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Abstract

This paper introduces a generalization of the Fractional Optimal Control Problem (GFOCP).
Proposed generalizations differ in terms of explaining the constraint involved in the dynamical
system of the control problem. We assume the constraint as an arbitrary function of fractional
derivatives and fractional integrals. By this assumption the restriction on constraint, to be of
some prescribed function of fractional operators, is removed. Deduction of necessary optimality
conditions followed by particular cases and examples has been provided. Additionally, we con-
struct a solution scheme for the suggested class of (GFOCP)’s. The formulation of this scheme is
done by implementing the Adomian decomposition method on necessary optimality conditions.
An example is presented to demonstrate the application of solution scheme. Fractional operators
used throughout the paper are either Riemann-Liouville or Caputo’s fractional operators.

Keywords: Adomian decomposition method; Fractional derivative/integrals; Fractional optimal
control problems

MSC 2010 No.: 35A99, 49K05, 49K20, 65R20

1. Introduction

Fractional calculus is an extension of classical calculus, where the order of derivative (or integral)
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is not restricted to set of integers. This admissible innovation from an integer to a non-integer
leads to boundless applications in various areas like viscoelasticity, control problems, image and
signal processing, and others. The idea of the fractional derivative originated in 1695 during a
conversation between L’Hospital and Leibniz about dnx

dyn
for n = 1

2
. Their primarily discussion

has been described as the foundation of fractional calculus (see Oldham and Spanier (1974)).

Fractional optimal control problem (FOCP) refers to an optimal control problem in which the
objective function or the differential equations governing the constraints are comprised of frac-
tional operators. The existence of (FOCP) was given by Bhatt in (1973). Early work in the area
of fractional optimal control is acceptably documented (see Manabe (2003)).

Let us consider the problem to find the optimal control that minimizes the objective function,

J [u] =

∫ 1

0

F (t, x(t), u(t))dt,

subject to the constraint

c
0D

α
t x = G(t, x, u),

and the initial condition

x(0) = x0,

where x(t) is the state variable, t represents the time, and F and G are two arbitrary functions.
One may observe that the constraint involves the fractional derivative of x denoted by c

0D
α
t x.

This is a well known problem in fractional optimal control (see Agrawal (2004)).

In Agrawal (1989), a general formulation for the numerical solution of optimal control problem
is presented. Earlier, solving differential equations containing fractional order derivative had
not been studied in the literature. His work opened the area to do further research in finding
a solution of Euler-Lagrange equations occurring in solving (FOCP)’s. During (2001-2008)
Agrawal has given formulation of Euler-Lagrange equations containing fractional derivative in
Riemann-Liouvile and Caputo sense (see Agrawal (2002), Agrawal (2004)). Moreover, Agrawal
and Baleanu have formulated different types of solution schemes to solve (FOCP)’s as given in
Agrawal (2007), Agrawal (2008), and Baleanu (2007).

This paper introduces the class of generalized fractional optimal control problem (GFOCP) where
the constraint is an arbitrary function of fractional derivative and fractional integral of the state
variable. The proposed generalization has advantages compared to previously defined problems
of fractional optimal control. For instance, on giving different functions to the constraint, all
possible previous classes of optimal control problems are covered.

We prove the necessary conditions for the class of (GFOCP)’s in Section 3. In order to obtain
other classes (already existing in the literature), sufficient numbers of remarks and examples are

2
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800 N. Singha and C. Nahak

given. In Section 4, we formulate a solution scheme for (GFOCP)’s by employing the Adomian
Decomposition Method (ADM). The purpose is to implement (ADM) and construct a generalized
solution scheme for Euler-Lagrange equations occurring in (GFOCP)’s. The method presented
yields a solution which is free from rounding-off errors since it does not involve discretization
and is computationally inexpensive. As a special case, this formulation is used to solve the control
equations for a quadratic linear fractional optimal control problem.

2. Preliminaries

We shall now give some fundamental definitions of fractional order operators together with a
brief description of the Adomian decomposition method used all through the paper.

2.1. Fractional Derivatives/Integrals

Recently, several definitions of the fractional derivative are available in the literature. Some of
the famous and widely adopted fractional order derivatives are Riemann-Liouville, Grunwald-
Letnikov, Weyl, Caputo, and Riesz fractional derivatives (see Miller (1993), Oldham (1974),
Podlubny (1999), Butzer (2000)). For definitions and properties of fractional derivatives/integrals,
we refer to Ross (1973). These are essential to carry out the computations in present work.

Let f ∈ C[a, b], where C[a, b] is the space of all continuous functions defined over [a, b].

Definition 1.

For all t ∈ [a, b] and α > 0, the Left Riemann-Liouville Fractional Integral (LRLFI) of order α
is defined as

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, t > a.

Definition 2.

For all t ∈ [a, b] and α > 0, the Right Riemann-Liouville Fractional Integral (RRLFI) of order
α is defined as

tI
α
b f(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1f(τ)dτ, t < b.

Let us consider f ∈ Cn[a, b], where Cn[a, b] is the space of n times continuously differentiable
functions defined over [a, b].

Definition 3.

For all t ∈ [a, b], n− 1 ≤ α < n, the Left Riemann-Liouville Fractional Derivative (LRLFD) of
order α is defined as

3
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aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n∫ t

a

(t− τ)n−α−1f(τ)dτ.

Definition 4.

For all t ∈ [a, b], n − 1 ≤ α < n, the Right Riemann-Liouville Fractional Derivative (RRLFD)
of order α is defined as

tD
α
b f(t) =

(−1)n

Γ(n− α)

(
d

dt

)n∫ b

t

(τ − t)n−α−1f(τ)dτ.

Definition 5.

For all t ∈ [a, b], n − 1 ≤ α < n, the Left Caputo Fractional Derivative (LCFD) of order α is
defined as

c
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1fn(τ)dτ.

Definition 6.

For all t ∈ [a, b], n− 1 ≤ α < n, the Right Caputo Fractional Derivative (RCFD) of order α is
defined as

c
tD

α
b f(t) =

(−1)n

Γ(n− α)

∫ b

t

(τ − t)n−α−1fn(τ)dτ.

Definition 7.

If f, g and the fractional derivatives aD
α
t g and tD

α
b f are continuous at every point t ∈ [a, b], then

∫ b

a

f(t) aD
α
t g dt =

∫ b

a

g(t) tD
α
b f dt,

for any 0 < α < 1.

Definition 8.

Let f ∈ Ck[a, b]. Further

∫ b

a

f(x)h(x) dx = 0,

for every function h ∈ Ck[a, b] with h(a) = 0 = h(b). Then the fundamental lemma of the
calculus of variations (Gelfand, 1973) states that f(x) is identically zero on [a, b].

4
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802 N. Singha and C. Nahak

We next describe the Adomian decomposition method in short, which is implemented in this
paper to construct a generalized solution scheme for (GFOCP)’s.

2.2. Adomian Decomposition Method (ADM)

(ADM) was introduced by G. Adomian in the beginning of 1980s (refer to Adomian (1981), Ado-
mian (1989), Adomian (1990), Adomian (1994)). It has been used to solve functional equations
of the form

u = f + L(u) +N(u). (1)

Here L and N are, respectively, the linear and non-linear part of u. Equation (1) represents
a variety of equations such as non-linear ordinary differential equations, partial differential
equations, integral equations, fractional differential equations, and system of equations containing
linear and non-linear functions.

In (ADM), the solution for the equation (1) is expressed in the form of infinite series

u =
∞∑
n=0

un,

with u0 = f. Further, it is assumed that the non-linear term N(u) can be expressed as
∑∞

n=0An,
where A′ns are referred as Adomian polynomials.

A′ns are defined by the expression

An =
1

n!

dn

dλn
N

(
∞∑
n=0

un(x)λn

)
λ=0

.

Since L is linear we have

∞∑
n=0

un = f +
∞∑
n=0

L(un) +
∞∑
n=0

An .

The recursive relation for un is as follows:

5
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u0 = f,

u1 = L(u0) + A0,

u2 = L(u1) + A1,

.

.

.

un = L(un−1) + An−1.

The solution u is in form of k-term approximation

u =
k−1∑
n=0

un ,

for a suitable integer k.

3. Generalized Fractional Optimal Control Problem (GFOCP)

Fractional optimal control problems have already been studied by many researchers (refer to
Agrawal (2004), Baleanu (2007), Agrawal (2007)). The generalized class of (FOCP) is described
by considering the constraint as an arbitrary function of fractional derivative and fractional integral
of the state variable x(t).

(P): For 0 < α, β < 1, find an optimal control u(t) that minimizes the performance index

J [u] =

∫ 1

0

F (t, x(t), u(t))dt,

subject to the constraint

H(0D
α
t x(t) , 0I

1−β
t x(t)) = G(t, x, u),

and initial condition

x(0) = x0.

Here x(t) is a state variable at time t. F and G are the arbitrary functions of the state and the
control variable x(t) and u(t) respectively. The limits of integration have been taken as 0 and 1

for simplicity of the problem.

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 2, Art. 20

https://digitalcommons.pvamu.edu/aam/vol11/iss2/20
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Note:

• We allow the function H to be an arbitrary function of 0D
α
t x(t) as well as 0I

1−β
t x(t).

• Formerly introduced FOCP’s present in literature assumes a prescribed function as a con-
straint involving fractional derivative. For example, 0D

α
t x(t) = G(t, x, u) (hereH = 0D

α
t x(t)).

To find the optimal control u(t) for the problem (P), we define a modified performance index as

J̄(u) =

∫ 1

0

F (x, u, t) + λ[G(x, u, t)−H(0D
α
t x(t) , 0I

1−β
t x(t))] dt,

where λ is a Lagrange multiplier also known as costate or adjoint variable.

Taking variation of the modified index J̄(u), we obtain

δJ̄(u) =

∫ 1

0

[
∂F

∂x
δx+

∂F

∂u
δu+ δλ(G−H)

+ λ

(
∂G

∂x
δx+

∂G

∂u
δu− ∂H

∂(0Dα
t x)

δ(0D
α
t x)− ∂H

∂(0I
1−β
t x)

δ(0D
α
t x)

)]
dt,

where δx, δu and δλ are the variations of x, u and λ, respectively, with the specified terminal
conditions.

Using integration by parts

∫ 1

0

λ δ(0D
α
t x) dt =

∫ 1

0

δx (tD
α
1λ) dt,

and

∫ 1

0

λ δ(0I
1−β
t x) dt =

∫ 1

0

δx (tI
1−β
1 λ) dt,

provided δx(0) = 0 or λ(0) = 0, and δx(1) = 0 or λ(1) = 0. As x(0) is specified, we take
δx(0) = 0 and since x(1) is not specified, we require λ(1) = 0.

Thus, we obtain

δJ̄(u) =

∫ 1

0

[
(G−H)δλ+

(
∂F

∂x
+ λ

∂G

∂x
− ∂H

∂(0Dα
t x)

tD
α
1λ−

∂H

∂(0I
1−β
t x)

tI
1−β
1 λ

)
δx

+

(
∂F

∂u
+ λ

∂G

∂u

)
δu

]
dt.

(2)

7
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To minimize J̄(u) (same as minimizing J(u)), we need the variation δJ̄(u) to be zero. It further
requires that the coefficients of δx, δu and δλ in equation (2) to be zero. Thus,

H(· , ·) = G(x, u, t), (3)
∂H

∂(0Dα
t x)

tD
α
1λ+

∂H

∂(0I
1−β
t x)

tI
1−β
1 λ =

∂F

∂x
+ λ

∂G

∂x
, (4)

∂F

∂u
+ λ

∂G

∂u
= 0, (5)

with terminal conditions

x(0) = x0 and λ(1) = 0. (6)

Equations (3) to (5) represents necessary optimality conditions for the posed fractional optimal
control problem (P) together with the terminal conditions given by equation (6).

Note: Once the costate variable λ is obtained by solving (3) and (4), the control variable u(t)

can easily be obtained by (5). Thus, we arrive at the following theorem.

Theorem 1.

If u is an optimal control of problem (P), then u satisfies the necessary conditions given by

H(0D
α
t x(t) , 0I

1−β
t x(t)) = G(x, u, t)

∂H

∂(0Dα
t x)

tD
α
1λ+

∂H

∂(0I
1−β
t x)

tI
1−β
1 λ =

∂F

∂x
+ λ

∂G

∂x
,

∂F

∂u
+ λ

∂G

∂u
= 0,

with terminal conditions

x(0) = x0 and λ(1) = 0.

Here x(t), λ(t) are the state and costate variables respectively at time t.

Remark 1.

For H(· , ·) = 0D
α
t x, the problem (P) reduces to find an optimal control u(t) for minimizing the

performance index

J [u] =

∫ 1

0

F (t, x(t), u(t))dt,

8
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subject to
0D

α
t x = G(x, u, t),

and initial condition
x(0) = x0.

This is the simplest fractional optimal control problem given by Agrawal (1989).

One may note that the function H considered in problem (P) involves left Riemann-Liouville
fractional operators. Similar types of results can be obtained by taking (RRLFD) and (RRLFI)
or Caputo’s fractional derivatives in both right and left fractional derivatives sense.

The next theorem presents the necessary optimality conditions when Caputo’s left fractional order
derivative are applied in place of (LRLFD).

(P∗): The function H(0D
α
t x(t) , 0I

1−β
t x(t)) is replaced by H(c0D

α
t x(t) , 0I

1−β
t x(t)) in the

constraint of the problem (P).

Theorem 2.

If u is an optimal control of problem (P ∗), then u satisfies the necessary conditions given by

H(c0D
α
t x(t) , 0I

1−β
t x(t)) = G(x, u, t)

∂H

∂(c0D
α
t x)

tD
α
1λ+

∂H

∂(0I
1−β
t x)

tI
1−β
1 λ =

∂F

∂x
+ λ

∂G

∂x
,

∂F

∂u
+ λ

∂G

∂u
= 0,

with terminal conditions
x(0) = x0 and λ(1) = 0.

Example 1.

For 0 < α < 1, β = 1, we assume H to be a linear function in its argument. We consider the
fractional optimal control problem (P ∗) where the performance index is an integral of quadratic
forms in state and control variables,

J(u) =
1

2

∫ 1

0

[q(t)x2(t) + r(t)u2] dt, (7)

where q(t) ≥ 0 and r(t) > 0, thus dynamics of the system is described by the following linear
fractional differential equation,

k c0D
α
t x+ l x(t) = a(t)x+ b(t)u,

with initial condition
x(0) = x0,

9
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and here k, l are fixed real numbers.

The necessary optimality conditions are then obtained as

k c0D
α
t x+ l x(t) = a(t)x+ b(t)u, (8)

k tD
α
1λ+ l λ = q(t)x+ a(t)λ, (9)

r(t)u+ b(t)λ = 0. (10)

with terminal conditions
x(0) = x0 and λ(1) = 0.

From (8) and (10), we get

k c0D
α
t x = (a(t)− l)x(t)− r−1b2(t)λ. (11)

The state x(t) and costate λ(t) are obtained by solving the fractional differential equations (9)

and (11) subject to the given terminal conditions. The control variable u(t) then clearly can be
obtained by (10).

Remark 2.

For l = 0 and k = 1 in Example 1, the problem reduces to find an optimal control for the
performance index

J(u) =
1

2

∫ 1

0

[q(t)x2(t) + r(t)u2] dt,

where q(t) ≥ 0 and r(t) > 0, and the dynamics of the system is described by the following
linear fractional differential equation,

c
0D

α
t x = a(t)x+ b(t)u,

with initial condition
x(0) = x0.

The necessary optimality conditions for this problem, given in Agrawal (2004), are as follows

c
0D

α
t x = a(t)x+ b(t)u,

tD
α
1λ = q(t)x+ a(t)λ,

r(t)u+ b(t)λ = 0,

with terminal conditions
x(0) = x0 and λ(1) = 0.

10
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Example 2.

For 0 < β < 1, α = 1, assume H to be a linear function in its argument. We consider the
fractional optimal control problem (P) where the performance index is an integral of quadratic
forms in state and control variables,

J(u) =
1

2

∫ 1

0

[q(t)x2(t) + r(t)u2] dt,

where q(t) ≥ 0 and r(t) > 0, and the dynamics of the system is described by the following
linear fractional differential equation,

k x′(t) + l 0I
1−β
t x = a(t)x+ b(t)u,

with initial condition
x(0) = x0,

and here k, l are fixed real numbers.

Necessary optimality conditions are then obtained as

k x′(t) + l 0I
1−β
t x = a(t)x+ b(t)u,

l tI
1−β
1 λ− k dλ

dt
= q(t)x+ a(t)λ,

r(t)u+ b(t)λ = 0.

with
x(0) = x0 and λ(1) = 0.

Clearly,
l 0I

1−β
t x = a(t)x(t)− kx′(t)− r−1b2(t)λ.

We may note that the state x(t) and costate λ(t) are obtained by solving the above fractional
differential equations subject to the given terminal conditions. The control variable u(t) then
clearly can be obtained by r(t)u+ b(t)λ = 0.

4. Solution Scheme

In this section, we formulate a solution scheme for the problem (P ∗). This scheme is constructed
by implementing Adomian Decomposition Method on the necessary optimality conditions of
problem (P ∗).

Note:

11
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• The same solution scheme can also be applied to problem (P ). For simplicity of problem,
we consider (P ∗) involving Caputo’s fractional derivative.

• For 0 < α = β < 1, we assume H involved in the constraint of (P ∗) to be a linear function
in its argument, i.e.,

H(c0D
α
t x , 0I

1−α
t x) = k c0D

1−α
t x+ l 0I

1−α
t x,

where k, l are fixed real numbers.

The necessary optimality can now be written as

k c0D
α
t x(t) + l 0I

1−α
t x(t) = G(x, u, t), (12)

k tD
α
1λ+ l tI

1−α
1 λ =

∂F

∂x
+ λ

∂G

∂x
, (13)

∂F

∂u
+ λ

∂G

∂u
= 0, (14)

with terminal conditions
x(0) = A and λ(1) = 0.

Formulation of Solution scheme:

Observe that (14) represents an equation in the control variable u and the costate variable λ; that
is, one can write u in terms of λ,

u ≡ P (λ). (15)

Using equations (15), (12) and (13) becomes

k c0D
α
t x(t) + l 0I

1−α
t x(t) = G∗(t, x, λ), (16)

k tD
α
1λ+ l tI

1−α
1 λ = Q(x, λ), (17)

where G∗ is obtained by replacing u in terms of λ. Q(x, λ) = ∂F
∂x

+ λ∂G
∂x
.

Operating fractional integral operator 0I
α
t and tI

α
1 on both sides of (16) and (17)

x(t) = x(0) +
1

k

[
0I
α
t G

∗(t, x, λ)− l
∫ t

0

x(t)dt

]
; k 6= 0

and λ(t) = λ(1) +
1

k

[
tI
α
1 G

∗(t, x, λ)− l
∫ 1

t

λ(t)dt

]
; k 6= 0.

Denoting the integral operators L1[·] = 0I
α
t [·], L2[·] =

∫ t
0
[·]dt, L3[·] = tI

α
1 [·] and L4[·] =

∫ 1

t
[·]dt,

we get

x(t) = x(0) +
1

k
{L1[G∗(t, x, λ)]− l L2[x(t)]} ; k 6= 0 (18)

and λ(t) = λ(1) +
1

k
{L3[G∗(t, x, λ)]− l L4[λ(t)]} ; k 6= 0, (19)
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as Ln, n = 1, 2, 3, 4, are linear operators, Adomian decomposition method can be applied.

Write x and λ in the form of an infinite series

x =
∞∑
i=0

xi and λ =
∞∑
j=0

λj .

For k 6= 0 (ADM) gives, x0 = x(0) = A, λ0 = λ(1) = 0 and the values of xi and λj (for
i, j = 1, 2, 3, ...) are given as

x1 =
1

k
{L1[G∗(t, x0, λ0)]− l L2[x0]} ,

λ1 =
1

k
{L3[G∗(t, x0, λ0)]− l L4[λ0]} ,

x2 =
1

k
{L1[G∗(t, x1, λ1)]− l L2[x1]} ,

λ2 =
1

k
{L3[G∗(t, x1, λ1)]− l L4[λ1]} ,

.

.

.

xn =
1

k
{L1[G∗(t, xn−1, λn−1)]− l L2[xn−1]} ,

λn =
1

k
{L3[G∗(t, xn−1, λn−1)]− l L4[λn−1]} .

For a suitable integer n, the n-term approximations of x and λ are

x =
n−1∑
i=0

xi and λ =
n−1∑
j=0

λj.

Once λ is known, the control variable u can be obtained from (15).

Remark 3.

We note that for every i = 0, 1, 2, 3, ..., in order to obtain xi+1 and λi+1, storing a set of two
values {xi, λi} is required.

We shall now consider an example as a particular case where the performance index is an integral
of quadratic forms in the state and control variable:

J(u) =
1

2

∫ 1

0

[q(t)x2(t) + r(t)u2]dt, (20)

where q(t) ≥ 0 and r(t) > 0, the dynamics of the system is described by
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c
0D

α
t x = a(t)x+ b(t)u.

with initial condition
x(0) = x0.

This problem was studied by Agarwal (2004).

Example 3.

Consider the following (FOCP) to find the control u(t) that minimizes the quadratic performance
index

J [u] =
1

2

∫ 1

0

[x2(t) + u2(t)]dt, (21)

subject to the constraints

cDα
0+x(t) = −x+ u, 0 < α < 1 (22)

with initial condition

x(0) = 1. (23)

The necessary Euler-Lagrange equations and terminal conditions for this problem are
cDα

0+x(t) = −x+ u, (24)

cDα
1−u(t) = −x− u, (25)

with terminal conditions
x(0) = 1 and u(1) = 0.

In 2007, Agrawal and Baleanu gave a numerical scheme specifically for this problem. In Baleanu
(2007), fractional derivatives are approximated using the Grunwald-Letnikov definition. Here, we
shall use the formulation (stated in main result) to solve this problem.

Solution:

Given the necessary Euler-Lagrange conditions together with the terminal conditions, by equation
(24), we have

cDα
0+x(t) = −x+ u,

and applying the left integral operator Iα0+ on both sides, we get

x(t) = x(0)− Iα0+x(t) + Iα0+u(t).
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Similarly, by equation (25)

u(t) = u(1)− Iα1−x(t)− Iα1−u(t).

Thus,
x(t) = 1− Iα0+x(t) + Iα0+u(t), (26)

u(t) = −Iα1−x(t)− Iα1−u(t). (27)

Let
L1 ≡ Iα0+ and L2 ≡ Iα1− .

In order to apply (ADM), we express u and x in the form of an infinite series

u =
∞∑
n=0

un and x =
∞∑
n=0

xn .

Since L1 and L2 are linear, we can rewrite (26) and (27) as
∞∑
n=0

xn = 1−
∞∑
n=0

L1(un) +
∞∑
n=0

L1(xn),

∞∑
n=0

un = −
∞∑
n=0

L2(un)−
∞∑
n=0

L2(xn),

with x0 = 1 and u0 = 0.

Thus the recursive relation for un and xn is obtained as follows:

x0 = 1,

u0 = 0,

x1 = −L1(x0) + L1(u0),

u1 = −L2(x0)− L2(u0),

x2 = −L1(x1) + L1(u1),

u2 = −L2(x1)− L2(u1),

.

.

.

xn = −L1(xn−1) + L1(un−1),

un = −L2(xn−1)− L2(un−1).

For a suitable k, the solution is given as k−term approximation

u = u0 + u1 + u2 + ...+ uk−1,
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and

x = x0 + x1 + x2 + ...+ xk−1.

Note: We mark that for every i = 0, 1, 2..., we need to store two values (xi, ui) in order to
get another set of values (xi+1, ui+1). The consequent values of (xi+1, ui+1) can be obtained
by simply evaluating the fractional order integrals of (xi, ui) as (x0, u0) = (1, 0), (x1, u1) =

(− tα

Γ(α+1)
,− (1−t)α

Γ(α+1)
),... etc.

In particular, for α = 1
2
: (x0, u0) = (1, 0), (x1, u1) =

(
− 2√

π

√
t,− 2√

π

√
1− t

)
and (x2, u2) =(

2
π

(
−
√
t+ πt

2
+ (−1 + t) arctanh[

√
t]
)
, 2
π

(√
1− t+ π

2
+ t log(1 +

√
1− t)− 1

2
t(π + log t)

))
.

5. Conclusion

A new generalization of fractional optimal control problems has been introduced. This generaliza-
tion addresses almost all the possible classes of (FOCP)’s and classical optimal control problems.
Remarks and examples presented illustrate the bridge between various classes of optimal control
problems. Additionally, a solution scheme has been formulated for a class of fractional optimal
control problems. The fractional derivatives involved are in terms of Caputo’s derivative. The
formulation utilized composition formula for Caputo derivatives and the Adomian decomposition
method. Furthermore, implementation of a quadratic performance index as a special case is
presented. It is expected that the proposed work will further initiate research in generalizing the
existing numerical scheme to solve fractional optimal control problems.
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