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Abstract

In this paper, the optimal homotopy asymptotic method is applied on the Cauchy reaction-

diffusion problems to check the effectiveness and performance of the method. The obtained

solutions show that the OHAM is more effective, simpler and easier than other methods. More-

over, this technique does not require any discretization or linearization and therefore it reduces

significantly the numerical computations. The results reveal that the method is explicit.
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1. Introduction

Reaction-diffusion equations describe a wide variety of nonlinear systems in physics, chemistry,

ecology, biology and engineering (Britton, 1998; Cantrell and Cosner, 2003). By a reaction-

diffusion we mean an equation of the following form:

∂u

∂t
= ∆u + f(u, ∆u; x, t),
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The term u is diffusion term and f(u, ∆u; x, t) is the reaction term. More generally the diffusion

term may be of type A(u), where A is a second-order elliptic operator, which may be nonlinear

and degenerate.

In this paper, we consider the one-dimensional reaction-diffusion equation

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) + p(x, t)u(x, t), (1)

where u is the concentration, p is the reaction parameter and D > 0 is the diffusion coefficient,

subject to the initial or boundary conditions

u(x, 0) = g(x), x ∈ R, (2)

u(0, t) = f0(t),
∂u

∂x
(0, t) = f1(t), t ∈ R, (3)

The problem given by equations (1) and (3) is called the characteristic Cauchy problem in the

domain Ω = R×R+ and the problem given by equations (1) and (3) is called the non-characteristic

problem in the domain Ω = R+ × R.

In (Dehdhan and Shakeri, 2008; Lesnic, 2007), this equation is solved by He’s variational iteration

method and the Adomian decomposition method,respectively.

Marinca et.al (Marinca and Herisanu, 2008; Marinca et al., 2008; Marinca et al., 2009; Marinca

and Herisanu, 2010) developed a new technique which is called optimal homotopy asymptotic

method (OHAM).This method was also successfully applied in solving many types of nonlinear

problems for different equations (Ghoreishi et al., 2012; Gulzaman and Hussain, 2010; Idrees

et al., 2010a; Idrees et al., 2010b; Idrees et al., 010b; Iqbal et al., 2010; Islam et al., 2010; Jafari

and Gharbavy, 2012; Shah et al., 2010). The purpose of this paper is to extend the OHAM for

the solution of Cauchy reaction-diffusion problem .

The paper is organized in the following fashion. Section 2 contains the basic mathematical theory

of the optimal homotopy asymptotic method. Section 3 deals with applications of the OHAM to

the Cauchy reaction-diffusion problem. Section 4 is reserved for conclusions.

2. Fundamentals of the OHAM

In this section we recall the basic idea of OHAM. Consider the following partial differential

equation:

L(u(x, t)) + g(x, t) + N(u(x, t)) = 0, x ∈ Ω,

B(u,
∂u

∂t
) = 0, x ∈ Γ, (4)

where L is a linear operator, x and t denote independent variable, u(x, t) is an unknown function,

g(x, t) is a known function, N(u(x, t)) is a nonlinear operator, B is a boundary operator and Γ

is the boundary of the domain Ω.

By means of OHAM, we first construct a family of equations

(1 − p) [L(φ(x, t; p) + g(x, t))] = H(p) [L(φ(x, t; p) + g(x, t)) + N(φ(x, t; p))],

B(φ(x, t; p)
∂φ(x, t; p)

∂t
) = 0, (5)
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where p ∈ [0, 1] is an embedding parameter, H(p) is a nonzero auxiliary function for p 6= 0 and

also H(0) = 0, φ(x, t; p) is an unknown function, respectively.

Obviously, when p = 0 and p = 1 it holds

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t), (6)

respectively. Therefore, when p increase from 0 to 1, the solution φ(x, t) varies from u0(x, t) to

the solution u(x, t). The zeroth-order problem is obtained from (5) when p = 0,

L(u0(x, t)) + g(x, t) = 0, B

(
u0,

∂u0

∂t

)
= 0. (7)

The auxiliary function H(p) is chosen in the form

H(p) = pC1 + p2C2 + p3C3 + . . . , (8)

where C1, C2, C3, · · · are constants which can be determined later. To get an approximate

solution, φ(x, t; p, Ci) is expanded in a Taylors series about p as

φ(x, t; p, Ci) = u0(x, t) +
∑

k≥1

uk(x, t; Ci)p
k, i = 1, 2, 3, · · · (9)

Substituting equation (9) into equation (5) and equating the coefficients of like powers of p, the

first and second-order problems are given as

L(u1(x, t)) = C1N0(u0(x, t)), B

(
u1,

∂u1

∂t

)
= 0, (10)

L(u2(x, t))− L(u1(x, t)) = C2N0(u0(x, t)) + C1 [L(u1(x, t)) + N1(u0(x, t), u1(x, t))] ,

B

(
u2,

∂u2

∂t

)
= 0, (11)

and the general governing equations for uk(x, t) are given as

L(uk(x, t)) − L(uk−1(x, t)) = CkN0(u0(x, t))

+
k−1∑

i=1

Ci [L(uk−i(x, t)) + Nk−i(u0(x, t), u1(x, t), · · · , uk−1(x, t))]

k = 2, 3, · · · , B

(
uk,

∂uk

∂t

)
= 0 (12)

whereNi; i > 0, are the coefficients of pi in the nonlinear operator N :

N(u(x, t)) = N0(u0) + pN1(u0, u1) + p2 N2(u0, u1, u2) + · · · (13)

It should be emphasized that the uk for k > 0 are governed by the linear equations (7), (10),

(11) and (12) with the linear boundary conditions that come from the original problem, which

can be easily solved. The convergence of the series (9) depends upon the auxiliary constants

C1, C2, · · · . If it is convergent at p = 1, one has

u(x, t; Ci) =
∞∑

k=1

uk(x, t; Ci). (14)
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Generally speaking, the solution of equation (4) can be determined approximately in the form

ũ(m) = u0(x, t) +
m∑

k=1

uk(x, t; Ci). (15)

We note that the last coefficient Ck can be a function of x, t. Substituting equation (15) into

equation (4) results in the following residual:

R(x, t; Ci) = L(ũ(m)(x, t; Ci)) + g(x, t) + N(ũ(m)(x, t; Ci)), i = 1, 2, · · · (16)

If R(x, t; Ci) = 0 then ũ(m)(x, t; Ci) happens to be the exact solution. Generally such a case will

not arise for nonlinear problems,but we can minimize the functional

J(Ci) =

∫ t

0

∫

Ω

R2(x, t; Ci)dxdt, (17)

where R is the residual. The unknown constants Ci(i = 1, 2, · · · , m) can be optimally identified

from the conditions
∂J

∂C1
=

∂J

∂C2
= · · · =

∂J

∂Cm
= 0. (18)

The disadvantage of the OHAM is the requirement to solve a set of coupled nonlinear algebraic

equation for the unknown convergence-control parameters C1, C2, C3, · · · , Cm which will be

obtained from relation (18). It is clear that for the low order of m, the nonlinear algebraic system

can be solved with some ease but if m is large it becomes more difficult to solve.

3. Application of the OHAM to the Cauchy reaction-diffusion problem

In this section, the OHAM is used in three special cases of the Cauchy reaction-diffusion problem

(1).

Example 1. Consider equation (1) with D = 1, p(x, t) = −1 + cos(x) − sin2(x) i.e

∂u

∂t
(x, t)−

∂2u

∂x2
(x, t)− (−1 + cos(x) − sin2(x))u(x, t) = 0 (19)

and the following initial conditions:

u(x, 0) =
1

10
ecos(x)−11, x ∈ R,

u(0, t) =
1

10
e−t−10, t ∈ R,

∂u

∂x
(0, t) = 0, t ∈ R. (20)

The exact solution of this problem is u(x, t) = 1
10

ecos(x)−t−11. Applying the method formulated

in Section 2, leads to the following:

L[φ(x, t; p)] =
∂φ(x, t; p)

∂t
, (21)

N [φ(x, t; p)] = −
∂2φ(x, t; p)

∂x2
(x, t)− (−1 + cos(x) − sin2(x))φ(x, t; p), (22)

g(x, t) = 0, (23)

4
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with initial condition:

φ(x, 0; p) =
1

10
ecos(x)−11. (24)

For the zeroth-order problem, we have

∂u0(x, t)

∂t
= 0, u0(x, 0) =

1

10
ecos(x)−11

which has the solution

u0(x, t) =
1

10
ecos(x)−11. (25)

The first-order problem can be defined as

∂u1(x, t)

∂t
= (1 + C1)

∂u0(x, t)

∂t
+ C1(−

∂2u0(x, t)

∂x2
− (−1 + cos(x) − sin2(x))u0(x, t)).

u1(x, 0) = 0

It has the solution

u1(x, t) =
1

10
C1te

cos(x)−11. (26)

The second-order problem can be defined as

∂u2(x, t)

∂t
= (1 + C1)

∂u1(x, t)

∂t
+ C2(−

∂2u0(x, t)

∂x2
− (−1 + cos(x) − sin2(x))u0(x, t))

+C1(−
∂2u1(x, t)

∂x2
− (−1 + cos(x) − sin2(x))u1(x, t)),

u2(x, 0) = 0,

and it has the solution

u2(x, t) =
1

20
tecos(x)−11(tC2

1 + 2C1 + 2C2
1 + 2C2). (27)

By repeating this process, we can obtain the solution of third-order problems as

u3(x, t) =
1

60
tecos(x)−11(t2C3

1 + 6tC2
1 + 6tC3

1 + 6tC1C2

+ 6C1 + 12C2
1 + 6C2 + 6C3

1 + 12C1C2 + 6C3). (28)

Substitution equations (25), (26), (27) and (28) into equation (15) yields the third-order approx-

imate solution (m = 3) for equation (19):

ũ(3) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t), (29)

and substituting the approximate solution into equation (16) yields the residual R and the

functional J :

R(x, t, C1, C2, C3) =
∂ũ(3)

∂t
−

∂2ũ(3)

∂x2
− (−1 + cos(x) − sin2(x))ũ(3), (30)

J(C1, C2, C3) =

∫ 1

−1

∫ 1

0

R2(x, t, C1, C2, C3)dtdx. (31)

The constants C1, C2, C3 result from the conditions (18) as

C1 = 6.898033136 × 10−9, C2 = −1.947679826 × 10−8, C3 = −0.6428571245, (32)
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and the approximate solution of the third order is

u(x, t) = 5ecos(x)−11(2 × 10−2 − 1.285714285 × 10−2t− 1.259546155 × 10−18t2

+ 1.094093843 × 10−27t3). (33)

In the Table 1 we compare the exact solution and the OHAM solution (33).

Table 1. Comparison of the exact and approximate values by OHAM at t = 1 in Example 1.

x Exact value Approximate value by OHAM Absolute error

-4 3.195894243542235 × 10−7 3.102621877351807 × 10−7 9.327236619042777 × 10−9

-3 2.283063225857796 × 10−7 2.216431887956551 × 10−7 6.663133790124527 × 10−9

-2 4.052620550657186 × 10−7 3.934344575538314 × 10−7 1.182759751188725 × 10−8

-1 1.054669840797373 × 10−6 1.023889237903636 × 10−6 3.078060289373657 × 10−8

0 1.670170079024566 × 10−6 1.621426064567313 × 10−6 4.874401445725321 × 10−8

1 1.054669840797373 × 10−6 1.023889237903636 × 10−6 3.078060289373657 × 10−8

2 4.052620550657186 × 10−7 3.934344575538314 × 10−7 1.182759751188725 × 10−8

3 2.283063225857796 × 10−7 2.216431887956551 × 10−7 6.663133790124527 × 10−9

4 3.195894243542235 × 10−7 3.102621877351807 × 10−7 9.327236619042777 × 10−9
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Fig. 1: OHAM, Exact solution at t = 0.1 Fig. 2: Absolute error at t = 0.1

Example 2. In this example we solve equation (1) with p(x, t) = −16t and D = 1 i.e.

∂u

∂t
(x, t)−

∂2u

∂x2
(x, t) + 16tu(x, t) = 0, (34)

with the following initial conditions:

u(x, 0) = e−x−4, x ∈ R,

u(0, t) = e−t(8t−1)−4, t ∈ R,

∂u

∂x
(0, t) = −e−t(8t−1)−4, t ∈ R, (35)

The exact solution of this problem is u(x, t) = e−x−t(8t−1)−4. According to the OHAM formulation

described in Section 2, we start with

L =
∂φ(x, t; p)

∂t
, (36)

N = −
∂2φ(x, t; p)

∂x2
+ 16tφ(x, t; p), (37)

g(x, t) = 0, (38)

6
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with initial condition φ(x, 0; p) = e−x−4 The zeroth-order problem is

∂u0(x, t)

∂t
= 0, u0(x, 0) = e−x−4,

and it has the solution

u0(x, t) = e−x−4. (39)

The first-order problem is defined as

∂u1(x, t)

∂t
= (1 + C1)

∂u0(x, t)

∂t
+ C1(−

∂2u0(x, t)

∂x2
+ 16t u0(x, t)), u1(x, 0) = 0,

and the solution is given by

u1(x, t) = C1e
−x−4t(8t− 1). (40)

The second-order problem can be defined as

∂u2(x, t)

∂t
= (1 + C1)

∂u1(x, t)

∂t
+ C2(−

∂2u0(x, t)

∂x2
+ 16t u0(x, t))

+C1(−
∂2u1(x, t)

∂x2
+ 16t u1(x, t)), u2(x, 0) = 0,

and the solution is given by

u2(x, t) =
1

2
e−x−4t(64C2

1 t3 − 16C2
1 t2 + 16tC1 + 17tC2

1 + 16C2t − 2C1 − 2C2
1 − 2C2). (41)

By repeating this process, we can obtain the solution of third-order problems as

u3(x, t) =
1

6
(512C3

1 t5 − 192C3
1 t4 + 384t3C2C1 + 384C2

1 t3 + 408C3
1 t3 − 96t2C2C1

− 96C2
1 t297t

2C3
1 + 48C2t + 48tC1 + 102C2

1 + 102C1C2t + 54t + 48C3t

− 6C1 − 12C2
1 − 6C2 − 6C3

1 − 12C1C2 − 6C3). (42)

Adding equations (39), (40), (41) and (42), we obtain:

ũ(3) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t). (43)

Substituting equation (43) into equation (16) and calculating the constants C1, C2 and C3 using

the least squares method in (17) and (18) we obtain:

C1 = −.3792732735, C2 = 0.06574604733, C3 = 0.02702046464, (44)

and the approximate solution of third order in the form

u(x, t) = e−x−4(1 − 5.081255854t2 + .6521918342t + 8.503613449t4 − 2.171368183t3

− 4.655597548t6 + 1.745849080t5) (45)

In the Table 2 we compare the exact solution and OHAM solution (45).
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Table 2. Comparison of the exact and approximate values by OHAM at t = 1 in Example 2.

x Exact value Approximate value by OHAM Absolute error

-2 1.234098040866795 × 10−4 −8.887768223807506 × 10−4 1.012186626467430 × 10−3

-1.5 7.485182988770060 × 10−6 −5.390703924158947 × 10−4 6.139222223035953 × 10−4

-1 4.539992976248485 × 10−6 −3.269627207435608 × 10−4 3.723626505060456 × 10−4

-0.5 2.753644934974716 × 10−6 −1.983129147140295 × 10−4 2.258493640637766 × 10−4

0 1.670170079024566 × 10−6 −1.983129147140295 × 10−4 1.369845637812812 × 10−4

0.5 1.013009359863071 × 10−6 −7.295524424207707 × 10−5 8.308533784070777 × 10−5

1 6.144212353328210 × 10−5 −4.424959241964330 × 10−5 5.039380477297151 × 10−5

1.5 3.726653172078671 × 10−5 −2.683873448230139 × 10−5 3.056538765438006 × 10−5

2 2.260329406981054 × 10−5 −1.627851533140247 × 10−5 1.853884473838352 × 10−5
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Fig. 3: OHAM, Exact solution at t = 0.01 . Fig. 4: Absolute error at t = 0.01 .

Example 3. Consider Eq. (1) withp(x, t) = −1
4

and D = 1 i.e.

∂u

∂t
(x, t)−

∂2u

∂x2
(x, t) +

1

4
u(x, t) = 0 (46)

with the following initial conditions:

u(x, 0) =
1

2
x + e−x/2, x ∈ R,

u(0, t) = 1, t ∈ R,

∂u

∂x
(0, t) =

1

2
e−t/4 −

1

2
, t ∈ R, (47)

The exact solution of this problem is u(x, t) = 1
2
xe−t/4 + e−x/2.

According to the OHAM formulation described in Section 2, we start with

L =
∂φ(x, t; p)

∂t
, (48)

N = −
∂2φ(x, t; p)

∂x2
+

1

4
φ(x, t; p), (49)

g(x, t) = 0, (50)

with initial condition φ(x, 0; p) = 1
2
x + e−x/2. The zeroth-order problem is

∂u0(x, t)

∂t
= 0, u0(x, 0) =

1

2
x + e−x/2.

It has the solution

u0(x, t) =
1

2
x + e−x/2. (51)

8
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By repeating the process described in Section 2 and previous examples, we obtain u1(x, t), u2(x, t)

and u3(x, t). Therefore, we can obtain the solution of third-order approximation solution by using

OHAM is

ũ(3) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t). (52)

The following values of C1, C2, C3 are obtained:

C1 = −0.9594124146, C2 = 0.0004828136284, C3 = 0.00001301250074. (53)

Hence, our approximate solution becomes

u(x, t) = 0.5x + e−0.5x − 0.1249851166xt + 0.01553539427xt2 − 0.001149885987xt3 (54)

In the Table 3 we compare the exact solution and the OHAM solution (54).

Table 3. Comparison of the exact and approximate values by OHAM at t = 1 in Example 3
x Exact value Appr. value by OHAM Absolute error

-3 3.313487895730958 3.313487895289065 4.418927446181442 × 10−10

-2 1.939481045387640 1.939481045093045 2.945950150490262 × 10−10

-1 1.259320879164426 1.259320879017128 1.472975075245131 × 10−10

0 1 1 0

1 0.9959310512483359 0.9959310513956334 1.472975075245131 × 10−10

2 1.146680224242847 1.146680224537442 2.945952370936311 × 10−10

3 1.391331334755537 1.391331335197430 4.418925225735393 × 10−10
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Fig. 5: OHAM, Exact solution at t = 0.001 . Fig. 6: Absolute error at t = 0.001 .

4. Conclusions

In this paper, the OHAM has been used for solving the Cauchy reaction-diffusion problem. It

is obvious from the solutions that there is no need for computing further higher order terms of

u(x, t). The OHAM also provides us with a very simple way to control and adjust the convergence

of the series solution using the auxiliary constants Ci’s which are optimally determined. Therefore,

the method shows its validity and great potential for the solution of time dependent problems in

science and engineering. Mathematica has been used for all computations in this paper.
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