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Abstract 
 

The effects of both stenosis and post stenotic dilatation have been studied on steady flow of 

micropolar fluid through an artery. Assuming the stenosis to be mild, the equations governing the 

flow of the proposed model are solved. Closed form expressions for the flow characteristics such 

as velocity, pressure drop, and volumetric flow rate, resistance to the flow and wall shear stress 

are derived. The effects of various parameters on resistance to the flow and wall shear stress 

have been analyzed through the graphs. It is found that the resistance to the flow increases with 

the height and length of the stenosis, but the resistance to the flow decreases with stenotic 

dilatation. With the increase of the coupling number the resistance to the flow increases. 

However, the effect of coupling number is not very significant. The resistance to the flow 

decreases with the micropolar fluid parameter. The wall shear stress increases with coupling 

number and stenosis height, but it decreases with micropolar fluid parameter and stenotic 

dilatation.  
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1.  Introduction 

 

 

One of the leading causes of the deaths in the world is due to heart diseases and the most 

commonly heard name among them is atherosclerosis or stenosis. It is the abnormal and 

unnatural growth in the arterial wall thickness that develops at various locations of the 

cardiovascular system under certain conditions. It may result in serious consequences such as 

cerebral strokes, myocardial infarction leading to heart failure, etc. Therefore, the study of blood 

flow characteristics in such blood vessels is quite important. Several researchers have conducted 

investigations to understand the characteristics of blood flow through a stenosed artery by 

treating blood as Newtonian (Young 1968; Morgan and Young 1974; Lee and Fung 1970). The 

Newtonian behaviour of blood may be true in larger arteries, but blood being a suspension of 

cells behaves like a non-Newtonian fluid at low shear rates in small arteries (Huckaba and Hahn 

1968; Sapna and Shah 2011). 

 

Micropolar fluid is a special case of non-Newtonian fluid. The micropolar fluid model was 

introduced by Eringen (1966), which represented fluid consisting of rigid and randomly oriented 

particles suspended in viscous medium where the deformation of the particles is ignored. Ariman 

(1974) examined the blood flow in a rigid circular tube and concluded that the micropolar fluid 

model is a better model because it accounts for the microrotation of blood suspensions. Abdullah 

and Amin (2010) studied a nonlinear micropolar fluid model for blood flow in a tapered artery 

with single stenosis. Mekhemier and El kot (2007) considered blood as micropolar fluid and 

discussed the effects of the asymmetry nature of  stenosis in their steady flow analysis. Prasad 

et.al. (2012) studied the effect of multiple stenosis on couple stress fluid through a tube with 

nonuniform cross-section. kumar and Diwakar (2013) investigated the effect of  post stenotic 

dilatation and multiple stenosis through an artery by treating blood as Bingham plastic fluid. 

 

Motivated by these studies, an attempt is made in the present paper to analyze the flow of 

micropolar fluid through an artery with stenosis and  post dilatation. 

 

2. Mathematical Formulation 

 
Consider the steady flow of an incompressible micropolar fluid of constant viscosity 𝜇, and 

density 𝜌, in a uniform tube of length 𝐿  containing multiple abnormal segments as shown in 

Figure 1.  

 
Figure 1.  Geometry of arterial segment under consideration 
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The equations describing the geometry of the wall as shown in Figure 1 are 

 

                      ℎ =
𝑅(𝑧)

𝑅0
= {

1 −
𝛿𝑖

2𝑅0
[1 + 𝐶𝑜𝑠

2𝜋

𝑙𝑖
(𝑧 − 𝛼𝑖 −

𝑙𝑖

2
)] , for 𝛼𝑖 ≤ 𝑧 ≤ 𝛽𝑖 ,

1,                                                     otherwise,
  

                      (1) 

where 𝛿𝑖 (𝑖 = 1,2) represents the maximum distance of the 𝑖𝑡ℎ abnormal segment, 𝑅 represents 

the radius of the artery, 𝑅0  represents the radius of the normal artery, 𝑙𝑖 represents the length of 

the 𝑖 th 
abnormal segment, 𝛼𝑖  represents the distance from the origin to the start of the 𝑖 th

 

abnormal segment and is given by 

 

                                               𝛼𝑖 = (∑ (𝑑𝑗 + 𝑙𝑗)𝑖
𝑗=1 ) − 𝑙𝑖 ,                                                            (2) 

 

and 𝛽𝑖  represents the distance from the origin to the end of the 𝑖𝑡ℎ abnormal segment 

 

                                                𝛽𝑖 = (∑ (𝑑𝑗 + 𝑙𝑗)𝑖
𝑗=1 ),                                                                    (3) 

 

where 𝑑𝑖 represents the distance separating the start of the 𝑖𝑡ℎ  abnormal segment from the end of 

the (𝑖 − 1)th
, or from the start of the segment if 𝑖 = 1, (where 𝑖 = 1,2). 

 

The governing equations for  the steady flow of an incompressible micropolar fluid in the 

absence of body force and body couple are    

                                                                                                                               

                                               𝛻. 𝑈 = 0,                                                                                         (4) 

                             𝜌(𝑈. 𝛻𝑈) = −𝛻𝑝 + 𝑘𝛻 × 𝑈 + (𝜇 + 𝑘)𝛻2𝑈,                                                   (5) 

             𝜌𝑗(𝑈. 𝛻𝑉) = −2𝑘𝑉 + 𝑘𝛻 × 𝑈 − 𝛾(𝛻 × 𝛻 × 𝑉) + (𝛼 + 𝛽 + 𝛾)𝛻(𝛻. 𝑉),                       (6) 

 

where 𝑝  is the pressure, 𝑈  is the velocity vector, V is the micro rotation vector, 𝑗  is the 

microgyration parameter.  𝜇, 𝑘, 𝛼, 𝛽, 𝛾  are  the material constants and satisfy the following 

inequalities (Eringen, 1966).     

     

2𝜇 + 𝑘 ≥ 0, 𝑘 ≥ 0, 3𝛼 + 𝛽 + 𝛾 ≥ 0, 𝛾 ≥ |𝛽|. 
 

 Since the flow is axisymmetric, all the variables are independent of 𝜃. Hence, for this flow the 

velocity 𝑈 = (𝑢𝑟 , 0, 𝑢𝑧)  and the microrotation vector 𝑉 = (0, 𝑣𝜃, 0) .Thus, the governing 

equations can be written as (where 𝑢𝑟 , 𝑢𝑧 are the velocities in r and z directions) 

   𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
= 0,                                                                               (7) 

  𝜌 (𝑢𝑟
𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ (𝜇 + 𝑘) (

𝜕2𝑢𝑧

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝜕2𝑢𝑧

𝜕𝑧2 ) +
𝑘

𝑟

𝜕(𝑟𝑣𝜃)

𝜕𝑟
,                        (8) 

  𝜌 (𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
+ (𝜇 + 𝑘) (

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
−

𝑢𝑟

𝑟2) − 𝑘
𝜕𝑣𝜃

𝜕𝑧
 ,                             (9) 

  𝜌𝑗 (𝑢𝑟
𝜕𝑣𝜃

𝜕𝑟
+ 𝑢𝑧

𝜕𝑣𝜃

𝜕𝑧
) = −2𝑘𝑣𝜃 − 𝑘 (

𝜕𝑢𝑧

𝜕𝑟
−

𝜕𝑢𝑟

𝜕𝑧
) + 𝛾(

𝜕

𝜕𝑟
(

1

𝑟

𝜕(𝑟𝑣𝜃)

𝜕𝑟
) +

𝜕2𝑣𝜃

𝜕𝑧2 ).                (10) 
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𝑢𝑟 =
𝑘

𝑟
 and 𝑢𝑧 = 𝑢𝑧(𝑟) satisfies the Equation (7) and hence 2

nd
 term of RHS in (9) vanishes.                                            

 

Introducing the following non-dimensional variables  

                                                                                         

                𝑧̅ =
𝑧

𝐿
, 𝛿̅ =

𝛿

𝑅0
, 𝑟̅ =

𝑟

𝑅0
, 𝑃̅ =

𝑃
𝜇𝑢0𝐿

𝑅0
2

, 𝑢̅𝑧 =
𝑢𝑧

𝑢0
, 𝑢̅𝑟 =

𝐿𝑢𝑟

𝑢0𝛿
 , 𝑣̅𝜃 =

𝑅0𝑣𝜃

𝑢0
, 𝑗 ̅ =

𝑗

𝑅0
2 ,              (11) 

 

in Equations (7) - (10), under the assumption of mild stenosis, the convective terms in the 

equations can be neglected and the equations reduce as follows     

    

                                        
𝜕𝑝

𝜕𝑧
=

1

1−𝑁
(

𝜕2𝑢𝑧

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝑁

𝑟
 
𝜕(𝑟𝑣𝜃)

𝜕𝑟
),                                                    (12) 

                                       
𝜕𝑝

𝜕𝑟
= 0,                                                                                    (13) 

                                      2𝑣𝜃 = −
𝜕𝑢𝑧

𝜕𝑟
+

2−𝑁

𝑚2

𝜕

𝜕𝑟
(

1

𝑟

𝜕(𝑟𝑣𝜃)

𝜕𝑟
),                                                          (14) 

 

where 𝑁 =
𝑘

𝜇+𝑘
  is the coupling number  (0 ≤ 𝑁 < 1) and 𝑚2 =

𝑅0
2𝑘(2𝜇+𝑘)

𝛾(𝜇+𝑘)
 is the micropolar 

parameter. 

 

The corresponding non-dimensional boundary conditions are   

                                                             

                                                
𝜕𝑢𝑧

𝜕𝑟
= 0 at 𝑟 = 0,                                                                         (15) 

                                                𝑢𝑧 = 0 at 𝑟 = ℎ,                                                                          (16) 

                                                𝑣𝜃 = 0 at 𝑟 = ℎ,                                                                          (17) 

                                               𝑢𝑧 is finite at 𝑟 = 0,                                                                     (18) 

                                              𝑣𝜃 is finite at 𝑟 = 0.                                                                      (19) 

 

3. Solution of the problem 
 

It is noted that (12) can be written as    

                                                                                                         

                                            
𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 𝑁𝑟𝑣𝜃 − (1 − 𝑁)

𝑟2

2

𝑑𝑝

𝑑𝑧
= 0.                                           (20) 

 

Integrating (20), we get  

                                                                                                                     

                                             
𝜕𝑢𝑧

𝜕𝑟
= −𝑁𝑣𝜃 + (1 − 𝑁)

𝑟

2

𝑑𝑝

𝑑𝑧
+

𝑐1

𝑟
 .                                                 (21) 

 

Substituting (21) in (14), we get   

                                                                                              

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 2, Art. 12

https://digitalcommons.pvamu.edu/aam/vol11/iss2/12



684   R. Bhuvana Vijaya et al. 

 

                          
𝜕2𝑣𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝑣𝜃

𝜕𝑟
− (𝑚2 +

1

𝑟2) 𝑣𝜃 =
𝑚2(1−𝑁)

(2−𝑁)

𝑟

2

𝑑𝑝

𝑑𝑧
+

𝑚2

(2−𝑁)

𝑐1

𝑟
 ,                                  (22) 

 

The general solution of Equation (22) is    

                                                                                                        

                              𝑣𝜃 = 𝑐2𝐼1(𝑚𝑟) + 𝑐3𝐾1(𝑚𝑟) −
(1−𝑁)

(2−𝑁)

𝑟

2

𝑑𝑝

𝑑𝑧
−

1

(2−𝑁)

𝑐1

𝑟
 .                                   (23) 

 

where 𝐼1(𝑚𝑟) and 𝐾1(𝑚𝑟) are the modified Bessel functions of first and second kind of order 

one, respectively. 

 

Substituting (23) in (21) and solving for  𝑢𝑧 , using the boundary conditions (15) to (19), we get   

                                                                                                                                        

                              𝑢𝑧 =
1−𝑁

2−𝑁

𝑑𝑝

𝑑𝑧
{

𝑟2−ℎ2

2
+

𝑁ℎ

2𝑚𝐼1(𝑚ℎ)
[𝐼0(𝑚ℎ) − 𝐼0(𝑚𝑟)]}.                                    (24) 

 

The volumetric flow rate is defined by 

  

                                                        𝑄 = 2𝜋 ∫ 𝑢𝑧𝑟 𝑑𝑟
ℎ

0
.                                                              (25) 

Integrating (25),  

 

                                      𝑄 = 𝜋(
1−𝑁

2−𝑁
)

𝑑𝑝

𝑑𝑧
{

−ℎ4

4
+

𝑁ℎ3𝐼0(𝑚ℎ)

2𝑚𝐼1(𝑚ℎ)
−

𝑁ℎ2

𝑚
},                                              (26) 

                                             
𝑑𝑝

 𝑑𝑧
=

𝑄

𝜋(
1−𝑁

2−𝑁
){

−ℎ4

4
+

𝑁ℎ3𝐼0(𝑚ℎ)

2𝑚𝐼1(𝑚ℎ)
−

𝑁ℎ2

𝑚
}
 .                                                      (27) 

 

When the micropolar parameter 𝑁 → 0, the fluid becomes Newtonian fluid. 

 

The pressure drop ∆𝑝 across the stenosis between 𝑧 = 0 to 𝑧 = 1 is obtained by integrating (27), 

as  

                                    ∆𝑝 = ∫
𝑑𝑝

𝑑𝑧
 𝑑𝑧 = ∫

𝑄

𝜋(
1−𝑁

2−𝑁
){

−ℎ4

4
+

𝑁ℎ3𝐼0(𝑚ℎ)

2𝑚𝐼1(𝑚ℎ)
−

𝑁ℎ2

𝑚
}

𝑑𝑧
1

0

1

0
.                                  (28) 

 

The resistance to the flow λ is defined by 

 

                                                 λ =
∆𝑝

𝑄
= ∫

1

𝜋(
1−𝑁

2−𝑁
){

−ℎ4

4
+

𝑁ℎ3𝐼0(𝑚ℎ)

2𝑚𝐼1(𝑚ℎ)
−

𝑁ℎ2

𝑚
}
 𝑑𝑧

1

0
.                                  (29) 

 

The pressure drop in the absence of stenosis (ℎ = 1)  is denoted by ∆𝑝N, is obtained from (27) as 

  

                                            ∆𝑃𝑁 = ∫
𝑄

𝜋(
1−𝑁

2−𝑁
){

−1

4
+

𝑁𝐼0(𝑚)

2𝑚𝐼1(𝑚)
−

𝑁

𝑚
}

 𝑑𝑧
1

0
.                                                 (30) 

 

The resistance to the flow in the absence of stenosis is denoted by λN, is obtained from (24) as     

                                                                                      

                                                                   λN =
∆𝑃𝑁

𝑄
= ∫

1

𝜋(
1−𝑁

2−𝑁
){

−1

4
+

𝑁𝐼0(𝑚)

2𝑚𝐼1(𝑚)
−

𝑁

𝑚
}

𝑑𝑧
1

0
.                                          (31) 
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The normalized resistance to the flow denoted by  

 

                                                       𝜆̅ =
λ

𝜆𝑁
 .                                                                   (32) 

 

The wall shear stress is given by 

  

                                              𝜏ℎ =
−1

(1−𝑁)
(

𝜕𝑢𝑧

𝜕𝑟
+ 𝑁𝑣𝜃)|

𝑟=ℎ
.                                                      (33) 

 

From (17) 𝑣𝜃 = 0 𝑎𝑡 𝑟 = ℎ    

                                                                                                                  

                                                  𝜏ℎ =
−1

(1−𝑁)
(

𝜕𝑢𝑧

𝜕𝑟
)|

𝑟=ℎ
.                                                                (34) 

 

From (15) and (21), 

 

                                                  
𝜕𝑢𝑧

𝜕𝑟
= ((1 − 𝑁)

𝑟

2

𝑑𝑝

𝑑𝑧
)|

𝑟=ℎ
.                                                         (35) 

 

From (34) and (35), 

   

                                                   𝜏ℎ =
−ℎ

2

𝑑𝑝

𝑑𝑧
.                                                                                (36) 

 

4. Results and Discussions   
 

Using Mathematica 9.0, computer codes are developed for numerical evaluation of the analytic 

expressions for impedance ( 𝜆̅ ) and wall shear stress (τh) given by the Equations (32) and (36). 

The effects of various parameters on flow resistance and wall shear stress have been calculated 

and shown graphically (Figures 2 - 18). 

 

It is observed that the resistance to the flow increases with the height and length of the stenosis, 

but it decreases with post stenotic dilatation (Figures 2 - 6). 

 

It is observed from Figures 7 - 9 the resistance to the flow increases with stenosis height and 

coupling number, but decreases with stenotic dilatation. The resistance to the flow increases with 

the height of the stenosis and decreases with micropolar fluid parameter (Figures 10 and 11), but 

it decreases with stenotic dilatation and micropolar fluid parameter (Figure 12). 

 

It can be observed from Figures 13 - 15, the wall shear stress increases with coupling number 

and stenosis height, but decreases with stenotic dilatation.  

 

It is also observed from the Figures 16 - 18, the wall shear stress increases as the height of 

stenosis increases and decreases with micropolar fluid parameter, but it decreases with stenotic 

dilatation and micropolar fluid parameter. 
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          Figure 2. Variation of flow resistance  𝜆̅  with δ1 for different 𝛿2   

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, N = 0.2, 𝑚 = 1 ) 

 

 
     Figure 3. Variation of flow resistance  𝜆̅  with δ2 for different 𝛿1 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, N = 0.2, 𝑚 = 1 ) 

 

 
 Figure 4. Variation of flow resistance  𝜆̅  with δ1 for different 𝐿1 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, N = 0.2, 𝑚 = 1, δ2 = 0.0 ) 
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     Figure 5. Variation of flow resistance  𝜆̅  with δ1 for different 𝐿1 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, N = 0.2, 𝑚 = 1, δ2 = −0.02) 

 
     Figure 6. Variation of flow resistance  𝜆̅  with δ2 for different 𝐿2 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 0.2, 𝐿 = 1, 𝑄 = 0.1, N = 0.2, 𝑚 = 1, δ1 = 0.0) 

 

 
       Figure 7. Variation of flow resistance  𝜆̅  with δ1 for different 𝑁 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑚 = 1, δ2 = 0.0) 
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     Figure 8. Variation of flow resistance  𝜆̅  with δ1 for different 𝑁 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑚 = 1, δ2 = −0.02) 

 

 
        Figure 9. Variation of flow resistance  𝜆̅  with δ2 for different 𝑁 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑚 = 1, δ1 = 0.0) 

 

 
    Figure 10. Variation of flow resistance  𝜆̅  with δ1 for different 𝑚 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑁 = 0.2, δ2 = 0.0) 
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    Figure 11. Variation of flow resistance  𝜆̅  with δ1 for different 𝑚 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑁 = 0.2, δ2 = −0.02) 

 

 
       Figure 12. Variation of flow resistance  𝜆̅  with δ2 for different 𝑚 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑁 = 0.2, δ1 = 0.0) 

 

 
        Figure 13. Variation of wall shear stress  τh  with δ1 for different 𝑁 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑚 = 1, δ2 = 0.0) 
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      Figure 14. Variation of wall shear stress  τh  with δ1 for different 𝑁 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑚 = 1, δ2 = −0.02) 

 

 
        Figure 15. Variation of wall shear stress  τh  with δ2 for different 𝑁 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑚 = 1, δ1 = 0.0) 

 

 
      Figure 16. Variation of wall shear stress  τh  with δ1 for different 𝑚 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑁 = 0.2, δ2 = 0.0) 
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    Figure 17. Variation of wall shear stress  τh  with δ1 for different 𝑚 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑁 = 0.2, δ2 = −0.02) 

 

 
       Figure 18. Variation of wall shear stress  τh  with δ2 for different 𝑚 

(𝑑1 = 0.2, 𝑑2 = 0.2, 𝐿1 = 𝐿2 = 0.2, 𝐿 = 1, 𝑄 = 0.1, 𝑁 = 0.2, δ1 = 0.0) 

 

 

5.  Conclusion 
 

A mathematical model for the steady flow of micropolar fluid through a stenosed artery with 

post stenotic dilatation has been analyzed. Results have been studied for mild stenosis and it has 

been shown that the resistance to the flow and the wall shear stress increase with the height of 

the stenosis, coupling number and decreases with the stenotic dilatation.  However, the effect of 

coupling number is not very significant. The same parameters increase with stenosis height and 

decrease with micropolar fluid parameter and stenotic dilatation.  
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