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Abstract

In this paper, we introduce and study a random variational-like inclusion and its corresponding
random proximal operator equation for random fuzzy mappings. It is established that the random
variational-like inclusion problem for random fuzzy mappings is equivalent to a random fixed
point problem. We also establish a relationship between random variational-like inclusion and
random proximal operator equation for random fuzzy mappings. This equivalence is used to
define an iterative algorithm for solving random proximal operator equation for random fuzzy
mappings. Through an example, we show that the random Wardrop equilibrium problem is a
special case of the random variational-like inclusion problem for random fuzzy mappings.
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1. Introduction

Variational inclusions and variational-like inclusions are mathematical models of many problems
arising in mechanics, physics, structural analysis, optimization, economics and engineering sci-
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ences; for example, see Ahmad et al. (2005), Agarwal et al. (2000), Agarwal et al. (2002), Ding
et al. (2000) and references therein. An important area of mathematics, fuzzy set theory, which
was introduced by Zadeh (1965), is quite application-oriented and applied in many branches
of mathematical and engineering sciences including artificial intelligence, management sciences,
computer sciences (see e.g., Zimmermann (1988)). For more details we refer to Deepmala (2014),
Farajzadeh et al. (2016), Husain et al. (2013), Mishra (2007), Husain et al. (2013), and Murthy
et al. (2016).

Ansari (1988) as well as Chang et al. (1989) first introduced the concept of variational inequalities
for fuzzy mappings. Since then several types of variational inequalities with fuzzy mappings were
considered by Noor (1989), Chang et al. (1993), Ding et al. (2002) and Park et al. (2000) in Hilbert
spaces. Further, Huang et al. (2005) considered nonlinear equations in fuzzy normed spaces and
Lan et al. (2008) considered fuzzy variational inclusions in Banach spaces, and Ahmad et al.
(2015) studied generalized variational inclusion with fuzzy mappings.

The uncertain events occurring in decision-making problems are characterized by fuzzy uncer-
tainty as well as randomness. Fuzzy random uncertainty appears in many real world applications
such as inventory management, facilities planning, transportation assignment, equilibrium problem
for economics, and migration theory.

The concept of random variational inequality is the cardinal part of random functional analysis.
These topics have attracted many researchers due to the major applications of random problems
(e.g. see Jin et al. (2004), Lan et al. (2004), Lan et al. (2004), Lan et al. (2003), Liu et al. (2001),
Lan (2006), Verma et al. (2005)). The random variational inequality and random quasi variational
inequality problems have been introduced and studied by Chang et al. (1993), Cho et al. (2000),
and Huang et al. (1999).

After that Ahmad et al. (2005) and Ahmad et al. (2009) studied a class of random variational
inclusions with random fuzzy mappings in different settings.

Recently, Lan et al. (2009) studied a class of general nonlinear random multivalued operator
equations involving generalized m-accretive mappings in Banach spaces and Onjai-Uea et al.
(2010) studied nonlinear random equations with random fuzzy mappings in uniformly smooth
Banach spaces.

Up to the best of our knowledge, nobody has yet studied random proximal operator equation
for random fuzzy mappings. That is the main objective of this paper. We define an iterative
algorithm for finding the random solution of the random proximal operator equation for random
fuzzy mappings which is also the random solution of random variational-like inclusion problem.

2. Preliminaries
Throughout this paper, we assume that E is a real Banach space with its norm ||.||, E* is the

topological dual of E, and d is the metric induced by the norm ||.||. Let F(E) be the collection
of all fuzzy sets over E. A mapping F' from F to F(FE) is called a fuzzy mapping on E. If F’
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is a fuzzy mapping on E, then F'(z) (we denote it by F in the sequel) is a fuzzy set on F and
F,(y) is the membership function of y in F,. Let N € F(FE), ¢ € [0, 1]. Then the set

(N)g={z € E:N(z)>q}
is called a g-cut set of V.

We denote by (€2, X) a measurable space, where (2 is a set and ¥ is a o-algebra of subsets of 2
and by B(E), 2, CB(FE) and D(.,.), the class of Borel o-fields in £, the family of all nonempty
subsets of E, the family of all nonempty closed bounded subsets of F, and the Hausdorff metric
on C'B(F), respectively.

Definition.
A mapping = : Q — F is said to be measurable if for any B € B(E), {t € Q: z(t) € B} € X..
Definition.

A mapping f : Q x E — E is called a random operator if for any x € F, f(t,x) = z(t)
is measurable. A random operator f is said to be continuous if for any ¢ € €2, the mapping
f(t,.): E — E is continuous.

Definition.

A multi-valued mapping 7' : 2 — 2% is said to be measurable if for any B € B(E), T7'(B) =
{teQ:Tt)NB# 2} €X.

Definition.

A mapping v : () — E is called a measurable selection of a multi-valued measurable mapping
T :Q — 2F if u is measurable and for any ¢ € Q, u(t) € T(¢).

Definition.

A mapping T : Q x E — 2% is called a random multi-valued mapping if for any » € E, T(., )
is measurable. A random multi-valued mapping 7" : Q@ x £ — C'B(FE) is said to be D-continuous
if for any ¢t € Q, T'(¢,.) is continuous in the Hausdorff metric.

Definition.

A fuzzy mapping F : Q — F(E) is called measurable, if for any o € (0,1], (F(.))q : Q — 2F
is a measurable multi-valued mapping.

Definition.

A fuzzy mapping F' : Q x E — F(F) is called a random fuzzy mapping, if for any = € E,
F(.,z):Q — F(F) is a measurable fuzzy mapping.

It is to be noted that multi-valued mappings, random multi-valued mappings and fuzzy mappings
are special cases of random fuzzy mappings.

We assume that (-, -) is the duality pairing between E and E* and J : E — 2E" is the normalized
duality mapping defined by
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J(@)={f e E": (x, [) = lz[[f] and [[f]| = [l=][}, for all z € E.

Proposition.

Let E be a real Banach space and J : E — 2F" be the normalized duality mapping. Then, for
any x,y € I,
lz +yl* < ll=)* + 2(y, j( +y)), Vil +y) € J(x +y).

Let M,S, T : Qx E — F(FE) be three random fuzzy mappings satisfying the following condition:

(A) There exists three mappings a,b,c: E — [0, 1] such that

(Mt@)a(x) € CB(E), (St,z)b(x) € CB(E), (T}J)c(z) e CB(E), Y (t,x) e x FE.

By using the random fuzzy mappings M, S and 7', we can define three random multi-valued
mappings M, S, and T as

M:Qx E— CB(E), © = (M), ¥ (t,2) € Qx E,

S:Qx E— CB(E), = (Si2)e), ¥ (t,2) € Qx E,

and
T:QxE— CB(E), 2 = (Tin)ew), ¥ (t,7) €EQ X E,

where Ny, = N(t,z(t)).

In the sequel M, S, and T are called the random multi-valued mappings induced by the random
fuzzy mappings M, S and T, respectively.

Given mappings a,b,c : E — [0,1], random fuzzy mappings M,S,T : Q x E — F(E),
random operators N : Q x ExX FE — E* ' n: Qx ExFE — FE g: Qx FE — FE and
¢ E — RU{+o0} is a proper, n-subdifferentiable lower continuous functional (may not be
convex) such that Im(g) N dom(0,¢) # @, where 0,¢ denotes the n-subdifferential of ¢. We
consider the following problem:

Find measurable mappings x,u,v,w : @ — E such that for all t € Q, z(t) € FE, y(t) € E,

My (u(?) = a(z(t), Staw(v(®) = 0(2(1)), Thaw(w(t) = c(x(t)), g(t,w(t)) N dom(9,d) #
@, and

(N, u(t), o), n(t,y(t), g(t, w(t)))) = ¢(g(t, w(t))) — o(y(t)). (D

Problem (1) is called the random variational-like inclusion problem for random fuzzy mappings.
The set of measurable mappings (x, u,v,w) is called a random solution of (1).

https://digitalcommons.pvamu.edu/aam/vol11/iss2/7
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If £ a Hilbert space and N (¢, u(t),v(t)) = P(t,u(t))—{f(t,v(t))—g(t,w(t))} and n(t, y(t), w(t))
y(t) —g(t,w(t)), where P, f,g: Q x E — E be the random operators, then problem (1) reduces
to the problem (1) of Ahmad et al. (2005).

We remark that random variational-like inclusion problem for random fuzzy mappings (1) in-
cludes as special cases, many kinds of variational inequalities and quasi-variational inequalities
for random fuzzy mappings.

Through the following example, we show that the random Wardrop equilibrium problem can be
obtained from random variational-like inclusion problem for random fuzzy mappings (1).

Example 2.1.

In a traffic network model, a path flow H is called an equilibrium flow or Wardrop equilibrium
if and only if H € K and for any paths R,, R, there holds

Cy(H) < Cs(H) = Hy, =0,

which is equivalent to the following problem:
Find H € K such that (C(H),F — H) >0,V F € K, (2)
where
K={FcR":F. >0, foranyr=1,2,--- ,k and ¢F = D},

¢ is the pair-path incidence matrix and D is the traffic demand vector, [ is path network flow, and
C' is the cost on the paths. The random version of (2) was introduced and studied by Gwinner
et al. (2010), which results from an uncertain demand and uncertain costs. For the path-flow
variables, the random Wardrop equilibrium problem is to find H(t) € K(t) such that

(C(t,H(t)),F— H(t)) >0,VF € K(t), (3)

where for any t € (),
Kit)={FcR':F.>0, forany r =1,2,--- .k and ¢(F) = D(t)}.

For FE to be a Hilbert space, N(t,u(t),v(t)) = C(t,H(t)), n(t,y(t), g(t,w(t))) = F — H(t) and
¢ = 0. Then random variational-like inclusion problem with random fuzzy mapping (1) reduces
to random Wardrop equilibrium problem (3).

Definition.

A random operator g : {2 x E — F is said to be Lipschitz continuous, if there exists a measurable
function A\, :  — (0, 00) such that

lg(t 21.(8)) = g(t, 22()]| < Agyl[21(8) = 2a2(B)[], Y (1), 2o(t) € BT € Q.

Definition.
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A random multi-valued mapping 7" : Q2 x E — C'B(F) is said to be

(¢) Strongly accretive with respect to a random operator g : Q) x E — FE. if there exists a
measurable function % : 2 — (0, 00) such that

(g(t,wi(t)) = g(t,wa(t)), j(a1(t) — z2(t)) > k(t)||z1(t) — (1),
YV 1(t), z2(t) € E,wi(t) € T(t, x1(t)), weo(t) € T(t, 22(t)),
Jlx1(t) — xo(t)) € J(x1(t) — 22(t)) and t € Q;

(i7) D-Lipschitz continuous, if there exists a measurable function dr : 2 — (0, 00) such that
D(T(t, 21 (1)), T(t, 25(t))) < Orllwa (t) — 22 (8)|[,V 21 (8), 22(t) € E.
Definition.
Let J: Qx F— E*, n:Qx FExFE — E be the random mappings. Then

(¢) J is said to be n-strongly accretive, if there exists a measurable function « : 2 — (0, 00)
such that

(Ji(@1() = Ji(@a()),n(t, 21(t), 22(1))) = a(®)l|21 () — 22(8) %,V 21(t), 22(t) € E

(77) n is said to be Lipschitz continuous, if there exists a measurable function 7 : 2 — (0, c0)
such that

[n(t, z1(t), 22(t)) < T(@O)[|21(t) — 22(t) ||,V 21(2), 22(t) € E.
Definition.

A functional f : Ex E — RU{+oc0} is said to be 0-diagonally quasi-concave (in short 0-DQCV)
in y, if for any finite subset {x1,%, - ,2,} C E and for any y = > N\;z; with \; > 0 and
i=1

Z )\1 = ]-7
=1
win f(zi,y) <0

1<i<n

Definition.

Let N : Q x E x E — E* be a random operator and M : Q x E — CB(E) be a random
multi-valued mapping. Then N is said to be Lipschitz continuous with respect to M if there
exists a measurable function Ay : €2 — (0,00) such that

IN (8 ue(), ) = Nt un-a(8), ) < Avgolun(t) = w1 (D], ¥ un(t) € M(t,2a(t)),
Un_y € M(t,2,1(1)).

3. Random Iterative Algorithm and Convergence Theorem

We begin this section with the following Lemmas.

https://digitalcommons.pvamu.edu/aam/vol11/iss2/7
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Lemma 1. [Ahmad et al. (2005)]

Let T : Q x E — CB(FE) be a D-continuous random multi-valued mapping. Then for any
measurable mapping w : Q — E, the multi-valued mapping 7'(.,w(.)) : Q@ — CB(E) is
measurable.

Lemma 2. [Ahmad et al. (2005)]

Let S,T : Q — CB(F) be two measurable multi-valued mappings, ¢ > 0 be a constant and
v: Q) — E, be a measurable selection of S. Then there exist a measurable selection w : {2 — E
of T such that for all ¢t € (),

[o(t) —w(®)| < (1+€)D(S(t), T(t)).

We have the following definition of random proximal operator.
Definition.

Let ¢ : E — R U {+oc} be a proper, lower semicontinuous (may not be convex) and 7-
subdifferentiable functional. Let n: Q@ x ' x E — E and J : Q x E — E* be the mappings.

Then the random proximal operator denoted by Jfgf is defined by

T2 (1)) = [ s + p(t)0y8) " (z*(1)), ¥ 2*(t) € E*. @)

Theorem 1.

Let E be a reflexive Banach space with its dual space £* and ¢ : E — R U {+oc} be a lower
semicontinuous, n-subdifferentiable, proper functional which may not be convex. Let J : Qx E —
E* be n-strongly accretive with constant «(t) > 0. Letn : Qx Ex E — E be Lipschitz continuous
with constant 7(¢) > 0 such that n(¢,z(t),y(t)) = —n(t,y(t), z(t)), for all t € Q, z(t),y(t) € E
and for any «(t) € E, the function h(t, y(t),z(t)) = (x*(t)— Ji(z(t)), n(t, y(t), z(t))) is 0-DQCV
in y(¢). Then for any p(¢) > 0, and for any z*(t) € E*, there exists a unique x € F such that

(Je((t)) = 2" (), n(t,y(t), () + po(y(t)) — p(t)o(x(t)) = 0, for all y(t) € E,

where a, 7, p : Q — (0, 00) are the measurable functions.

That is, z(t) = Jpa&()z)(x*(t)) and so that random proximal mapping of ¢ is well defined and

%-Lipschitz continuous.

Proof:

For the proof, we refer to Ahmad et al. (2005).01
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Lemma 3.

The set of measurable mappings z,u, v, w : 2 — E is a random solution of problem (1) if and
only if for all t € Q, z(t) € E, u(t) € M(t,z(t)), v(t) € S(t,x(t)), w(t) € T(t,z(t)) and

g(t,w(t) = T[T (g(t, w(t))) = pOON(t, u(t), (1)),

where p : 2 — (0,00) is a measurable function.
Proof:
The proof directly follows from the definition of Jf&f. U

In connection with problem (1), we consider the following random proximal operator equation
for random fuzzy mappings.

Find z(t) € E*, z(t) € E, u(t) € M(t,(t)), v(t) € S(t,z(t)) and w(t) € T(t,z(t)) such that

N(t,u(t),v(t)) + p~ (t) R (=(t)) = 0, )

p(t)

whege p(t) is same as in Theorem 1, Rp(t)( 2(t) = [I - JAJ?&?H (2(1)),
Jt[Jp(’;()b(z( )] = [Jt(Jp(t))](z( )) and I is the identity mapping.

Lemma 4.

The random variational-like inclusion problem (1) for random fuzzy mappings has a solution
(z(t), u(t), v(t),w(t)) with =(t) € E, u(t) € M(t,2(t)), v(t) € S(t,2(t)) and w(t) € T(t,x(t))
if and only if random proximal operator equation for random fuzzy mappings (5) has a solution
(2(1), z(t), u(t), v(t), w(t)) with 2(t) € B*, x(t) € E, u(t) € M(t,z(t)), v(t) € S(t,z(t)) and
w(t) € T(t,z(t)), where

g(t,w(t)) = T (=(0),

z(t) = Ji(g(t,w(t))) — p(t)[N(t,u(t),v(t))] and the operator J is one-one.
Proof:

Let (x(t), u(t),v(t),w(t)) be a random solution of problem (1). Then by Lemma 3, it is a solution
of the following equation:

g(t,w(t) = TS [T (g(t, w(t)) = p(ON (t,u(t), o(t))]. (6)

Using the fact that Ra”d) [l — Jt(Jp(t) )] and the above equation, we have
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p(t) (
= Jg(t,w(t))) — N (6 u(t), 0(8)) — LT (gt w(e))) — p()N(E, u(t), o(t)))]
= Ji(g(t,w(t))) — p(O)N(t, u(t), v(t)) — Ji(g(t, w(t)))
- —p(t)N(t, U(t)7 U(t)),

ie., (z(t),u(t),v(t),w(t)) is a random solution of problem (5).
Conversely, let (z(t), z(t), u(t),v(t), w(t)) be a random solution of problem (5), then we have

PNt ult), v(t)] = =R (2(1)) = LR (2(t))] — 2(2). (7
From (6) and (7), we have

pOIN(E ult), v(t)] = LLI0 (gt w(t) — pE)N (t,ult), v(t)))]
—Ji(g(t, w(t))) + p(O)N(t, ult), v(t))
Tg(t,w(®)) = [T (Jila(t, w(t) — p(t)N (& ult), o(1)))],

since J is one-one, we have
g(t,w(t)) = TS [ (gt w(t)) — p(E)N (¢, u(t), v(t))],

ie., (xz(t),u(t),v(t),w(t)) is a random solution of problem (1). [

Using Lemmas 3 and 4, we define the following random iterative algorithm for solving random
proximal operator equation for random fuzzy mappings (5).

Random Iterative Algorithm 3.1.

Suppose that M, S, T : Q x E — F(E) be three random fuzzy mappings satisfying condition
(A). Let M,S,T : Q x E — CB(E) be D-continuous random multi-valued mappings induced
by M,S and T, respectively. Let N : QX ExXE - E* n: QX EXFE —-Fandg: QOxE— FE
be the continuous random mappings and ¢ : E — R U {400} is a proper, n-subdifferentiable,
lower semicontinuous (may not be convex) functional with Im(g) N (domd,¢) # &, where 0,¢
is the n-subdifferential of ¢. For any given measurable mapping z, : ) — FE, the multi-valued
mappings M (., z(.)), S(.,zo(.)) and T(., zo(.)) are measurable by Lemma 1. Hence there exist
measurable selection ug : Q — E of M(.,20(.)), vo : @ = E of S(.,z0(.)) and wy : Q@ — E of
T(.,x0(.)) by Himmelberg (1975). Let

21(t) = Ji(g(t,wo(t))) — p(t)N (¢, uo(t), vo(t)) € E* and x1(t) € E.
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gt wi(t)) = T (1 (t).

It is easy to see that z; : 2 — E is measurable. By Lemma 3, there exist measurable selection
up : Q — E of M(.,z.(t)), v1: Q@ — E of S(.,z1(t)) and wy : Q@ — E of T'(.,x1(t)) such that
for all t € Q)

glt,un(t)) = Jfg;?( 1(1)
luo(t) — wr ()| < D(M(t,xo(t)), M(t, 21(t))),
lvo(t) —vi(®) < D(S(t,z0(t)), S(t, 21(t))),
and  |lwo(t) —wi ()| < D(T(t o(t)), T(t,x1(t))).

Let z5(t) = Ji(g(t,wi(t))) — p(t)N(t,ui(t),v1(t)) € E* and g(t, ws(t)) = Ja’”b(zg(t)).

p(t)
Continuing the above process inductively, we obtain the following scheme:

For any zy(t) € E*, ug(t) € M(t,z0(t)), vo(t) € S(t, xo(t)) and wy(t) € T(t, zo(t)),

compute the random iterative sequences for solving problem (5) as:

(i) glt,wa(t)) = T (2a(t), 8)
(i) un(t) € Mtz (t)), [[tn(t) = wnsr (B)|| < D(M(t,2n(t)), M(t, 2041 (2))), ©)
(i11) va(t) € S(t,2a(t), |ve(t) = var1 ()| < D(S(t,2a(t)), S(t, 2nra(t))), (10)
(iv) w,(t) € T(t, 2, (1)), we(t) — w1 (B)]| < D(T(t, 20 (1)), T(t, 20ra (1)), (11)
(v)  zn1(t) = Ji(g(t,wa(l))) — p(O)N (L, un(t), un(t), va(t)), n=0,1,2

and t € Q. (12)

In the following, we are now able to establish the convergence of random iterative sequences
generated by the Random Iterative Algorithm 3.1.

Theorem 2.

Let E be a reflexive Banach space with the dual space E*. Let the random operator J : {2 x &' —
E* be n-strongly accretive with the constant «(¢) > 0 and Lipschitz continuous with constant
Ay > 0. Let the random mapping 7 : {2 x I/ X E — E be Lipschitz continuous with constant
7(t) > 0 such that n(t,xz(t),y(t)) = —n(t,y(t),z(t)), for all t € Q, z(t),y(t) € E and g :
(1 x E — E be Lipschitz continuous with constant A\, > 0. Suppose that M,S,T: Q x E —
F(E) be the random fuzzy mappings satisfying the condition (A). Let M,S.T : Q x E —
CB ( ) be the random multi-valued mappings induced by M, S and T, respectively such that
M, S and T are D-Lipschitz continuous with constants dxrnys 08 5) and 07, respectively, T is
k(t)-strongly accretive with respect to g. Let the random mapplng N : Q >< ExE — E*i

Lipschitz continuous with respect to M and S with constants Ny and Ay, S0 respectively. Let
¢ E — RU {400} be a lower-semicontinuous, 7-subdifferentiable, proper functional which
may not be convex such that g(¢,w(t)) N dom(0,¢) # @. Let for any z(t) € E, the function

h(t,y(t),z(t)) = (z*(t) — J(z(t)),n(t,y(t), z(t))) is 0-DQCV in y(t). If for any p(t) > 0, if
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the following condition holds:

a(t)y/T + 2k (D)
7(t) ’

then there exist z(t) € E*, z(t) € E, u(t) € M(t,z(t)), v(t) € S(t,z(t)) and w(t) € T(t,z(t))
satisfying random proximal operator equation (5) such that z,(t) — 2(t), x,(t) = x(t), u,(t) —

u(t), v,(t) — v(t) and w,(t) — w(t), where {z,()}, {z.(t)}, {u.(t)}, {vn(t)} and {w,(t)}

are the random sequences obtained by Algorithm 3.1.

Proof:

0 < [Asw Ay Aty + AnwreOnre + Avse950) < (13)

From Algorithm 3.1, we have

12012 (1) = 2N = [1Ji(g(t, wn(2))) = pN(E, un(t), vn(t)) —
[Je(g(t; wnr(8)) = ()N (t, wn1(E), vaa ()]
< |[Jilg(t wn(t))) = Ji(g(t wna ()| +
(t)

PN (E, un(t), vn(t)) = N(t, tn-1(t), vn-1(£))[]. (14)
By the Lipschitz continuity of .J, g, D-Lipschitz continuity of T and (3.7), we have
1 7e(g(t, wa(t))) = Ji(g(t, wn1(2)))]l Aswllg(t, wa(t)) — g(t, waa(2))]

s Ag(oyl[wa(t) — wn—1 ()]
ANty D(T(t, 2 (1)), T(t, v,-1(1)))

A1) Agt) 07y |12 (t) — Tna(B)]]- (15)

VAN VAN VANRR VAN

Since N is Lipschitz continuous with respect to M and S and D-Lipschitz continuous of M and
S, we have

IN(E un(t), vn (1)) = N una (), o (1))l

= NG un(t), vn(t)) = Nt un1(t), va(t))
HN (w1 (1), vn(t)) = N(E una (8), 00 (1))
<IN un(t), on(t)) = N (& una(2), va (1))
HIN(E w1 (1), va(t)) = N(E una (), oo (8))]
< Ay 1) = s (O] + A, (8 — 001 (2]
< Ay DIM(t (1)), M(t, 20 1(8)))
AN, D(S(tn (1)), S(t, 201 (1))
< ()\NM(t)é i) T AN, 0500) 120 (t) = 2aa (B)]]. (16)
Combining (15) and (16) with (14), we have
a8 = 2 ()] < Do atdr0 = Mg st + Mgy O50) o) = zacs (@ (A7)

By using Theorem 1 and k(t)-strongly accretiveness of 1" with respect to g, we have
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lzn(t) = zaa (BIF = 17505 (2a(t) = S (zua (1)
—[g(t, wa(t)) — 2u(t) — g(t, w1 (1)) + 01 ()]
< 5 () = o (zama ()P = 2(g(t wa(t)) — 24 (1)
~(9(t (1) = 2aa (1), (20 (8) = 20 (1))
< T ) = zas (O — 20(8)20(t) — s (DI

a?(t)
which implies that

7(1)
a(t)\/1 + 2k(t)

[z (t) = 2na (B < 120 (t) = 201 (D). (18)

Using (18), (17) becomes

[AJ(Q)\ (sT t) ‘I— )\N 5 ( + ANS(t)(S ( )]T(t)

_ I (t) . R ’
Vs (£) — 2(8)] < SO () — zaa (8]
B lones (£) — ()] < O(1)20(t) =z (D], 19)
where

@(t) B [)\J(t )\g(t)éT + )\le(t (5 + )\NS(t (5 St )]T(t>
B a(t)/1+ Zk( )

(20)

It follows from (13) that ©(¢) < 1 for all ¢ € Q. Therefore {z,(t)} is a Cauchy sequence in E.
Since E' is complete, there exists a measurable mapping z : 2 — E such that z,(t) — z(¢), for
all t € Q2. From Algorithm 3.1, D-Lipschitz continuity of M, S and 7', we have

lun(t) = wnsr (@) < DM, 2a(t), M(t,2041(8))) < gy llza(t) = zasa (D]

[on(t) = vaa @) < D(SE 2a(t): St 2aia (1)) < gy llwa(t) = zasa ()],

lwon(t) = wanr (O < D(T(t,2a(t), T(t, 201 (1)) < Spgpllzalt) — zasa ()],
which imply that {u,(¢)}, {v.(t)} and {w,(t)} are also Cauchy sequences in F. Let w,(t) —

u(t), v, (t) = v(t) and w,(t) — w(t). Since {u,(t)}, {v,(t)} and {w,(t)} are Cauchy sequences
of measurable mappings, we know that u,v,w : {2 — E are also measurable.

Now, we will prove that u(t) € M(t, z(t)), v(t) € S(t,z(t)) and w(t) € T(t,z(t)). For any
t € Q, we have

d(ult), M(t,x(t)))

Ju(t) = un®)] + d{un-1(8), ¥ (t,2(6)
Ju(t) = ua (O] + DOT(,20(6), M (t,2(0)
Ju(t) = un®)] + 9 lzal8) = 2(B)] = 0.

Hence u(t) € M(t,z(t)), for all t € Q. Similarly, we can show that v(t) € S(t,z(t)) and
w(t) € T(t,x(t)), for all ¢ € Q. This completes the proof. [J

(VAN VAR VAN
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4. Conclusion

Due to tremendous applications of fuzzy random theory, in this work we introduce and study
a random proximal operator equation for random fuzzy mappings in Banach spaces. We have
shown that the random proximal operator equation for random fuzzy mappings is equivalent to
a random variational-like inclusion problem for random fuzzy mappings and random variational-
like inclusion problem for random fuzzy mapping is equivalent to a random fixed point problem.
This equivalence is used to define a random iterative algorithm for solving random proximal
operator equation for random fuzzy mappings.

By using the concept of 0-DQCV mappings, we establish an existence and convergence result
for random proximal operator equation for random fuzzy mappings. We also compare random
variational-like inclusion problem for random fuzzy mapping with random Wardrop equilibrium
problem.
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