n+1

, by Lebesgue dominated convergence
theorem we have

c lim
α→2

uα(x, t) = lim
n→∞

∞∫
0

ϕn(ω)dω

=

∞∫
0

lim
n→∞

ϕn(ω)dω

=
1

π

∞∫
0

∞∫
−∞

exp(−ω2t) f(v) cos[ω(x− v)]dvdω

= u(x, t), (27)

6
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which is the exact solution of the integer-order diffusion equation (23). �

4. Optimal homotopy analysis method (OHAM)

We begin by illustrating the classical homotopy analysis method (HAM). Consider the following
nonlinear equation

N [u(x, t)] = 0, (28)

where N is a nonlinear operator, u(x, t) is the unknown function and x and t denote spatial and
temporal independent variables, respectively. By generalizing the traditional homotopy method
Liao constructs the so-called zero-order deformation equation (Liao, 2003)

(1− p)L[φ(x, t; p)− u0(x, t)] = p~H(x, t)N [φ(x, t; p)], (29)

where p ∈ [0, 1] is an embedding parameter, ~ is a nonzero auxiliary parameter, H(x, t) is
an auxiliary function, L is an auxiliary linear operator, u0(x, t) is an initial guess of u(x, t) and
φ(x, t; p) is an unknown function. Obviously, when p = 0 and p = 1, we have φ(x, t; 0) = u0(x, t),
φ(x, t; 1) = u(x, t), respectively. Thus, as p increases from 0 to 1, the solution φ(x, t; p) varies
from the initial guess u0(x, t) to the solution u(x, t). By expanding φ(x, t; p) in a Taylor series
with respect to p, we have

φ(x, t; p) = u0(x, t) +
∞∑
m=1

um(x, t)p
m, (30)

where
um(x, t) =

1

m!

∂mφ(x, t; p)

∂pm
|p=0 . (31)

If the auxiliary linear operator, the initial guess and the auxiliary parameter ~ and the auxiliary
function are so properly chosen, then, as proved in (Liao, 2003), series (30) converges at p = 1

and one has

u(x, t) = u0(x, t) +
∞∑
m=1

um(x, t), (32)

which must be one of solutions of the original nonlinear equation, as proved in (Liao, 2003).
Using definition (31), the governing equation of the HAM can be deduced from the zero-order
deformation equation (29) as follows. Define the vector

−→u n = {u0(x, t), u1(x, t), u2(x, t), ..., un(x, t)}. (33)

From equation (29), the so-called m th-order deformation equation is given by

L[um(x, t)− χmum−1(x, t)] = ~H(x, t)<m[−→u m−1(x, t)], (34)

where
<m[−→u m−1] =

1

(m− 1)!

∂m−1N [φ(x, t; p)]

∂pm−1
|p=0, (35)

and

χm =

{
0,m ≤ 1,

1,m > 1.
(36)
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Applying the inverse operator L−1 to both sides of (34), um(x, t) can be easily solved for by
symbolic computations software. The HAM has been successfully applied to solve various classes
of equations and applied problems (see (Wu et al., 2005), (Song and Zhang, 2007), (Bouremel,
2007), (Song and Zhang, 2009), (Cang et al., 2009), (Sedighi et al., 2012) and (Martin, 2013)).

In the classical HAM, choosing the value of parameter ~ depends on inspecting the graph of
the quantity of interest; the solution or one of its derivatives. Yet, when H(x, t) is fixed, it is
obvious that um(x, t) contains only one control parameter ~. Thus, by constructing a formula
for the residual error, in (Liao, 2010) Liao proposed that the OHAM solution be obtained by
choosing the value for parameter ~ that minimizes the error. His technique is deduced from the
optimal homotopy asymptotic method presented in the work of Marinca et al., (see (Marinca
et al., 2008), (Marinca and Herişanu, 2008), and (Marinca et al., 2009)). Here, the averaged
residual error defined for ordinary differential equations in (Liao, 2010) is generalized to the
case of two variable partial differential equations in the following form

Em(~) =
1

MK

M∑
i=0

K∑
j=0

[
N

m∑
n=0

un

(
i

M
,
j

K

)]2

, (37)

which is a nonlinear algebraic equation of one unknown, the convergence-control parameter ~.
Thus the optimal value of ~ is determined by the minimum of the averaged residual error Em
to ensure the fast convergence of the homotopy series.

To apply the OHAM recursive technique to the problem, a repeated evaluation of Riesz fractional
derivative to solution components is needed. This obstacle is overcome by using property of Riesz
fractional derivative in the following lemma.

Lemma 2.

Let α ∈ (0, 2), α 6= 1. Then,
Rα
x(e

iωx) = −ωαei(ωx), (38)

or in a trigonometric form
Rα
x sin(ωx) = −ωα sin(ωx), (39)

Rα
x cos(ωx) = −ωα cos(ωx). (40)

Proof:

See (Elsaid, 2011) and (Elsaid, 2010). �

5. Numerical simulation

In this section, we consider linear and nonlinear problems to illustrate the efficiency of the method
of solution to this type of problems and to illustrate the continuation of the solution we proved
in Section 3.
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Example 1.

Consider problem (1) with k(u) = 1, g(u) = a u and f(x) = A sin(πx/b)

{
∂
∂t
u(x, t) = Rα

xu(x, t) + a u, −∞ < x <∞, t > 0,

u(x, 0) = A sin(πx/b),
(41)

where a, A, and b are real constants.

Here m th-order deformation equation, with H(x, t) = 1, for this linear problem is given by

∂

∂t
[um(x, t)− χmum−1(x, t)] = ~

(
∂

∂t
(um−1)−Rα

x(um−1)− um−1

)
. (42)

Then the inverse integral operator is applied to both sides with u0 = u(x, 0) = A sin(πx/b) to
obtain the series solution terms. The first three terms are given by

cu0 = A sin
(πx
b

)
u1 = Ah

(
−a+

(π
b

)α)
t sin

(πx
b

)
u2 =

1

2
Ah
(
−a+

(π
b

)α)(
2 + h

(
2− at+

(π
b

)α
t
))

t sin
(πx
b

)
u3 =

1

6
Ah
(
−a+

(π
b

)α)
[6 + h

(
12− 6at+ 6

(π
b

)α)
t

+h
(
6 +

(
−a+

(π
b

)α)(
6− at+

(π
b

)α
t
)
t
)
]t sin

(πx
b

)
.

The series solution is u = u0+u1+u2+u3+..... Figure (1) shows the effect of the fractional order
derivative α on the behavior of the solution which indicates that the amplitude of the solution
is attenuated as α increases. The plots represents the sum of the first six terms (u0 to u5) in
the OHAM series when a = 1.0, A = 0.1 , b = 1.0, t = 0.2, 0 < x < 1 and the fractional
parameter α = 1.7, 1.8, 1.9 and 2. At these different values of α = 1.7, 1.8, 1.9 and 2,the optimal
convergence control parameter ~ is calculated as be ~ = −0.908224, −0.896584,−0.883822 and
−0.86996, and the residual error is E = 5.5 ∗ 10−9, 2.7 ∗ 10−8, 1.1 ∗ 10−7 and 4.7 ∗ 10−7,
respectively.

Example 2.

Consider the nonlinear space-fractional diffusion problem (1) with k(u) = u, g(u) = 4 u2 −
4u and f(x) = sin(2x)

ut = u Rα
xu+ 4u2 − 4u, −∞ < x <∞, t > 0, (43)

subject to the initial condition
u(x, 0) = sin(2x).

9
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Figure 1: The behavior of the solution of (41) when a = 1.0, A = 0.1, b = 1.0, t = 0.2 and the
fractional parameter α = 1.7, 1.8, 1.9 and 2.

Here we choose the auxiliary linear operator as

L[φ] =
∂

∂t
(φ), (44)

and operator N is chosen as

N [φ] = φt − φRα
x(φ)− 4φ2 + 4φ. (45)

Then, mth-order deformation equation for this problem is given by

∂

∂t
[um(x, t)− χmum−1(x, t)] = ~H(x, t)<m[−→u m−1(x, t)], (46)

where <m[−→u m−1(x, t)] is given by

<m[−→u m−1(x, t)] =
∂

∂t
(um−1)−

m−1∑
k=0

ukR
α
x(um−1−k)− 4

m−1∑
k=0

ukum−1−k + 4um−1. (47)

10
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Figure 2: The series solution of Example 2 at different values of a compared with the exact
solution of the corresponding integer order problem.

We choose H(x, t) = 1 and u0 = sin(2x). By applying the inverse integral operator, we obtain

cu0 = sin(2x)

u1 =
1

2
~t (−4 + 2α + 4 cos(4x)− 2α cos(4x) + 8 sin(2x))

u2 = −1

4
~tsin(2x)[−16− 16~− 64~t− 4α~t+ 32~tcos(4x) + 4α (1 + 2α) ~tcos(4x)

−(3) 22+α~tcos(4x)− 41+α~tcos(4x) + (3) 22+α~t+ 16sin(2x) + 16~sin(2x]
+96~tsin(2x)− 22+αsin(2x)− 22+α~sin(2x)− 3 23+α~tsin(2x)]
...

and the solution is thus obtained as

u = u0 + u1 + u2 + u3 + ....

The solution behavior as the Riesz parameter α changes is shown in Figure (2) at a fixed time
t = 0.2. As α increases, the amplitude of the sinusoidal behavior in solution decreases. As α tends
to 2, the series solution approximately coincides with the exact solution of the corresponding
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integer order equation (u = e−4t sin(2x), represented by the solid line in the graph). The optimal
convergence parameter ~ in each case is obtained by minimizing the residual error displayed in
(37) for K = 10,M = 5 in the interval 0 ≤ x ≤ 2 and 0 ≤ t ≤ 0.25. The series displayed in
plots is the partial sum of the first five terms; n = 5 (summing u0 to u4 ). At different values
of the fractional parameter α = 1.7, 1.8 and 1.9, the optimal convergence control parameter is
found to be ~ = −0.6720, −0.6431 and −0.6300, and the residual error is E = 0.00059, 0.00111

and 0.00150, respectively.

6. Conclusion

A definition of the fractional-order Riesz derivative in the Caputo sense is proposed and its
equivalence with the classical definition is proved. Then, we proved the continuation of the
solution of the fractional order anomalous diffusion equation with Riesz spatial derivative to the
corresponding integer order problem. The iterative series solution for the fractional equation is
obtained using the OHAM. The advantage of using this technique is the ability to estimate an
approximation to the residual error. The results obtained illustrate graphically the continuation
of the solution we proved theoretically.
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