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Abstract 

 
This article proposes a simple method to obtain approximate numerical solution of a singular 

fractional order integro-differential equation with Cauchy kernel by using Bernstein polynomials 

as basis. The fractional derivative is described in Caputo sense. The properties of Bernstein 

polynomials are used to reduce the fractional order integro-differential equation to the solution of 

algebraic equations. The numerical results obtained by the present method compares favorably 

with those obtained earlier for the first order integro-differential equation. Also the convergence 

of the method is established rigorously. 
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1.  Introduction 

 
Fractional calculus is a field of mathematical study that grows out of the traditional definitions of 

the calculus of integral and derivative operators in much the same way as fractional exponents 

which are outgrowth of exponents with integer values. Most of the mathematical theory 

applicable to the study of fractional calculus was developed prior to the turn of the twentieth 

century, mainly due to its demonstrated applications in the numerous seemingly diverse and 

widespread fields of science and engineering. Fractional calculus is the focus of many studies 

due to its frequent appearance in the theories of integral, differential and integro-differential 

equations, and special functions of mathematical physics as well as their generalization in one or 

more variables. Some of the areas of present day applications of fractional calculus include fluid 

flow, rheology, dynamical processes in self-similar and porous structures, diffusive transport, 

probability and statistics, control theory of dynamical systems, viscoelasticity, chemical physics, 

optics and so on (cf. Podlubny (1999), Kilbas et al. (2006), Das (2008), Parthiban and 

Balachandran (2013), Belarbi et al. (2014), Kumar et al. (2014), Singh et al. (2015), Misra et al. 

(2015, 2016)). Recently, different numerical methods have been proposed in the literature to 

solve fractional differential equations (FDEs) and fractional integro-differential equations 

(FIDEs) (cf. Sweilam et al. (2007), Sweilam and Khader (2010), Al-Bar (2015)) and others. 

 

Bernstein polynomials have been used to solve some linear as well as nonlinear differential 

equations approximately by Bhatti and Bracken (2007). These polynomials defined on an 

interval form a complete basis over the interval. The sum of these polynomials is unity, each of 

them being positive. 

 

In this article, we obtain the numerical solution of the singular fractional order of Caputo type 

integro-differential equation 

 

2
𝑑𝛼𝜙

𝑑𝑥𝛼
+ 𝜆 ∫

𝜙(𝑡)

𝑡 − 𝑥
𝑑𝑡 = 𝑓(𝑥), −1 < 𝑥 < 1, 𝜆 > 0, 0 < 𝛼 ≤ 1,

1

−1

         (1.1) 

 

with Cauchy type kernel, specified end conditions 𝜙(−1) = 0 = 𝜙(1) and a special forcing 

function 𝑓(𝑥) = −
𝑥

2
, using Bernstein polynomials.  

 

For 𝛼 = 1, Equation (1.1) reduces to a singular integro-differential equation which arises in 

some special type of mixed boundary value problems involving two dimensional Laplace 

equation, which was solved earlier by Frankel (1995), Chakrabarti and Hamasapriye (1999), 

Mandal and Bera (2007), Mandal and Bhattacharya (2008) by using various methods. Also, the 

forcing function 𝑓(𝑥) = −
𝑥

2
, arises in the problems of heat conduction and radiation (cf. Frankel 

(1995)). 

 

Here, we have introduced a truncated expansion for 
𝜙(𝑥)

(1−𝑥2)
1
2

 in terms of Bernstein polynomials 

and used it to reduce the fractional integro-differential equation to a system of linear equations 

after using collocation points. The coefficients of the truncated expansion are obtained by 

solving the linear system and the values of the function  𝜙(𝑥) at various points for different 

2
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values of 𝛼 (0 < 𝛼 < 1) are found. For a value of 𝛼 near 1 (𝛼 = 0.99), the values of 𝜙(𝑥) at 

different points are calculated and these are seen to be close to the values of 𝜙(𝑥) at these points 

for 𝛼 = 1 obtained by Frankel (1995). 

 

The convergence of the method is established rigorously. Although the numerical computations 

have been carried out for 𝑓(𝑥) = −
𝑥

2
, the method can be utilized for other forms of 𝑓(𝑥). 

 

2.   Preliminaries 
 

2.1.   Basic definitions of fractional integrals and derivative operators 

 

Definition 1. 

 

A function 𝑓(𝑥) ∈ ℝ, 𝑥 > 0 is said to be in the ℂ𝜇 space, 𝜇 ∈ ℝ if there exists a real number 

𝑝 > 𝜇, such that 𝑓(𝑥) = 𝑥𝑝𝑔(𝑥), where 𝑔(𝑥) ∈ [0, ∞) and it is said to be in the space ℂ𝜇
𝑚 iff 

𝑓(𝑚) ∈ ℂ𝜇 , 𝑚 ∈ ℕ. 

 

Definition 2. 

 

The Riemann-Liouville fractional integral operator 𝐽𝑎
𝛼of order 𝛼, generalized from the repeated 

𝑛-fold integration by Gamma function for the factorial expression is defined on 𝐿1[𝑎, 𝑏] by 

 

 𝐽𝑎
𝛼𝑓(𝑥) =

1

Γ(𝛼)
∫ (𝑥 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏,     𝛼 > 0,   𝑎 ≤ 𝑥 ≤ 𝑏.                  (2.1)

𝑥

𝑎

 

 

Definition 3. 
 

The expression for Riemann-Liouville fractional derivative operator 𝐷𝑎
𝛼 of order 𝛼 (𝑛 − 1 <

𝛼 ≤ 𝑛) (left-hand definition (LHD)) is given by (cf. Podlubny (1999))  

 

𝐷𝑎
𝛼𝑓(𝑥) =

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫

𝑓(𝜏)

(𝑥 − 𝜏)𝛼+1−𝑛
𝑑𝜏,     𝑛 ∈ ℕ, 𝛼 > 0, 𝑎 ≤ 𝑥 ≤ 𝑏.       (2.2)

𝑥

𝑎

 

 

Definition 4.  
 

The expression for Caputo fractional derivative operator  𝑐𝐷𝑎
𝛼 of order 𝛼 (𝑛 − 1 < 𝛼 ≤ 𝑛) (right 

hand definition (RHD)) is given by (cf. Caputo and Mainardi (1971)) 

 

 𝑐𝐷𝑎
𝛼𝑓(𝑥) =

1

Γ(𝑛 − 𝛼)
∫

𝑓𝑛(𝜏)

(𝑥 − 𝜏)𝛼+1−𝑛
𝑑𝜏,     𝑛 ∈ ℕ, 𝛼 > 0, 𝑎 ≤ 𝑥 ≤ 𝑏.       (2.3)

𝑥

𝑎
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Properties. 

 

Caputo fractional derivative operator is a linear operator similar to integer order differentiation 

so that 

 

𝐷𝛼(𝜆 𝑓(𝑥) + 𝜇 𝑔(𝑥)) = 𝜆𝐷𝛼𝑓(𝑥) + 𝜇𝐷𝛼𝑔(𝑥),                         (2.4) 

 

where 𝜆 and  𝜇 are constants. Caputo derivative satisfies 

 

𝐷𝛼𝐶 = 0,  𝐶 being a constant, 

 

𝐷𝛼𝑥𝛽 = {

            0,                                  for 𝛽 ∈ ℕ0 and 𝛽 < [𝛼],

Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑥𝛽−𝛼 ,            for 𝛽 ∈ ℕ0 and 𝛽 ≥ [𝛼],

               (2.5) 

 

where the ceiling function [𝛼] denotes the smallest integer greater than or equal to 𝛼 and 

ℕ0 = {0,1,2, … }. For 𝛼 ∈ ℕ, Caputo differential operator coincides with the usual differential 

operator of integer order. 

 

2.2.   Bernstein polynomials and their properties 

 

Definition 5. 

  

The Bernstein polynomials of degree 𝑛 are defined on the interval [𝑎, 𝑏] as 

 

𝐵𝑖,𝑛(𝑥) = (
𝑛

𝑖
)

(𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑛−𝑖

(𝑏 − 𝑎)𝑛
,   𝑖 = 0,1, … , 𝑛,                              (2.6) 

 
where (𝑛

𝑖
) is a binomial coefficient. 

 

The Bernstein basis polynomials of degree 𝑛 form a basis for the vector space ∏𝑛 of 

polynomials of degree atmost 𝑛. These polynomials defined on an interval form a complete basis 

over the interval. The sum of these polynomials is unity, each of them being positive. 

 

3.   General method of solution 

 
The unknown function 𝜙(𝑥) satisfying (1.1) with end conditions 𝜙(−1) = 0 = 𝜙(1)  can be 

represented in the form  

 

𝜙(𝑥) = √1 − 𝑥2 𝜓(𝑥), −1 ≤ 𝑥 ≤ 1,                                              (3.1) 

 

where 𝜓(𝑥) is a well behaved function of 𝑥 in the interval [−1, 1]. 
 

Let us approximate 𝜓(𝑥) in terms of Bernstein polynomials in [−1, 1] as 

4
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𝜓(𝑥) = ∑ 𝑎𝑖𝐵𝑖,𝑛(𝑥)

𝑛

𝑖=0

,                                                          (3.2) 

 

where 𝐵𝑖,𝑛(𝑥), (𝑖 = 0,1, … , 𝑛) are now defined on [−1, 1] as 

 

𝐵𝑖,𝑛(𝑥) = (
𝑛

𝑖
)

(1 + 𝑥)𝑖(1 − 𝑥)𝑛−𝑖

2𝑛
,   𝑖 = 0,1, … , 𝑛                                (3.3) 

 

and 𝑎𝑖(𝑖 = 0,1, … , 𝑛) are unknown constants. Using (3.1) and (3.2) in(1.1), we find 

 

∑ 𝑎𝑖

𝑛

𝑖=0

[2 
𝑑𝛼

𝑑𝑥𝛼
{√1 − 𝑥2𝐵𝑖,𝑛(𝑥)} + 𝜆 ∫

√1 − 𝑡2

𝑡 − 𝑥
𝐵𝑖,𝑛(𝑡)𝑑𝑡

1

−1

] = 𝑓(𝑥), 

−1 < 𝑥 < 1, 0 < 𝛼 ≤ 1.                (3.4) 

 

Substituting Caputo right hand definition of fractional derivative operator (2.3) in (3.4), we 

obtain 

 

∑ 𝑎𝑖

𝑛

𝑖=0

[ 
2

Γ(𝑝 − 𝛼)
∫

{√1 − 𝑡2𝐵𝑖,𝑛(𝑡)}
(𝑝)

(𝑥 − 𝑡)𝛼+1−𝑝
𝑑𝑡

𝑥

−1

+ 𝜆 ∫
√1 − 𝑡2

𝑡 − 𝑥
𝐵𝑖,𝑛(𝑡)𝑑𝑡

1

−1

] = 𝑓(𝑥), 

−1 < 𝑥 < 1,   0 < 𝛼 ≤ 1,   𝑝 − 1 < 𝛼 < 𝑝,                (3.5) 

 

where 𝛼 > 0 is the order of the derivative and 𝑝 ∈ ℕ is the smallest integer greater than 𝛼. 

 

As here 0 < 𝛼 ≤ 1, we can assume that 𝑝 =  1. Hence, we get 

 

∑ 𝑎𝑖

𝑛

𝑖=0

[ 
2

Γ(1 − 𝛼)
∫

{√1 − 𝑡2𝐵𝑖,𝑛
′ (𝑡) −

𝑡

√1 − 𝑡2
𝐵𝑖,𝑛(𝑡)}

(𝑥 − 𝑡)𝛼
𝑑𝑡

𝑥

−1

+ 𝜆 ∫
√1 − 𝑡2

𝑡 − 𝑥
𝐵𝑖,𝑛(𝑡)𝑑𝑡

1

−1

] = 𝑓(𝑥), 

 

−1 < 𝑥 < 1,   0 < 𝛼 ≤ 1.        (3.6) 

 

We know that 

 

√1 − 𝑡2 = − ∑
1

2𝑚 − 1

1

4𝑚
(

2𝑚

𝑚
) 𝑡2𝑚

∞

𝑚=0

, 

1

√1 − 𝑡2
= ∑

1

4𝑚
(

2𝑚

𝑚
) 𝑡2𝑚,

∞

𝑚=0

 

5
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𝐵𝑖,𝑛(𝑡) =
1

2𝑛
∑ ∑(−1)𝑞 (

𝑛

𝑖
)

𝑛−𝑖

𝑞=0

𝑖

𝑝=0

(
𝑖

𝑝
) (

𝑛 − 𝑖

𝑞
) 𝑡𝑝+𝑞 , 

 

                
𝑑

𝑑𝑡
{𝐵𝑖,𝑛(𝑡)} = 𝑛{𝐵𝑖−1,𝑛−1(𝑡) − 𝐵𝑖,𝑛−1(𝑡)}      

 

                                   =
𝑛

2𝑛−1 [
∑ ∑ (−1)𝑞(𝑛−1

𝑖−1
)𝑛−𝑖

𝑞=0
𝑖−1
𝑝=0 (𝑖−1

𝑝
) (𝑛−𝑖

𝑞
) 𝑡𝑝+𝑞

  − ∑ ∑ (−1)𝑞(𝑛−1
𝑖

)𝑛−𝑖−1
𝑞=0

𝑖
𝑝=0 ( 𝑖

𝑝
) (𝑛−𝑖−1

𝑞
) 𝑡𝑝+𝑞

].                     (3.7) 

 

Utilizing (3.7) we find that 

−
𝑡

√1 − 𝑡2
𝐵𝑖,𝑛(𝑡) = ∑ ∑ ∑ 𝓙𝒊,𝒏𝑡2𝑚+𝑝+𝑞+1

𝑛−𝑖

𝑞=0

𝑖

𝑝=0

,

∞

𝑚=0

 

√1 − 𝑡2𝐵𝑖,𝑛
′ (𝑡) = − ∑ ∑ ∑ 𝓚𝒊,𝒏𝑡2𝑚+𝑝+𝑞

𝑛−𝑖

𝑞=0

𝑖−1

𝑝=0

+ ∑ ∑ ∑ 𝓛𝒊,𝒏𝑡2𝑚+𝑝+𝑞

𝑛−𝑖−1

𝑞=0

𝑖

𝑝=0

,

∞

𝑚=0

∞

𝑚=0

 

and 

√1 − 𝑡2𝐵𝑖,𝑛(𝑡) = ∑ ∑ ∑ 𝓜𝒊,𝒏𝑡2𝑚+𝑝+𝑞

𝑛−𝑖

𝑞=0

𝑖

𝑝=0

∞

𝑚=0

,                                 (3.8) 

where 

𝓙𝒊,𝒏 = (−1)𝑞+1
1

22𝑚+𝑛
(

2𝑚

𝑚
) (

𝑛

𝑖
) (

𝑖

𝑝
) (

𝑛 − 𝑖

𝑞
), 

𝓚𝒊,𝒏 = (−1)𝑞
𝑛

22𝑚+𝑛−1(2𝑚 − 1)
(

2𝑚

𝑚
) (

𝑛 − 1

𝑖 − 1
) (

𝑖 − 1

𝑝
) (

𝑛 − 𝑖

𝑞
), 

𝓛𝒊,𝒏 = (−1)𝑞+1
1

22𝑚+𝑛−1(2𝑚 − 1)
(

2𝑚

𝑚
) (

𝑛 − 1

𝑖
) (

𝑖

𝑝
) (

𝑛 − 𝑖 − 1

𝑞
), 

𝓜𝒊,𝒏 = (−1)𝑞+1
1

22𝑚+𝑛(2𝑚 − 1)
(

2𝑚

𝑚
) (

𝑛

𝑖
) (

𝑖

𝑝
) (

𝑛 − 𝑖

𝑞
).                          (3.9) 

 

Using (3.8) in (3.6) we obtain 

6
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∑ ∑ 𝑎𝑖

∞

𝑚=0

𝑛

𝑖=0

[ 
2

Γ(1 − 𝛼)
{∑ ∑ 𝓙𝒊,𝒏

𝑛−𝑖

𝑞=0

𝑖

𝑝=0

∫
𝑡2𝑚+𝑝+𝑞+1

(𝑥 − 𝑡)𝛼
𝑑𝑡

𝑥

−1

− ∑ ∑ 𝓚𝒊,𝒏

𝑛−𝑖

𝑞=0

𝑖−1

𝑝=0

∫
𝑡2𝑚+𝑝+𝑞

(𝑥 − 𝑡)𝛼
𝑑𝑡

𝑥

−1

+ ∑ ∑ 𝓛𝒊,𝒏

𝑛−𝑖−1

𝑞=0

𝑖

𝑝=0

∫
𝑡2𝑚+𝑝+𝑞

(𝑥 − 𝑡)𝛼
𝑑𝑡

𝑥

−1

} + 𝜆 ∑ ∑ 𝓜𝒊,𝒏

𝑛−𝑖

𝑞=0

𝑖

𝑝=0

∫
𝑡2𝑚+𝑝+𝑞

𝑡 − 𝑥
𝑑𝑡

1

−1

] = 𝑓(𝑥), 

−1 < 𝑥 < 1,   0 < 𝛼 ≤ 1.              (3.10) 

 

Using the results (cf. Gradshteyn and Ryzhik (1963)) 

 

∫
𝑡𝑘

𝑡 − 𝑥
𝑑𝑡

1

−1

= 𝑥𝑘  𝑙𝑛 |
1 − 𝑥

1 + 𝑥
| + ∑ (

𝑘

𝑙
) 𝑥𝑘−𝑙

𝑘

𝑙=1

(1 − 𝑥)𝑙 − (−1)𝑙(1 + 𝑥)𝑙

𝑙
           (3.11) 

 

and 

 

∫ 𝑡𝑚−1 (𝑢 − 𝑡)𝑛−1𝑑𝑡 =
(−1)𝑚−1(𝑥 + 1)𝑛

𝑛

𝑢

−1

𝐹2
 

1(1, −𝑚 + 1; 1 + 𝑛; 𝑥 + 1)           (3.12) 

 

in (3.10) and choosing 𝜆 = 1 we get 

 

 

∑ ∑ 𝑎𝑖

∞

𝑚=0

𝑛

𝑖=0

[
2

Γ(1 − 𝛼)
{∑ ∑ 𝓙𝒊,𝒏

𝑛−𝑖

𝑞=0

(−1)𝑟+1

1 − 𝛼
(𝑥 + 1)1−𝛼 𝐹2

 
1(1, −𝑟 − 1; 2 − 𝛼; 𝑥

𝑖

𝑝=0

+ 1) – ∑ ∑ 𝓚𝒊,𝒏

(−1)𝑟

1 − 𝛼
(𝑥 + 1)1−𝛼 𝐹2

 
1(1, −𝑟; 2 − 𝛼; 𝑥 + 1)

𝑛−𝑖

𝑞=0

𝑖−1

𝑝=0

+ ∑ ∑ 𝓛𝒊,𝒏

𝑛−𝑖−1

𝑞=0

𝑖

𝑝=0

(−1)𝑟

1 − 𝛼
(𝑥 + 1)1−𝛼 𝐹2

 
1(1, −𝑟; 2 − 𝛼; 𝑥 + 1)}

+ ∑ ∑ 𝓜𝒊,𝒏

𝑛−𝑖

𝑞=0

𝑖

𝑝=0

𝑥𝑟𝑙𝑛 |
1 − 𝑥

1 + 𝑥
|

+ ∑ ∑ ∑ 𝓜𝒊,𝒏 (
𝑟

𝑙
) 𝑥𝑟−𝑙

(1 − 𝑥)𝑙 − (−1)𝑙(1 + 𝑥)𝑙

𝑙

𝑟

𝑙=1

𝑛−𝑖

𝑞=0

𝑖

𝑝=0

] = 𝑓(𝑥), 

−1 < 𝑥 < 1,   0 < 𝛼 ≤ 1,              (3.13) 
 

where 𝑟 = 2𝑚 + 𝑝 + 𝑞. 
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Taking 𝑓(𝑥) = −
𝑥

2
 and putting 𝑥 = 𝑥𝑗 = −0.99 +  

2

𝑛
𝑗 (𝑗 =  0,1, … , 𝑛) in (3.13) we obtain a 

system of (𝑛 + 1) linear equations for the determination of the unknown coefficients 𝑎𝑗(𝑗 =

0,1, … , 𝑛). The unknown coefficients 𝑎𝑗(𝑗 =  0,1, … , 𝑛) are thus obtained for different values of 

𝛼 (0 < 𝛼 < 1). The numerical values of 𝜙(𝑥) for different values of 𝑥 are then obtained 

approximately. 

 

In the numerical calculations, we take 𝑛 =  7,11,13 and 𝑎0, 𝑎1, … , 𝑎𝑛 are obtained by standard 

numerical methods. Using these coefficients the values of 𝜙(𝑥) at 𝑥 = (0.2)𝑘, 𝑘 =
−5, −4, … , 0, … , 4, 5 are obtained and presented in the Figures 1, 2, 3 for different values of 𝛼. 

Figure 1 to Figure 3 depict the solution for different values of 𝛼 (0 < 𝛼 < 1). The values of 

𝜙(𝑥) at different points for 𝛼 = 1 are known approximately (cf. Frankel (1995)). Our 

approximate values of 𝜙(𝑥) for 𝛼 =  0.99 are compared with the known values of 𝜙(𝑥) for 

𝛼 = 1 given by Frankel (1995), and Figure 4 shows that the values obtained by the presented 

method (for 𝛼 = 0.99) compare favorably with the values obtained by Frankel (1995) (for 

𝛼 =  1). 

 

4.   Error analysis 

 

Using (3.1) in (1.1) an equation for 𝜓(𝑥) is obtained which can be written in the operator form 

as 

(𝑫𝛼 +
𝜆 𝜋

2
𝑪) 𝜓(𝑥) =

𝑓(𝑥)

2
,   − 1 < 𝑥 < 1,                                   (4.1) 

 

Figure 1. 𝜙(𝑥) for different values of 𝛼 where 𝑛 = 7 
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Figure 2. 𝜙(𝑥) for different values of 𝛼 where 𝑛 = 11 

 

 

 
Figure 3. 𝜙(𝑥) for different values of 𝛼 where 𝑛 = 13 
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Figure 4. Comparison of presented method with Frankel’s Method where 𝑛 = 13 

 

where 𝑪 and 𝑫 are operators defined as 

 

𝑪𝑢(𝑥) =
1

𝜋
∫

√1 − 𝑡2

𝑡 − 𝑥

1

−1

𝑢(𝑡)𝑑𝑡,   − 1 < 𝑥 < 1                               (4.2) 

 

and 

 

𝑫𝛼𝑢(𝑥) =
𝑑𝛼

𝑑𝑥𝛼
[√1 − 𝑥2𝑢(𝑥)] ,   − 1 < 𝑥 < 1.                              (4.3) 

 

Letting 𝑥 = cos 𝜃, we get the Chebyshev polynomials of first the kind as 𝑇𝑛(𝑥) = cos 𝑛𝜃 and 

Chebyshev polynomial of the second kind as 𝑈𝑛(𝑥) =
sin  (𝑛+1)𝜃

sin 𝜃
  . Then,  

 

𝑪𝑈𝑛(𝑥)  =  −𝑇𝑛+1(𝑥), 𝑛 ≥  0.                                            (4.4)  
 

Thus, (4.4) assures that 𝑪 can be extended as a bounded linear operator from 𝐿1(𝜔) to 𝐿(𝜔)(cf. 

Goldberg and Chen (1997)), where 𝐿1(𝜔) is the space of functions square integrable with respect 

to 𝜔(𝑥) = √1 − 𝑥2 in [−1,1] and 𝐿(𝜔) is the subspace of functions 𝑓 ∈ 𝐿(𝜔) satisfying 

 

‖𝑓‖1
2 = ∑(𝑘 + 1)2

∞

𝑘=0

〈𝑓, 𝜓𝑘〉𝜔
2 < ∞,                                       (4.5) 

where  

〈𝑓, 𝑔〉𝜔 = ∫ 𝑓(𝑡)𝑔(𝑡)√1 − 𝑡2𝑑𝑡
1

−1

                                      (4.6) 
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and  

𝜓𝑘 = √
2

𝜋
𝑇𝑘.                                                         (4.7) 

 

Again, 

𝑫𝛼𝑈𝑛(𝑥) =  
1

Γ(𝑝 − 𝛼)
∫

{√1 − 𝑡2𝑈𝑛(𝑡)}
(𝑝)

(𝑥 − 𝑡)𝛼+1−𝑝
𝑑𝑡

𝑥

−1

,   𝑝 − 1 < 𝑥 < 𝑝 

=
1

Γ(1 − 𝛼)
∫

{√1 − 𝑡2𝑈𝑛
′ (𝑡) −

𝑡

√1 − 𝑡2
𝑈𝑛(𝑡)}

(𝑥 − 𝑡)𝛼
𝑑𝑡

𝑥

−1

, (since 0 < 𝛼 < 1 gives 𝑝 = 1) 

= −
(𝑛 + 1)

Γ(1 − 𝛼)
∫

𝑇𝑛+1(𝑡)

√1 − 𝑡2(𝑥 − 𝑡)𝛼
𝑑𝑡, (using 𝑈𝑛

′ (𝑡) =
(𝑛 + 1)𝑇𝑛+1(𝑡) − 𝑡𝑈𝑛(𝑡)

𝑡2 − 1
 ).   (4.8)

𝑥

−1

 

 

Let us represent Chebyshev polynomial of the first kind by 

 

                                                            𝑇𝑛(𝑥) = ∑ 𝑏𝑗𝑥𝑗𝑛
𝑗=0 ,      (4.9) 

 

where 𝑏𝑗’s can easily be found.  Then, 

 

𝑫𝛼𝑈𝑛(𝑥) = −
(𝑛 + 1)

Γ(1 − 𝛼)
∑ 𝑏𝑗

𝑛+1

𝑗=0

[
√𝜋

2𝑥𝛼
{

(−2)𝑗

𝑗 Γ (
𝑗
2)

 Γ (
1 + 𝑗

2
) 𝐹3

 
2 (

1 + 𝑗

2
,
1 + 𝛼

2
,
𝛼

2
;
1

2
,
2 + 𝑗

2
;

1

𝑥2
)

−
(−1)𝑗

𝑥Γ (
3 + 𝑗

2
)

𝛼Γ (
2 + 𝑗

2
) 𝐹3

 
2 (

2 + 𝑗

2
,
1 + 𝛼

2
, 1 +

𝛼

2
;
3

2
,
3 + 𝑗

2
;

1

𝑥2
)

+ 2𝛼−𝑗𝑥𝑗+1Γ(1 + 𝑗)Γ(1

− 𝛼) 𝐹3
 

2 (
1

2
,
1 + 𝑗

2
,
2 + 𝑗

2
;
2 + 𝑗 − 𝛼

2
,
3 + 𝑗 − 𝛼

2
; 𝑥2)}],    

(4.10) 

which shows that the operator 𝑫𝛼 can also be extended as a bounded linear operator from  𝐿1(𝜔) 

to 𝐿(𝜔). By choosing 𝑓(𝑥) ∈ 𝐿(𝜔), we obtain that Equation (4.1) has a unique solution 

𝜓 ∈ 𝐿(𝜔) for each 𝑓 ∈ 𝐿(𝜔).  

Now, an approximation 𝑑𝑛(𝑥) of the function 𝜓(𝑥) in terms of Bernstein polynomials in the 

form 

𝜓(𝑥) ≃  𝑑𝑛(𝑥),                                                              (4.11) 
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where 

𝑑𝑛(𝑥) = ∑ 𝑝𝑖𝐵𝑖,𝑛(𝑥) = ∑ 𝑞𝑗𝑈𝑗(𝑥)

𝑛

𝑖=0

𝑛

𝑖=0

,                                      (4.12) 

where 𝑞𝑗 , (𝑗 = 0,1, … , 𝑛) can be expressed in terms of 𝑝𝑖 (𝑖 = 0,1, … , 𝑛) and vice-versa by the 

transformation (cf. Snyder (1966))  

𝐵𝑖,𝑛(𝑥) = (
𝑛

𝑖
)

1

2𝑛
∑ 𝑟𝑖,𝑛

𝑠

𝑛

𝑠=0

1

2𝑠
{(

𝑠

𝑚
) − (

𝑠

𝑚 + 1
)} 𝑈𝑠−2𝑚(𝑥),                    (4.13) 

where 

𝑟𝑖,𝑛
𝑠 = ∑(−1)𝑠−𝑘 (

𝑖

𝑘
) (

𝑛 − 𝑖

𝑠 − 𝑘
) ,

𝑘

  𝑘 = 0,1, … , 𝑛,   𝑖 = 0,1, … , 𝑛. 

the summation over k being taken as follows:  

for 𝑖 < 𝑛 < 𝑛 − 𝑖,  

                                                     (𝑖)𝑘 = 0 to 𝑠       for 𝑠 ≤  𝑖,  

                                                    (𝑖𝑖)𝑘 = 0 to 𝑖       for 𝑖 < 𝑠 ≤ 𝑛 − 𝑖,  

                                                   (𝑖𝑖𝑖)𝑘 = 𝑠 − (𝑛 − 𝑖) to 𝑛 − 𝑖       for 𝑛 − 𝑖 ≤  𝑛,  

while for 𝑖 =  𝑛 − 𝑖 (𝑛 being an even integer) 

                                                     (𝑖)𝑘 =  0 to 𝑠              for 𝑠 ≤ 𝑖,  

                                                    (𝑖𝑖)𝑘 =  𝑠 − 𝑖 to 𝑖       for 𝑖 < 𝑠 ≤ 𝑛.                                             (4.14) 

For 𝑖 > 𝑛 − 𝑖, 𝑖 and 𝑛 − 𝑖 above are to be interchanged.  

 

Now, let us denote 

𝑢𝑛(𝑥) = ∑ 𝑐𝑗𝜙𝑗(𝑥)

𝑛

𝑗=0

                                                   (4.15) 

with 

𝑐𝑗 = √
𝜋

2
𝑞𝑗,   𝜙𝑗(𝑥) = √

2

𝜋
𝑈𝑗(𝑥).                                       (4.16) 
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The functions 𝜙𝑗(𝑥), (𝑗 = 0,1, … , 𝑛) form a set of orthonormal polynomial basis in [−1,1] with 

respect to the weight function 𝜔(𝑥) = √1 − 𝑥2. Also we have, if 𝑓 ∈ 𝐶𝑟[−1,1], then 𝑢𝑛 → 𝜓 as 

𝑛 → ∞ in  𝐿1(𝜔)  and 

 

                         ||𝜓 − 𝑢𝑛||1 < 𝐴𝑛−𝑟 , (cf. Goldberg and Chen (1997)),                               (4.17) 
 

where 𝐴 is a constant.  

 

In our problem, 𝑓(𝑥) = −
𝑥

2
∈ C∞[−1,1]. Since the method converges faster for large 𝑟, in our 

method it converges very rapidly. 

 

5.   Conclusion 

 

In this paper, we proposed a simple method to approximate the unknown function in terms of 

truncated series involving Bernstein polynomials for solving a fractional order integro 

differential equation with Cauchy singular type kernel, the fractional derivative being in the 

Caputo sense. An approximate formula for the Caputo derivative in Bernstein polynomial basis 

was derived. The properties of Bernstein polynomials were utilized to reduce the fractional order 

integro differential equations to the solution of algebraic equations by avoiding the appearance of 

ill-conditioned matrices or complicated integrations. The convergence is very good as is also 

seen in the figures. 
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