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Abstract  

The peristaltic motion is modeled for the Herschel Bulkley fluid, considered to flow in a non-

uniform inclined channel. The channel wall is supposed to be lined with a non-erodible 

porous material. The flow is considered to be moving in a wave frame of reference moving 

with same velocity as of the sinusoidal wave. Low Reynolds number and long wave length 

assumptions are made to solve the model. Analytical solution is obtained for the pressure 

difference and also for the frictional force. Graphs are plotted, using Mathematica software, 

for both the results of pressure difference and frictional force against time average velocity. 

We observe that increasing the porous thickening, increases the pressure difference while, it 

decreases the frictional force. It is seen that the behavior of the pressure difference is opposite 

to the behavior of the frictional force for all the parameters considered.  

 

Keywords:  Herschel Bulkley fluid; Non-uniform channel; Porous; Inclined; Pressure 
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Nomenclature: 
 

 

 

1. Introduction 
 

Peristalsis’ the mechanism of fluid transport through the elastic pipe by means of a sinusoidal 

wave, is an important action enabling many biological and mechanical processes viz., the 

transport of urine through ureter, chyme in the esophagus, ovum in the female fallopian tube, 

blood transport in the heart lung machine and many more.  

 

Many authors (Misra and Rao (2003), Abd El Hakeem et al. (2002), Ebaid (2008)) have 

considered Newtonian fluid model for their study. Tang and Fung (1975) and many authors 

have considered blood and other biofluids to behave like a Newtonian fluid for physiological 

peristalsis. Although the Newtonian approach of blood gives satisfactory results for the ureter 

mechanism, it fails to do so in small blood vessels and intestine.  

 

Studies suggest that the behavior of blood is more likely to be non-Newtonian (Majhi and 

Nair (1996)). Through the investigations it is accepted that blood in small arteries and fluids 

in the lymphatic vessels and in intestine, urine under certain pathological conditions, and so 

on, behave like non-Newtonian fluids. Also, although the solution of non-Newtonian fluids is 

complex due to the appearance of the non-linear term, the flow of blood in human body, 

alloys and metals in industries, mercury amalgams and lubrication with heavy oils and 

greases in machines, are few examples of flow of non-Newtonian fluids that show us how 

important is the study of non-Newtonian fluids.  

 

The first quantitative approach on the peristaltic flow of non-Newtonian fluids was made by 

Raju and Devanathan (1972). Various authors (Mekheimer (2002); Sobh (2008)) have put 

forth their investigations on the peristaltic flow, considering uniform and non-uniform 

channels with different fluids and their corresponding parameters. Recently, applying the 

homotopy perturbation method, Ali et al. (2016) have investigated the peristaltic flow of 

hyperbolic tangent fluid through a three dimensional non-uniform channel with flexible walls 

a         half width of the channel at the inlet. 

a0            half width of the channel. 

d         amplitude of the wave. 

c         wave speed. 

Da      Darcy number. 

F        frictional force at the wall. 

H        expression defined by (1). 

N        index parameter. 

p         pressure. 

P        expression defined in (9). 

q         volume flux. 

Q        instantaneous volume flow rate. 

        time average volume flow. 

T        time. 

u        axial velocity in the wave frame. 

U       axial velocity in the laboratory frame. 

V        transverse velocity in the laboratory frame. 

x         axial coordinate in the wave frame. 

X        axial coordinate in the laboratory frame. 

y         transverse coordinate in the wave frame. 

Y        transverse coordinates in the laboratory frame. 

y0            plug flow width. 

        slip parameter. 

         porous thickening of the wall. 

        angle of inclination. 

        wave length. 

         yield stress. 

     shear stress. 

        stream function. 

      pressure difference. 
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and concluded that the velocity is maximum at the center of the channel but is minimum at 

the walls. 

 

Applying Darcy’s law many researchers have carried on their study through porous medium, 

as submitted by Scheidegger (1974). Mishra and Ghosh (1997) considered the small blood 

vessels in lungs to be porous channels and analyzed the pressure and velocity distribution 

numerically. Shahawey et al. (2006) inspected the peristaltic motion through a porous 

symmetric channel. The wall effects of the peristaltic flow of a hyperbolic tangential fluid are 

studied by Nagachandrakala et al. (2013), through a porous non-uniform channel. Ramesh 

and Devakar (2015) have analyzed the peristaltic motion considering the MHD Williamson 

fluid in an inclined asymmetric channel under heat transfer in a porous medium. Several 

authors (Ellahi (2014), Ali et al. (2015)) have studied the application of peristaltic flow, in 

porous media and in non-uniform channel. Bhatti et al. (2016) have studied the peristaltic 

flow of blood modeled as a Jeffery fluid, through a porous medium, analyzing the 

simultaneous effect of slip and MHD. This study reveals that the increase in slip and the 

porosity parameter decreases the pressure rise whereas increase in the Hartmann number 

increases the pressure rise. 

 

The study of peristaltic flow in a deformable inclined tube was done by Abd El Hakeem et al. 

(2007), under the wall slip conditions. Ramanakumari and Radhakrishnamacharya (2011) 

discussed the slip effects with wall conditions on the peristaltic flow in an inclined channel. 

Riahi and Roy (2011) studied the flow in a tube and in an annulus respectively, representing 

the flow of chyme in the small intestine, in the absence and presence of a cylindrical 

endoscope. Considering the micro polar fluid, Krishna Kumari et al. (2013) have analyzed the 

peristaltic flow under the magnetic effect in an inclined channel. Smita and Anamol Kumar 

(2013) examined the blood flow through arteries under peristalsis. Rathod and Sridhar (2015) 

analyzed the peristaltic motion in an inclined channel and concluded that, with increase in the 

angle of inclination, pressure rise and the frictional force both increase. 

 

Yet another non-Newtonian fluid is the Herschel Bulkley fluid whose constitutive equation 

can be reduced to study the Newtonian behavior also. Peristaltic motion of Herschel Bulkley 

fluid through a channel with flexible wall is studied by Vajravelu et al. (2005). Medhavi’s 

(2008) study exposed that, the association between the pressure and the flow rates are linear 

in Bingham and Newtonian fluid models and are non-linear in Herschel-Bulkley and power- 

law models. Sankad et al. (2014) investigated the effects of wall on the peristaltic motion of a 

Herschel-Bulkley fluid in a non-uniform channel. Hummady and Abdulhadi (2014) studied 

the effects of slip and heat transfer on the peristaltic motion under MHD considering the flow 

of non-Newtonian fluid in a porous medium. Considering the Herschel Bulkley fluid, Akbar 

and Butt (2015) have examined the heat transfer effect on the peristaltic transport through a 

non-uniform channel.  

 

The Herschel Bulkley fluid describes the behavior of shear thinning and shear thickening 

fluids which have applications in Biomedical engineering. The study of Herschel Bulkley 

fluid is more emphasized since, blood behaves similar to Herschel Bulkley fluid rather than 

power law and Bingham fluids, thus making it is applicable in the analysis of blood and other 

physiological fluid flows stimulated by peristalsis. Herschel Bulkley fluid model is 

considered to be a better model for flow of blood in arterioles and therefore it might also help 

in the clinical procedure of blood transportation using the heart lung machine and roller 

pumps. In the microcirculatory system, the Reynolds number and the ratio of half width of 
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the channel to the wavelength are small and lubrication theory can be applied for the 

theoretical analysis  

 

It is observed that the gastro intestinal tract is enclosed by  many innervated smooth muscle 

layers whose contraction mix the contents and helps in the controlled movement of food. 

These layers consist of many folds having pores through its tight junctions which help in the 

absorption of nutrients and water. It is also noticed that several ducts in physiological 

structure are inclined to the axis.  

 

Interestingly, apart from numerous theoretical studies, many experimental investigations 

(Hung and Brown (1976), Brown and Hung (1977)) are carried out in the moving and fixed 

frame, on the peristaltic fluid flows. The studies have realized that the fluid within the bolus 

moves with a net advance velocity equal to the wave speed and thus giving rise to steady 

flow. 

Through this motivation, the Herschel Bulkley fluid model is considered for our study of 

peristaltic flow through a non-uniform inclined conduit. The walls of the channel are lined 

with porous material. Lubrication approach is applied to analyze the distribution of velocity 

of blood and pumping characteristics.  

 

2. Mathematical Formulation 

 
Consider the Herschel–Bulkley fluid moving in a channel of half width ‘a0’ lined with non-

erodible porous material. The flexible wall of the channel is subjected to a progressive 

peristaltic wave with amplitude ‘d’, wave length ‘λ’ and wave speed ‘c’. The channel under 

consideration is non-uniform and inclined at an angle ‘ ’. The discussion is considered for 

only the half width of the channel. In the plug flow region i.e. in the region between   

and   we have | | and for the region between  and ,  . 

The deformation of the wall is given by,  

 

                                           .                                       (1) 

 

Here, , where  represents the half width of the channel at the inlet. Also, 

assuming the length of the channel to be an integral multiple of the wavelength λ and the 

pressure difference to be constant across the ends of the channel, there is steady flow in the 

wave frame  , moving with the velocity ‘c’ away from the laboratory frame  . The 

flow is unsteady in the laboratory frame , however in the co-ordinate system moving 

with the propagation velocity c, in the wave frame  the boundary shape is stationary 

(Shapiro et al. (1969)). 

 

The relation between these two wave frames is given by   

 

 ;     y  ;    ( , ) ( - , )-  ;x X ct Y u x y U X ct Y c     

( , ) ( - , ) ;v x y V X ct Y ( ) ( , )p x p X t . 
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where U and V are components of velocity in the laboratory frame and u, v are components of 

velocity in the wave frame. As proved experimentally, the Reynolds number of the flow is 

very small in many physiological situations. We assume inertia free flow with infinite 

wavelength. To formulate the basic equations and the boundary conditions to be 

dimensionless, the following quantities are used: 

 

y h
;    y ;    h ;    ; ;

d a

x ct
x t

a




 
          

2
;    ;    ;    ;    ;  

q u b k
q u Da

ac ac c a a


          

0
0

fa
;    ;    ;    F .

cn

b d
b d

a a c a

 


 
        

 

 
 

  Figure A. Geometry of the flow. 

 

Under the presumptions of long wavelength and low Reynolds number, the governing 

equations of motion after declining the primes are as follows: 

 

                                                    ,                                              (2) 

 

where 

                                                          ,                                                   (3) 

 

and the boundary conditions are  

                                                              ,                                                       (4) 

 

                                                         ,                                                    (5) 

 

                                                              ,                                                    (6) 

 

                                                ,                                     (7) 

where 

. 
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3. Solution of the problem 

 

Solving Equations (2) and (3) along with   and the boundary conditions 

(4) - (7), we get the velocity field as, 

 

                ,       (8) 

 

where 

                                                   .                                        (9) 

 

In the plug flow region the upper limit , is obtained taking the boundary 

condition . 

 

The condition    at  , is applied to get  . Therefore,  

 

 

 

To obtain the velocity in the plug flow region, we consider  in (8) and get, 

 

                                           .                            (10) 

 

Equations (8) and (10) are integrated along with the conditions  at  and 

at  obtain the stream functions as  

 

             ,       (11) 

 

                            .                      (12) 

 

The volume flux across each cross section, denoted by ‘q’ is given by 

 

. 

 

         .   (13) 

 

From Equations (9) and (13) we get, 
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         sin
p

P
x

 


  


 

               
  

1

1

( )( 1)( 2)

( ) (1 ) ( )(1 ) ( 2) (1 ) ( 1)( 2))

m

m m

q h m m

h h m Da m m

 

     

 
     

          
 

 

sin  .     (14) 

  

The instantaneous volume flow rate , between the central line and the wall, in the 

laboratory frame is  

 

                                                     .                                              (15) 

 

Averaging Equation (15) on one period, yields the time-averaged volume flow rate  as,  

 

                                                         .                                                 (16) 

 

Integrating Equation (14) over one wavelength, the pressure difference over a cycle of the 

wave is given as 

 

                                                                               (17) 

 

The frictional force F, at the wall over one wavelength is  

 

                                                                      (18) 

 

 

4.  Results and Discussion 
  

Graphs are plotted for Equation 17, using Mathematica software, for the pressure difference 

 against time-averaged volume flow rate .  

 

As the Darcy number increases,  decreases up to  and opposite behavior is 

observed for . For,  the variation of  hardly has any effect on for 

a divergent channel  as shown in Figure 1. Figure 2 shows a similar effect in the 

convergent channel  except for the region where we observe no effect is              

 

 

The opposite behavior is seen for variation of the yield stress . Figure 3 depicts that the 

curves intersect at  and it is seen that to the left,  increases with  whereas, to the 

right of this point of intersection,  decreases with increase in  in a divergent channel. 

Again, a similar effect is observed for a convergent channel, but for the point of convergence 

being 0.5 as observed from Figure 4. 

 

7

Sankad and Patil: Peristaltic Flow of Herschel Bulkley Fluid

Published by Digital Commons @PVAMU, 2016



670                                                                                                                                G. C. Sankad and Asha Patil 
   

 

Figures 5 and 6 depict the effect of . As the porous thickening  increases, pumping 

increases and the effect of the porous thickening on the wall is negligible on  once the 

pumping curves intersect. The pumping curves intersect at   in a divergent channel 

and at   in a convergent channel. 

 

We also observe from Figure 7 and Figure 8 that the pumping increases, with increase in the 

angle of inclination  in the divergent channel as well in the convergent channels, 

respectively. We notice that the effect is less in the convergent channel compared to a 

divergent channel. 

 

 

Figure 1.  n = 3; = 0.3; = 0.3; = 0.1; = 0.1; = /3. Illustration of pressure difference with the 

volume flow rate for various values of Darcy number in a divergent channel. 
 
 

 

Figure 2.  n = 3; = 0.3; = 0.3; = 0.1; = 0.1; = /3. Illustration of pressure difference with the 

volume flow rate for various values of Darcy number in a convergent channel. 
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Figure 3.    n = 3; = 0.3; = 0.3; Da = 0.3; = 0.1; = /3. Illustration of pressure difference with the 

volume flow rate for various values of yield stress in a divergent channel. 

 

 

 

 
 

Figure 4.     n= 3; = 0.3; = 0.3; Da = 0.3; = 0.1; = /3. Illustration of pressure difference with the 

volume flow rate for different values of yield stress in a convergent channel. 
 

 

 
 

Figure 5. n=3; =0.3; Da =0.3; =0.1; =0.1; = /3. Illustration of pressure difference with the 

volume flow rate for various values of porous thickening of the wall in a divergent channel. 
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Figure 6. n=3; =0.3; Da=0.3; =0.1; =0.1; = /3. Illustration of pressure difference with the volume 

flow rate for various values of porous thickening of the wall in a convergent channel. 
 

 

 
 

 
Figure 7.   n=3; =0.3; Da =0.3; =0.3; =0.1; =0.1. Illustration of pressure difference with the 

volume flow rate for various values of inclination of the channel in a divergent channel. 
 

 

 
  

Figure 8. n=3; =0.3; Da =0.3; =0.3; =0.1; =0.1. Illustration of pressure difference with the 

volume flow rate for various values of inclination of the channel in a convergent channel. 
 

 

Using Equation (18), graphs of frictional force F against time-averaged volume flow rate  

are plotted. 
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Figure 9 shows that the increase in Darcy number increases the frictional force up to   

and further it is seen that the frictional force decreases with increase in the Darcy number in 

the convergent channel. The same effect of Darcy number is observed in the divergent 

channel also as plotted in Figure 10; i.e. the frictional force increases with Darcy number up 

to   and then it decreases with Darcy number.  

 

The graphs for the variation of are shown in Figure 11 and Figure 12. We observe that as  

increases, the frictional force decrease up to in a divergent channel and up to  

 in a convergent channel and then onwards it is seen that increase in  increases the 

frictional force F. 

 

As the porous thickening  increases, the frictional force F decreases up to . For 

, variation of  has no effect on the increase in F, but further increase in  

increases the frictional force as observed from Figure 13.  A similar effect is observed from 

Figure 14 in a convergent channel, except for the null effect region being . 

With increase in the inclination  we observe a drop in the frictional force for both 

convergent and divergent channels as plotted in Figure 15 and Figure 16, respectively. What 

we observe here is that variation of angle of inclination has less effect on a convergent 

channel compared to the divergent channel. 

 

 

 

 

Figure 9.  n=3; =0.3; =0.3; =0.1; =0.1; = /3. Illustration of frictional force with the volume 

flow rate for various values of Darcy number in a divergent channel. 
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Figure 10. n=3; =0.3; =0.3; =0.1; =0.1; = /3. Illustration of frictional force with the volume 

flow rate for various values of Darcy number in a convergent channel. 
 
 
 

 
 

Figure 11. n=3; =0.3; =0.3; Da =0.3; =0.1; = /3. Illustration of frictional force with the 

volume flow rate for various values of yield stress in a divergent channel. 
 

 

 
 

Figure 12. n=3; =0.3; =0.3; Da =0.3; =0.1; = /3; Illustration of frictional force with the 

volume flow rate for various values of yield stress in a convergent channel. 
 

 

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 2, Art. 11

https://digitalcommons.pvamu.edu/aam/vol11/iss2/11



 AAM: Intern. J., Vol. 11, Issue 2 (December 2016)            675 

 

 
Figure 13. n=3; =0.3; Da =0.3; =0.1; =0.1; = /3. Illustration of frictional force with the 

volume flow rate for various values of porous thickening of the wall in a divergent channel. 
 

 

 

 
 

Figure 14. n=3; =0.3; Da =0.3; =0.1; =0.1; = /3. Illustration of frictional force with the 

volume flow rate for various values of porous thickening of the wall in a convergent 

channel. 
 

 

 

 
 

Figure 15. n=3; =0.3; Da =0.3; =0.3; =0.1; =0.1. Illustration of frictional force with the 

volume flow rate for various values of inclination of the channel in a divergent channel.  
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Figure 16. n=3; =0.3; Da =0.3; =0.3; =0.1; =0.1.Illustration of frictional force with the 

volume flow rate for various values of inclination of the channel in a convergent channel. 

 

4. Conclusion 

 
The peristaltic flow of Herschel-Bulkley fluid is considered in a non-uniform inclined 

channel, in the wave frame of reference moving with the velocity of the wave. Low Reynolds 

number and long wavelength assumptions are applied to resolve the model. Solution is 

obtained for the pressure difference  and the frictional force F against the time average 

volume flow rate . Mathematica software is used to draw the various plots. The outcomes of 

the present investigation are: 

 

 Increase in the porous thickening  increases the pumping. 

 As the yield stress  enhances the pressure difference  also enhances. 

 Elevating the angle of intersection , we notice that the pressure difference  also 

increases.   

 For the Darcy number Da, the behavior is seen to reverse. When the Darcy number 

Da increases, the pressure difference  is seen to decrease.  

 Increase in the porous thickening  decreases the frictional force F. 

 As the yield stress  enhances, the frictional force diminishes. 

 Elevating the angle of inclination , the frictional force F decreases.  

 With regard to the frictional force F, it is observed that frictional force increases with 

the Darcy number, and hence we observe reduced flow rate. 

 

We thus can say that improving the values of these parameters of the Darcy number Da, 

porous thickening , and the yield stress , we can enhance the flow rate. The behavior 

mentioned above is the same for both the convergent and divergent channels for all the 

parameters under consideration. But, we see that the effect is more in a convergent channel 

when compared with a divergent channel for the porous thickening of the wall, yield stress, 

and the Darcy number. For the angle of inclination the effect is more in a divergent channel 

than in a convergent channel. 

 

Finally for all factors we observe that the behavior of the frictional force is contrary to that of 

the pressure difference. This result agrees with the results of  Vajravelu (2005), Sobh (2008). 
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Appendix 
 

From the governing equation 

 

                                                   ,                                            (1.1) 

where 

                                                         ,                                                 (1.2) 

and 

                                                            ,                                                   (1.3) 

 

Solving Equations (1.1) and (1.2) along with the boundary condition (1.3), we get 

 

                                                           .                                                  (1.4) 

Introducing  , we obtain  

                                                      ,                                            (1.5) 

 

where A and B are constants determined by using the boundary conditions (1.6) and (1.7) 

 

                                                            ,                                                      (1.6) 

 

                                                .                                   (1.7) 

 

Thus, we obtain the velocity as in Equation (8) 

 

 . 
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