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Abstract

The purpose of this paper is to depict the effect of time, thermal, and diffusion phase lags due to
axisymmetric heat supply in a ring. The problem is discussed within the context of DPLT and
DPLD models. The upper and lower surfaces of the ring are traction-free and subjected to an
axisymmetric heat supply. The solution is found by using Laplace and Hankel transform
techniques. The analytical expressions of displacements, stresses and chemical potential,
temperature and mass concentration are computed in transformed domain. Numerical inversion
technique has been applied to obtain the results in the physical domain. Numerically simulated
results are depicted graphically. The effect of time, diffusion, and thermal phase-lags are shown
on the various components. Some particular results are also deduced from the present
investigation.
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1. Introduction

Classical Fourier heat conduction law implies an infinitely fast propagation of a thermal signal
which is violated in ultra-fast heat conduction system due to its very small dimensions and short
timescales. Catteno (1958) and Vernotte (1958) proposed a thermal wave with a single phase lag
in which the temperature gradient after a certain elapsed time was given by q + 7, % = —kVT,

where 7, denotes the relaxation time required for thermal physics to take account of hyperbolic
effect within the medium. Here when z, > 0,the thermal wave propagates through the medium

with a finite speed of f“/Tq , Where a is thermal diffusivity. When t, approaches zero, the

thermal wave has an infinite speed and thus the single phase lag model reduces to traditional
Fourier model .

9q
=
—k(VT + 1, %VT),Where the temperature gradient VT at a point P of the material at time t + 7,
corresponds to the heat flux vector g at the same time which is ¢ + 7,. Here K is thermal
conductivity of the material. The delay time 7, is interpreted as that caused by the
microstructural interactions and is called the phase lag of temperature gradient. The other delay
time t, is interpreted as the relaxation time due to the fast transient effects of thermal inertia and
is called the phase lag of heat flux. This universal model is claimed to be able to bridge the gap
between microscopic and macroscopic approaches, covering a wide range of heat transfer
models.

The dual phase lag model of heat conduction was proposed by Tzou (1996) as q + 74

If 7, =0, Tzou (1996) refers to the model as single phase model. Numerous efforts have been
invested in the development of an explicit mathematical solution to the heat conduction equation
under dual phase lag model. Quintanilla (2006) compared two different mathematical hyperbolic
models proposed by Tzou. Kumar and Mukhopadhaya (2010) investigated the propagation of
harmonic waves of assigned frequency by employing the thermoelasticity theory with three
phase lags. Chou and Yang (2009) discussed two dimensional dual phase lag thermal behavior in
single-/multi-layer structures using CESE method.

Zhou, Zhang and Chen (2009) proposed an axisymmetric dual-phase-lag bioheat model for laser
heating of living tissues. Abdallah (2009) used uncoupled thermoelastic model based on dual
phase lag to investigate the thermoelastic properties of a semi-infinite medium. Kumar, Chawla
and Abbas (2012) discussed the effect of viscosity on wave propagation in anisotropic
thermoelastic medium with three phase lag model. Bhattacharya and Kanoria (2014) investigated
the problem of elasto-thermo-diffusion inside a spherical shell.

Rukolaine (2014) investigated Unphysical effects of the dual-phase-lag model of heat
conduction. Liu, Cheng and Wang (2015) analyzed thermal damage in a laser-Irradiated based
on non-Fourier model. Ying and Yun (2015) built a fractional dual-phase-lag model and the
corresponding bio-heat transfer equation. Tripathi et al. (2015) analyzed generalized
thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply. Many
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active researchers such as Abbas (2012, 2014a, 2014b, 2014c, 2015), Abbas and Kumar (2015),
Abbas, Kumar and Rani (2015), Abbas, Marin and Kumar (2015), Zenkour and Abbas (2014)
have worked and contributed in this area.

Diffusion is defined as the spontaneous movement of the particles from high concentration
region to the low concentration region, and it occurs in response to a concentration gradient
expressed as the change in concentration due to change in position. Thermal diffusion utilizes the
transfer of heat across a thin liquid or gas to accomplish isotope separation. The thermodiffusion
in elastic solids is due to coupling of fields of temperature, mass diffusion and that of strain in
addition to heat and mass exchange with the environment. Dual phase lag diffusion model was
considered by Kumar and Gupta (2014). Abbas (2015) proposed a dual phase lag model on
thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole.

Here in this investigation, a generalized form of mass diffusion equation is introduced instead of
classical Fick's diffusion theory by using two diffusion phase-lags in axisymmetric form. One
phase-lag of diffusing mass flux vector, represents the delayed time required for the diffusion of
the mass flux and the other phase-lag of chemical potential, represents the delayed time required
for the establishment of the potential gradient. The basic equations for the isotropic thermoelastic
diffusion medium in the context of dual-phase-lag heat transfer (DPLT) and dual-phase-lag
diffusion (DPLD) models in axisymmetric form are presented. The components of
displacements, stresses and chemical potential, temperature and mass concentration are
computed numerically. Numerically computed results are depicted graphically. The effect of
diffusion and thermal phase-lags are shown on the various components.

2. Basic Equations

The basic equations of motion, heat conduction and mass diffusion in a homogeneous isotropic
thermoelastic solid with DPLT and DPLD models in the absence of body forces, heat sources
and mass diffusion sources are

A+ wV(V.u) + uv?u — B,VT — B,VC = pil, (1)
9 2 92 . , .
(1 + 17 E) KT; = (1 t 745+ qu ﬁ) [pCET + BiToérr + aToC], 2
) a a a2
(1+1,2) (DBV?(V.u) + DaV2T — DbV?C) + 5 (1 + 1= + 7,7 2) € = 0, 3)
and the constitutive relations are
oij = 2pe;j + 6;j(Aegy — B1T — B0), (4)
F) 5 082
pT()S = (1 + Tq a + Tq F) (pCET + ﬁlToekk + aTOC), (5)
P = —ﬁzekk —aTl — bC , (6)
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where 1, u are Lame's constants , p is the density assumed to be independent of time, D is the
diffusivity, P is the chemical potential per unit mass, C is the concentration, u; are components
of displacement vector u, K is the coefficient of thermal conductivity, Cz is the specific heat at
constant strain T =9 — T, is small temperature increment, 9 is the absolute temperature of the

medium, T, a and b are the

coefficients describing the measure of thermodiffusion, and mass diffusion effect
respectively, g;; and e;; are the components of stress and strain respectively, ey is dilatation, S
is the entropy per unit mass, [;= 31+ 2w)a;, B,= 31+ 2w)ea, , a. is the coefficient of
linear diffusion expansion and a; is the coefficient of thermal linear expansion. 7, 74, 7, T, are
respectively, phase lag of temperature gradient, the phase lag of heat flux, the phase lag of
chemical potential, and phase lag of diffusing mass flux vector. In the above equations, a comma
followed by suffix denotes spatial derivative and a superposed dot denotes derivative with
respect to time.

3. Formulation and solution of the problem

Consider a thick circular plate of thickness 2b occupying the space D defined by 0 <r < o,
—b < z < b. Let the plate be subjected to an axisymmetric heat supply and chemical potential
source with stress free boundary depending on the radial and axial directions of the cylindrical
co-ordinate system. The initial temperature in the thick plate is given by a constant temperature
T,. The heat flux and chemical potential sources of unit magnitude are prescribed along with
vanishing of stress components on the upper and lower boundary surfaces along with traction
free boundary z = +d. We take a cylindrical polar co-ordinate system (r, 8, z) with symmetry
about z —axis. As the problem considered is plane axisymmetric, the field component ug =0,
and u,, u,, T and C are independent of 8. The components of displacement vector u for the
two dimensional axisymmetric problem take the form

U = (u,,0,uy). (7

Equations (1) - (6) with the aid of (7) take the form:

A+ wZtu(V -3 -p - g =il (®)
A+ 1) 5+ uvu, —ﬁla ~pL=pll, ©)
(147, KT = (1+ 74 = + Tﬁ) [pCET + B To=divu + aTo 2], (10)
(L+7, D) (DB, V2div u + DaV?T — DbVZC) + 2 (141, 2+ L2 0 = 0. (11)

We define the dimensionless quantities
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!

=G =G ) = B . ¢ = ort

’ ! ’ ’ _ I ﬁl
(arrJ 099,02z, O-rz) 3 To (Urr: 006,032z, Urz) T

~ pc?
r B2 ’ ’ _ I P
c'= p_ch’ (Tq,Tt,Tp,Tn) = w1(Tq, Tt Tp, Tp) » P' = 5 (12)
where
Cpc? A+2
w, = PCECT , C12 — M.
K P

Using the dimensionless quantities defined by (12) in Equations (8) - (11) and suppressing the
primes for convenience yield

W de | p (p2 L), _ 0T _3C_ 0%
pc? ar = pc? ( rz) Ur or or  ot2’ (13)
K Oe K g2, T _03C_ 0
pci oz pct Uz =%z "oz o2 (14)
9. 27 — g ia_z 2 51 9 4. aToﬁ’lC%a_C
(Ut SIKP2T = (14 74 5+ 7 25) = | pCrc?T + B2 2 divu + “R2AZ] - (15)
(1+7, 2) (DB V2div u + DaV2T 2L _ ppyc ”—02)
P ot 2 B1 B1
9 02\ _pci ~ _
+2 (1472 + 2L atz)ﬁ,lwl C=0. (16)

The stress components and chemical potential source in dimensionless form are

_ ,19ur 1 pci B2pct
Opy = o +Ae— ﬁlToT BT C, 17)
_ 11U 1, Pt B2pct
Ogg = U - + e ﬁ1To T — B1To C, (18)
o — 1%_'_ Ale pcl T Bchl C (19)
2z = H 0z BiTo B1To
= B (Qur | Oy
Orz = 4 (62 + or )' (20)
Oy = 0= t,0, (21)
2
p=—e— 2y _beot 22
€ B2P1 B3 ¢ ( )
where

1_ 2K 1 _ A
T BT BiTo
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The Laplace Transform of a function f = f (x4, x3, t) with respect to time variable t , with s as a
Laplace Transform variable is defined as
fxy,x3,8) = f(:of(xl, x3,t)e Stdt. (23)

The Hankel transform of order n of f (,z,s) with respect to the variable r is defined by

H(f(r29))=f" G 2z5) = [} f0,2,9)),(9) dr. (24)
Applying the Laplace Transform defined by (23) on Equations (13) - (16), and simplifying, we
obtain

V2T + V2C — (V2 —s?)e =0, (25)

2 Tq" = KaTotg's =  KBi’To 7q" 5
(v o ks)T SCopLi C Chc? ol sé=0, (26)
DB,av? pﬁﬁ T - (Db”ﬁ—cfv2 M) € + DB,V?é = 0, @7)
1 1
where

2, 2 2, 2

S°T S°T
1=1+srq+Tq,Tn1=1+srn+T",Tp1=1+srp, .1 =1+ s7,.

Applying Hankel Transform defined by (24) on the system of Equations (25) - (27), we obtain

(o) T ()= (e o) o e
(5 + = k)T — S — T s e 9
Dpya (-8 + )‘;1 T — (Db”ﬁ—cf(—iz +;—Zz2)—s';;’—f) c

+0, (-8 + L) e =o. (30)

Solving Equations (28) - (30), we obtain

(M Q—+R—+S)(T* C*,e") =0, (31)

where
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M= Dbpci DB
B 27
Al az2 =ﬁ KaT,DB, . KbToDB, _ Dbpc}) _ sKtj
Q=0 36 @ T%( PCEP1 + pCE + KSDBZ B1 ) T;1;CE’
_ 4 opiz2 i pr _ Kt§ ( —KBfTotj | Dbpcis® D/?zaTocfsz> Kthc?s?(K+s)
R =3P 208+ R R = 7 ( p2TyCE? B1 T CeB1? T5CE ’
S — _p&y Q,€4 _RiE_g S = —sKchfDﬁzap
TpCEﬁl
The solution of Equation (31) is assumed to be of the form
T* = ¥i_, Aicosh(q;2), (32)
C* =X}, diA;cosh(qz), (33)
(34)

e* = Y7, fiAicosh(q;2),
where g; (i = 1,2,3) are the roots of the polynomial equation
+ Q — + R — + S=0,

and the coupling constants d; and f; are given by

C104; +ql§1o( 28%— (14"'(13)"‘(10(54"'{14552 515)

d: =
L (—q2+&2)(C11+312)+ 12
fi= {1647 +(a7 =) (=816G14+813817+18)—C14l1s
: (—qi2+§'2)(§11+(12)+§12 '
where
KaTytq" DB, KB1°Ty Tq SK‘L’n KTytqtap 14t
(11 = —chﬁ PR (12 = p2cEty Tl , Gz = —zc ) 14 = ;KS,
KB1Totq'§? Dbpc1 D[s’zc1 _ sty'kef _
(15 - pCETt 1 {16 - €17 - {18 T 1ﬁ Cg ’(10 - D.BZ .

Applying Laplace and Hankel Transforms defined by (23) and (24) on Equations (13), (14) and
substituting the values of T*, C* and &* from (32) - (34), we obtain the components of

displacement as
(35)

'Z),

iAi
= Acosh(qz) + Zf’zl nmi
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qiniAisinh(q;z)
m; !

iy = Asinh(qz) + Y;_;
where

MU e 41 +dy),

pei /!
u; = 14d; + uf;/pct,

m; ZL(in _52) — 52,

2
pcy

N =¢(—

755

(36)

Applying Laplace and Hankel Transforms defined by (23) and (24), on Equations (17) - (22)
and substituting the values of u;., u; from (35) and (36), we obtain the values of stress

components and chemical potential function in the transformed domain as
G5, = u*Aqsinh(qz) + X7_, yiA; cosh(q;z),
ay = %Asinh(qz) + ¥?_, a;A; sinh(q;2),
Gye = 2u'EAcosh(qz) + T3, A, sinh(q;2),

P* =¥3_,v;A; cosh(q;z),

where
v, = afmi Ao pt b
t mifiTo  B1To’' PBiTo  P1To °
Miq; |, qiki§ pc?  bpc?
a; =—+ yVi=—fi—a—+ d;,
l m; m; l fl B2b1 ﬁ% '

2uén; Afi 2 pc? ,  s2pc?
| = o+ - —pci ——d;, q = sqrt(§T +——).
i BiTom; ' BaTo pcy BT, q qrt(¢ p )

4. Boundary Conditions

37)
(38)

(39)
(40)

We consider a thermal source and chemical potential source along with vanishing of stress

components at the stress free surface at z = +d . Mathematically, these can be written as
T
Fr +g0F (1, 2),
0,, =0,
o, =0,

P = f(rt).

https://digitalcommons.pvamu.edu/aam/vol11/iss2/17
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Using the dimensionless quantities defined by (12) in the boundary conditions (41) - (44),and
applying Laplace and Hankel Transforms defined by (23) and (24) on the resulting quantities,
and substituting the values of T*, &;,, 7,, and P*, yields

i-1 Ajcosh(q;z) = goF* (€, d), (45)
utAqsinh(qz) + Y3, viA; cosh(q;z) = 0, (46)
%Asinh(qz) + ¥?_, a;A; sinh(q;z) = 0, (47)
22'11 v;A; cosh(q;z) = f_*(s;» s). (48)

Solving Equations (45) - (48), we obtain the values of A;, A,, A; and A as

A A
Alzf,Azzf,A3:X,A:X, (49)
where

A= Ap4011(D43032 — D33D4p) + DyuBi2(D43831 — Dyyl33)
— D130824 (83184 —D35841) +A11834(822843 — Dy34;)
B — D341 (A43821 — Ba1Dp3) +A34415(821 847 — D3044),
Ay = goF*(§, )N, — fr (&, )AL,

Dy = —goF*(§, )N, + (&, )%,
Ay = goF* (&, A3 — f*(§, )3,
Ay = —goF* (€, d)As + (&, 53,
where
A1 = Dy3(Dal3p — D34l33) + Ay (3034 — Dpulz3)
AY = A5 (Ag3054 — Dpalz3) — Ar3(Ap054 — Dpuls)),
Ay = D24 (A31843 — Dy3841) — B34 (Bz1043 — Da3lyy),
AN = —D4(A11835 — D13D31) + A34(A11873 — Ag3hz),
Az = D34 (A31843 — D3p041) — B34(Bz1043 — Dza041),
A% = 8p4(D11855 — Di2A31) — B34 (B11D57 — Ar2D5),
Ay = Dy1(B43B3 — D33842) — Dyp(BazBzy — DygAs3) + Dy3(B31840 — Asz044),
A* = A1 (822033 — Dp3A35) — A3 (Ag1833 — A3lz1) + A13(A5145; — Az14;),
Ay; = q; sinh(q;d), i=1,2,3, A;, = 0, A,; = y; cosh(g;d) , i=1,2,3,
A, = 2ugsinh(qd), A;; = «a; sinh(q;d) ,i=1,2,3,

Published by Digital Commons @PVAMU, 2016



Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 2, Art. 17

AAM: Intern. J., Vol. 11, Issue 2 (December 2016) 757

A3, = pu(q + &)sinh(qd)/2, A4 = v; cosh(q;d), i=1,2,3, Ay, = 0.

Substituting the values of 4;, A,, A; and A from (49), into Equations (32) - (34) and Equations
(35) - (40), we obtain the components of displacement, stress components, chemical potential
function, temperature change, mass concentration and cubic dilatation as

F d
uy = W(m A4 cosh(q,z) — —Az cosh(q,z) + —A3 cosh(gzz) — A, cosh(qz))
- @("—1& cosh(g,2) — 22 A? cosh(q,z) + -2 A3 cosh(gsz) — A* cosh( z)) (50)
A \m, q1 ™y q: s qs qz) ),

—% __ goF* (& .d)
u, = —A

(ql LAy sinh(q,z) - ﬁAz sinh(q,z) + = ,u3 A3 sinh(q,z) — A4 smh(qz))

f if) CI1H1 sinh(q,2)
(520 s 25, ) ), o

—% goﬁ*(f rd)
zz — A

X (v, cosh(q,z) — y,A; cosh(q,z) + y3A;3 cosh(q,z) — 2ugA, sinh(qz))

f (f) cosh(q,z) — y,A? cosh(q,z) + y3A3 cosh(qzz) — 2uqA* cosh(qz)),
(52)
—x gOF*(fid)
rz — A
x (1A sinh(q,z) — azA; sinh(q,z) + azAs sinh(q,z) — u(q &) Assinh (qz—z))
— _fA(f) (ay A sinh(q,2) — ayA? sinh(q,z) + a3A3 sinh(q32)
— u(q + OA*sinh L2, (53)

—*

d
Goo =22 (¢ cosh(q12) — G, cosh(q,7) + ahs cosh(qsz) — 24EA, cosh(42))
— Z9 (¢, A" cosh(qy2) — {42 cosh(g,2) + Ga® cosh(qsz) — 2uEA* cosh(qz)),
(54)

P = M (v1A; cosh(q,z) — v,A, cosh(q,z) + v3A5 cosh(qs2))

https://digitalcommons.pvamu.edu/aam/vol11/iss2/17
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- ? (v1A? cosh(q,z) — v,A? cosh(q,z) + v3A3 cosh(g;2)), (55)

T = w (A4 cosh(gqyz) — A, cosh(q,z) + Az cosh(qs2))
- flﬁ (A cosh(g,z) — A? cosh(q,z) + A3 cosh(g;2)), (56)

C* = QOF*A(S( ) (d1A cosh(q,2) — d,A, cosh(q,z) + d3A5 cosh(qs2))

— ? (d,A* cosh(q,z) — d,A? cosh(q,z) + d3A3 cosh(qsz)), (57)
—x gOF*(E ’ d)
e = —x (f1A1 cosh(q12) — fA; cosh(q,z) + f3A5 cosh(qzz))
- %(E) (fir* cosh(q,2) — fA? cosh(q,2) + f3A° cosh(q32)). (58)

5. Applications

As an application of the problem, we take the source functions as
F(r,z) = z%e™%T, (59)
1
f(rt) = ES(ct —7r). (60)
Applying Laplace Transform and Hankel Transform, on Equations (59) and (60) , gives

FEn) = e (61)

+w2)3/2!

1

fr (&, 5)= : (62)

2 [252
Tlf+c—2

The expressions of components of displacement, stress components, chemical potential function,
temperature change, mass concentration and cubic dilatation can be obtained from Equations
(50) - (58), by substituting the value of F*(&,z) and f*(&,s) from (61) and (62).

6. Particular cases

(i) If we neglect the diffusion effect (i.e. §,,a,b = 0) in Equations (50) - (58), we obtain the
expressions for components of displacement, stress, chemical potential functions,
temperature change, mass concentration and cubic dilatation for thermoelastic isotropic
half space. In these expressions y;, u;, m;, a;, n; ,v;, and {; take the form

'Zi
vi= Lt Afi—pet p=1+di+ pfi/pct,m =5 (qf - §) = 5%,

Published by Digital Commons @PVAMU, 2016
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oy =D G e g b d) v =0, =20 A — pc?
i m; m; y i pcf i 1)y Vi 1 51 m; i pcy,
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(i) Ifry,=1,=0, in Equations (50) - (58), we obtain the expressions for components of
displacement, stress components, chemical potential functions ,temperature change, mass
concentration and cubic dilatation thermoelastic diffusive medium with dual phase- lag
diffusion model . In these equations, 7, and 7,' take the values

(iii) If T, =1, =0, in Equations (50) - (58), we obtain the expressions for components of
displacement, stress components, chemical potential functions, temperature change, mass
concentration and cubic dilatation for thermoelastic diffusive isotropic half space with
single -phase -lag heat (SPLT) model with the changed values of 7,* and 7,,* as

(iv) If r, = 0 and 7, = 0, in Equations (50) - (58), we obtain the expressions for components
of displacement, stress , chemical potential functions ,temperature change, mass
concentration and cubic dilatation for single- phase-lag heat model (SPLT) and single-
phase-lag diffusion model ( SPLD) along with changed values of 7, and 7,," as

7. Inversion of double transform

To obtain the solution of the problem in physical domain, we must invert the transforms in
Equations (50) - (58). These expressions are functions of z, the parameters of Laplace and
Hankel Transforms s and &, respectively, and hence are of the form f* (& z,s). To get the
function f(r, z, t) in the physical domain, first we invert the Hankel Transform using

f(rz,s) = [, §f (52 5], (E)dE. (63)
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Now for the fixed values of £,z and r the f(r, z,s) in the expression above can be considered
as the Laplace Transform g(s) ofg(t). Following the method of Honig and Hirdes (1984), the
Laplace Transform function g(s) can be inverted.

The last step is to calculate the integral in Equation (63). The method for evaluating this integral
is described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step
size. This also uses the results from successive refinements of the extended trapezoidal rule
followed by extrapolation of the results to the limit when the step size tends to zero.

8. Numerical results and discussion

The mathematical model is prepared with copper material for purposes of numerical
computation. The material constants for the problem are taken from Youssef (2006) and are
given by

A=7.76x%x101°Nm™2, u=3.86x%x10""Nm2 K =386/K 'm 1571, p=8954 Kgm™3,
f1 =5.518 X 10° Nm~2deg™!, B, = 61.38 X 10’ Nm~2deg™t,a = 1.2 x 10*m?/s?k,
b =09 x 10°m5/kgs?D = 0.88 x 10~8kgs/m3, ,T, = 293K, Cy = 383.1 Jkg 'K~ .

An investigation has been conducted to compare the effect of time on dual phase lag model in
heat conduction and diffusion and single phase lag model in heat conduction and diffusion, and
the graphs have been plotted in the range 0 < r < 10. The phase lags are taken as

T, =.02,7, =.08, 7, =.04 and 7, = .06.

e In the figures a solid line corresponds to the dual-phase-lag of heat transfer and diffusion
(DPL) with nonzero values t = 0.1

e A solid line with center symbol circle corresponds to single phase lag (SPL) with t=0.1
witht, = 0 = 7.

e A small dashed line corresponds to the dual phase lag of heat transfer and diffusion
(DPL) with t =0.2.

e A small dashed line with center symbol diamond corresponds single phase lag (SPL) with
t=02withz, =0=1,.

Figure 1 exhibits variations of axial displacement u, with distance r. Near the loading surface,
there is a sharp decrease for the range 0 < r < 1 and the behavior is oscillatory afterwards for all
the cases. Figure 2 shows variations of temperature change T with distance r. We find that there
is a sharp increase for the range 0 < r < 2 corresponding to t = 0.1 and t = 0.2 for both the
cases i.e. DPL and SPL and the behavior is ascending and opposite oscillatory for the rest.
Variations of radial stress component a,,. with displacement r are shown in Figure 3. Here ,we
observe that values of DPL for the range 2<r <5 are less than SPL. However, the trend is
opposite for the rest. Figure 4 shows variations of mass concentration C with distance r . Here
variations are similar as discussed in Figure 3 with change of amplitude. Figure 5 gives
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variations of shear stress o,., with displacement r. Here, for t = 0.1 and t = 0.2 trends
corresponding to SPL and DPL are similar and there are only small variations near zero for the
range 6 < r < 10. Variations of hoop stress component gy With distance r are shown in Figure
6. Here, variations are similar with change in amplitude as discussed in Figure 3. Variations of
vertical stress component a,, with distance r are exhibited in Figure 7. Near the loading surface,
there is a sharp decrease for the range 0 < r < 2. Values corresponding to SPL are greater than
DPL for the range 2 < r <5 and are opposite for the rest. Variations of chemical potential
function P with distance r are given in Figure 8. Here, fort = 0.1 and fort=0.2, SPL and DPL
follow similar trends. Variations for t = 0.2 are descending oscillatory.
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9. Conclusion

In this paper, we depicted the effect of time, thermal, and diffusion phase lags due to
axisymmetric heat supply in a ring. We discussed the problem within the context of DPLT and
DPLD models. The upper and lower surfaces of the ring are taken to be traction-free and
subjected to an axisymmetric heat supply. The effect of time, diffusion and thermal phase-lags
are shown on the various components.

From the graphs, we find that change in time changes the behavior of deformations of the
various components of stresses, displacements, chemical potential function, temperature change
and mass concentration. We also find that for t = 0.2, trends are oscillatory in all the cases
whereas for t = 0.1, trends are quite different. Although being oscillatory, a big difference in the
magnitudes is noticed.

A sound impact of diffusion and thermal phase-lags on the various quantities is found. A lot of
difference in the trends of deformation while considering the single phase lag and dual phase lag
is observed. The use of diffusion phase-lags in the equation of mass diffusion gives a more
realistic model of thermoelastic diffusion media as it allows a delayed response between the
relative mass flux vector and the potential gradient.

The result of the problem is useful in the two dimensional problem of dynamic response due to
various sources of thermodiffusion which has various Geophysical and industrial applications.
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