Applications and Applied Mathematics: An International Journal (AAM)

Certain Operations on Bipolar Fuzzy Graph Structures

Muhammad Akram
University of the Punjab
Rabia Akmal
University of the Punjab

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Computer Sciences Commons, and the Logic and Foundations Commons

Recommended Citation

Akram, Muhammad and Akmal, Rabia (2016). Certain Operations on Bipolar Fuzzy Graph Structures, Applications and Applied Mathematics: An International Journal (AAM), Vol. 11, Iss. 1, Article 30.
Available at: https://digitalcommons.pvamu.edu/aam/vol11/iss1/30

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

Certain Operations on Bipolar Fuzzy Graph Structures

Muhammad Akram and Rabia Akmal
Department of Mathematics
University of the Punjab, New Campus
Lahore, Pakistan
m.akram@pucit.edu.pk, rabia.akmal@ymail.com

Received: December 22, 2015; Accepted: February 09, 2016

Abstract

A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. A bipolar fuzzy graph structure is a generalization of a bipolar fuzzy graph. In this paper, we present several different types of operations, including composition, Cartesian product, strong product, cross product, and lexicographic product on bipolar fuzzy graph structures. We also investigate some properties of operations.

Keywords: Bipolar fuzzy graph structure (BFGS); Composition; Cartesian product;
Strong product; Cross product; Lexicographic product; Join; Union

MSC 2010 No.: 03E72, 68R10, 68R05

1. Introduction

The concepts of graph theory have applications in many areas of computer science (such as data mining, image segmentation, clustering, image capturing, networking, etc.). Graph structures, introduced by Sampathkumar (2006), are a generalization of graphs which is quite useful in studying structures including graphs, signed graphs, and graphs in which every edge is labeled or colored. It helps to study various relations and the corresponding edges, simultaneously.

A fuzzy set, introduced by Zadeh (1965), gives the degree of membership of an object in a
given set. Based on the same idea, Zhang (1994) defined the notion of bipolar fuzzy set on a given set X, by saying that a mapping $A: X \longrightarrow[-1,1]$ was a bipolar fuzzy set where the membership degree 0 , of an element x, meant that the element x was irrelevant to the corresponding property, the membership degree in (0,1], of an element x, indicated that the element somewhat satisfied the property, and the membership degree in $[-1,0)$, of an element x, indicated that the element somewhat satisfied the implicit counter-property. Rosenfeld (1975) discussed the concept of fuzzy graphs whose basic idea was introduced by Kauffmann (1973). The fuzzy relations between fuzzy sets were also considered by Rosenfeld and he developed the structure of fuzzy graphs, obtaining analogs of several graph theoretical concepts. Bhattacharya (1987) gave some remarks on fuzzy graphs. Several concepts on fuzzy graphs were introduced by Mordeson and Nair (2001). Akram et al. (2011-2016) has introduced several new concepts including bipolar fuzzy graphs, regular bipolar fuzzy graphs, irregular bipolar fuzzy graphs, antipodal bipolar fuzzy graphs and bipolar fuzzy graph structures. In this paper, we present certain operations on bipolar fuzzy graph structures and investigate some of their properties.

2. Preliminaries

We now review some definitions from Dinesh (2011) that are necessary for this paper.
A graph structure $G^{*}=\left(U, E_{1}, E_{2}, \ldots, E_{k}\right)$ consists of a non-empty set U together with mutually disjoint, irreflexive and symmetric relations $E_{1}, E_{2}, \ldots, E_{k}$ on U. If G_{1}^{*} and G_{2}^{*} are two graph structures given by $\left(U, E_{1}, E_{2}, \ldots, E_{k}\right)$ and $\left(V, E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{k}^{\prime}\right)$ respectively, then cartesian product of G_{1}^{*} and G_{2}^{*}, is denoted by " $G_{1}^{*} \times G_{2}^{* "}$ and given by $G_{1}^{*} \times G_{2}^{*}=$ $\left(U \times V, E_{1} \times E_{1}^{\prime}, E_{2} \times E_{2}^{\prime}, \ldots, E_{k} \times E_{k}^{\prime}\right)$ where $E_{i} \times E_{i}^{\prime}=\left\{\left(u_{1} v, u_{2} v\right) \mid v \in V, u_{1} u_{2} \in\right.$ $\left.E_{i}\right\} \cup\left\{\left(u v_{1}, u v_{2}\right) \mid u \in U, v_{1} v_{2} \in E_{i}^{\prime}\right\}, i=1,2, \ldots, k$. Composition of G_{1}^{*} and G_{2}^{*} is denoted by " $G_{1}^{*} \circ G_{2}^{* "}$ " and given by $G_{1}^{*} \circ G_{2}^{*}=\left(U \circ V, E_{1} \circ E_{1}^{\prime}, E_{2} \circ E_{2}^{\prime}, \ldots, E_{k} \circ E_{k}^{\prime}\right)$ where $U \circ V=$ $U \times V$ and $E_{i} \circ E_{i}^{\prime}=\left\{\left(u_{1} v, u_{2} v\right) \mid v \in V, u_{1} u_{2} \in E_{i}\right\} \cup\left\{\left(u v_{1}, u v_{2}\right) \mid u \in U, v_{1} v_{2} \in\right.$ $\left.E_{i}^{\prime}\right\} \cup\left\{\left(u_{1} v_{1}, u_{2} v_{2}\right) \mid u_{1} u_{2} \in E_{i}, v_{1} \neq v_{2}\right\}, i=1,2, \ldots, k$. Union of G_{1}^{*} and G_{2}^{*} is denoted by " $G_{1}^{*} \cup G_{2}^{* *}$ and given by $G_{1}^{*} \cup G_{2}^{*}=\left(U \cup V, E_{1} \cup E_{1}^{\prime}, E_{2} \cup E_{2}^{\prime}, \ldots, E_{k} \cup E_{k}^{\prime}\right)$ and join of G_{1}^{*} and G_{2}^{*} is given by $G_{1}^{*}+G_{2}^{*}=\left(U+V, E_{1}+E_{1}^{\prime}, E_{2}+E_{2}^{\prime}, \ldots, E_{k}+E_{k}^{\prime}\right)$ where $U+V=U \cup V$ and $E_{i}+E_{i}^{\prime}=E_{i} \cup E_{i}^{\prime} \cup E$ for $i=1,2, \ldots, k$ such that E is the set consisting of all edges which join vertices of U with vertices of V.

Definition 1. (Dinesh (2011))
Let $G^{*}=\left(U, E_{1}, E_{2}, \ldots, E_{k}\right)$ be a graph structure and let $\nu, \rho_{1}, \rho_{2}, \ldots, \rho_{k}$ be the fuzzy subsets of $U, E_{1}, E_{2}, \ldots, E_{k}$ respectively such that

$$
0 \leq \rho_{i}(x y) \leq \mu(x) \wedge \mu(y) \forall x, y \in V, i=1,2, \ldots, k
$$

Then $G=\left(\nu, \rho_{1}, \rho_{2}, \ldots, \rho_{k}\right)$ is a fuzzy graph structure of G^{*}.
Definition 2. (Zhang (1998))
Let X be a nonempty set. A bipolar fuzzy set B in X is an object having the form

$$
B=\left\{\left(x, \mu_{B}^{P}(x), \quad \mu_{B}^{N}(x)\right) \mid x \in X\right\},
$$

where $\mu_{B}^{P}: X \rightarrow[0,1]$ and $\mu_{B}^{N}: X \rightarrow[-1,0]$ are mappings.
We use the positive membership degree $\mu_{B}^{P}(x)$ to denote the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set B, and the negative membership degree $\mu_{B}^{N}(x)$ to denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar fuzzy set B. If $\mu_{B}^{P}(x) \neq 0$ and $\mu_{B}^{N}(x)=0$, it is the situation that x is regarded as having only positive satisfaction for B. If $\mu_{B}^{P}(x)=0$ and $\mu_{B}^{N}(x) \neq 0$, it is the situation that x does not satisfy the property of B but somewhat satisfies the counter property of B. It is possible for an element x to be such that $\mu_{B}^{P}(x) \neq 0$ and $\mu_{B}^{N}(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X.

For the sake of simplicity, we shall use the symbol $B=\left(\mu_{B}^{P}, \mu_{B}^{N}\right)$ for the bipolar fuzzy set

$$
B=\left\{\left(x, \quad \mu_{B}^{P}(x), \quad \mu_{B}^{N}(x)\right) \mid x \in X\right\}
$$

Definition 3. (Zhang (1998))
Let X be a nonempty set. Then we call a mapping $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right): X \times X \rightarrow[0,1] \times[-1,0]$ a bipolar fuzzy relation on X such that $\mu_{A}^{P}(x, y) \in[0,1]$ and $\mu_{A}^{N}(x, y) \in[-1,0]$.

Definition 4. (Akram (2011))
A bipolar fuzzy graph $G=(V, A, B)$ is a non-empty set V together with a pair of functions $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right): V \rightarrow[0,1] \times[-1,0]$ and $B=\left(\mu_{B}^{P}, \mu_{B}^{N}\right): V \times V \rightarrow[0,1] \times[-1,0]$ such that for all $x, y \in V$,

$$
\mu_{B}^{P}(x, y) \leq \min \left(\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right) \quad \text { and } \quad \mu_{B}^{N}(x, y) \geq \max \left(\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right)
$$

Notice that $\mu_{B}^{P}(x, y)>0, \mu_{B}^{N}(x, y)<0$ for $(x, y) \in V \times V, \mu_{B}^{P}(x, y)=\mu_{B}^{N}(x, y)=0$ for $(x, y) \notin V \times V$, and B is symmetric relation.

3. Operations on Bipolar Fuzzy Graph Structures

Definition 5. (Akram and Akmal (2016))
$\check{G}_{b}=\left(M, N_{1}, N_{2}, \ldots, N_{n}\right)$ is called a bipolar fuzzy graph structure (BFGS) of a graph structure (GS) $G^{*}=\left(U, E_{1}, E_{2}, \ldots, E_{n}\right)$ if $M=\left(\mu_{M}^{P}, \mu_{M}^{N}\right)$ is a bipolar fuzzy set on U and for each $i=1,2, \ldots, n, N_{i}=\left(\mu_{N_{i}}^{P}, \mu_{N_{i}}^{N}\right)$ is a bipolar fuzzy set on E_{i} such that

$$
\mu_{N_{i}}^{P}(x y) \leq \mu_{M}^{P}(x) \wedge \mu_{M}^{P}(y), \mu_{N_{i}}^{N}(x y) \geq \mu_{M}^{N}(x) \vee \mu_{M}^{N}(y) \quad \forall x y \in E_{i} \subset U \times U .
$$

Note that $\mu_{N_{i}}^{P}(x y)=0=\mu_{N_{i}}^{N}(x y)$ for all $x y \in U \times U \backslash E_{i}, 0<\mu_{N_{i}}^{P}(x y) \leq 1,-1 \leq \mu_{N_{i}}^{N}(x y)<0$ $\forall x y \in E_{i}$. While U and $E_{i}(i=1,2, \ldots, n)$ are called underlying vertex set and underlying i-edge sets of \check{G}_{b}, respectively. Note that $x \vee y=$ maximum of x and $y, x \wedge y=$ minimum of x and y, throughout this paper.

Example 1.

Let $U=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Let $E_{1}=\left\{a_{1} a_{2}, a_{2} a_{3}\right\}$ and $E_{2}=\left\{a_{3} a_{4}, a_{1} a_{4}\right\}$ be two disjoint symmetric relations on U. Then $G^{*}=\left(U, E_{1}, E_{2}\right)$ is a graph structure.

Let M, N_{1} and N_{2} be bipolar fuzzy subsets of U, E_{1} and E_{2}, respectively, such that

$$
\begin{gathered}
M=\left\{\left(a_{1}, 0.5,-0.2\right),\left(a_{2}, 0.7,-0.3\right),\left(a_{3}, 0.4,-0.3\right),\left(a_{4}, 0.7,-0.3\right)\right\}, \\
N_{1}=\left\{\left(a_{1} a_{2}, 0.5,-0.1\right),\left(a_{2} a_{3}, 0.4,-0.3\right)\right\}
\end{gathered}
$$

and $N_{2}=\left\{\left(a_{3} a_{4}, 0.4,-0.2\right),\left(a_{1} a_{4}, 0.1,-0.2\right)\right\}$. Then, $\check{G}_{b}=\left(M, N_{1}, N_{2}\right)$ is a BFGS of G^{*} as shown in Figure 1.

Figure 1: $B F G S \check{G}_{b}=\left(M, N_{1}, N_{2}\right)$

Definition 6.

Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. The Cartesian product $G_{b 1} \times G_{b 2}$ of $G_{b 1}$ and $G_{b 2}$ is then a BFGS of $G_{1}^{*} \times G_{2}^{*}=\left(U_{1} \times U_{2}, E_{11} \times E_{21}, E_{12} \times\right.$ $\left.E_{22}, \ldots, E_{1 n} \times E_{2 n}\right)$ is given by

$$
\left(M_{1} \times M_{2}, \quad N_{11} \times N_{21}, \quad N_{12} \times N_{22}, \ldots, \quad N_{1 n} \times N_{2 n}\right)
$$

such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mu_{\left(M_{1} \times M_{2}\right)}^{P}(x y)=\left(\mu_{M_{1}}^{P} \times \mu_{M_{2}}^{P}\right)(x y)=\mu_{M_{1}}^{P}(x) \wedge \mu_{M_{2}}^{P}(y), \\
\mu_{\left(M_{1} \times M_{2}\right)}^{N}(x y)=\left(\mu_{M_{1}}^{N} \times \mu_{M_{2}}^{N}\right)(x y)=\mu_{M_{1}}^{N}(x) \vee \mu_{M_{2}}^{N}(y) \forall x y \in U_{1} \times U_{2},
\end{array}\right. \\
& \left\{\begin{array}{l}
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{P}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(\mu_{N_{1 i}}^{P} \times \mu_{N_{2 i}}^{P}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{P}(x) \wedge \mu_{N_{2 i}}^{P}\left(y_{1} y_{2}\right), \\
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{N}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(\mu_{N_{1 i}}^{N} \times \mu_{N_{2 i}}^{N}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{N}(x) \vee \mu_{N_{2 i}}^{N}\left(y_{1} y_{2}\right) \forall x \in u_{1}, y_{1} y_{2} \in E_{2 i},
\end{array}\right. \\
& \left\{\begin{array}{c}
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{P}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(\mu_{N_{1 i}}^{P} \times \mu_{N_{2 i}}^{P}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\mu_{M_{2}}^{P}(y) \wedge \mu_{N_{1 i}}^{P}\left(x_{1} x_{2}\right), \\
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{N}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(\mu_{N_{1 i}}^{N} \times \mu_{N_{2 i}}^{N}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\mu_{M_{2}}^{N}(y) \vee \mu_{N_{1 i}}^{N}\left(x_{1} x_{2}\right) \forall y \in U_{2}, x_{1} x_{2} \in E_{1 i} .
\end{array}\right.
\end{aligned}
$$

Example 2.

Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}\right)$ be respective BFGSs of graph structures $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}\right)$ such that $U_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, $U_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}, E_{11}=\left\{a_{1} a_{2}\right\}, E_{12}=\left\{a_{3} a_{4}\right\}, E_{21}=\left\{b_{1} b_{2}\right\}$ and $E_{22}=\left\{b_{3} b_{4}\right\} . G_{b 1}$ and $\check{G_{b 2}}$ are shown in Figure 2,

Figure 2: Bipolar Fuzzy Graph Structures
and Cartesian product $\check{G_{b 1}} \times \check{G_{b 2}}=\left(M_{1} \times M_{2}, N_{11} \times N_{21}, N_{12} \times N_{22}\right)$ is shown in Figure 3.

Figure 3: Cartesian Product of Two BFGSs

Example 3.

Consider $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}\right)$ as shown in Figure 4 and let they be respective BFGSs of graph structures $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}\right)$ such that $U_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, U_{2}=\left\{b_{1}, b_{2}, b_{3}\right\}, E_{11}=\left\{a_{1} a_{2}\right\}, E_{12}=\left\{a_{3} a_{4}\right\}, E_{21}=\left\{b_{1} b_{2}\right\}$
and $E_{22}=\left\{b_{2} b_{3}\right\}$.

Figure 4: Bipolar Fuzzy Graph Structures

And their Cartesian product given by $\check{G_{b 1}} \times \check{G_{b 2}}=\left(M_{1} \times M_{2}, N_{11} \times N_{21}, N_{12} \times N_{22}\right)$ is shown in Figure 5.

Figure 5: Cartesian Product of Two BFGSs

Theorem 1.

Let $G^{*}=\left(U_{1} \times U_{2}, E_{11} \times E_{21}, E_{12} \times E_{22}, \ldots, E_{1 n} \times E_{2 n}\right)$ be Cartesian product of GSs $G_{1}^{*}=$ $\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Let $G_{b 1}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of G_{1}^{*} and G_{2}^{*}. Then, $\left(M_{1} \times M_{2}, N_{11} \times\right.$ $\left.N_{21}, N_{12} \times N_{22}, \ldots, N_{1 n} \times N_{2 n}\right)$ is a BFGS of G^{*}.

Proof:

Case 1. When $u \in U_{1}, b_{1} b_{2} \in E_{2 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{P}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{P}(u) \wedge \mu_{N_{2 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{1}}^{P}(u) \wedge\left[\mu_{M_{2}}^{P}\left(b_{1}\right) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \times M_{2}\right)}^{P}\left(u b_{1}\right) \wedge \mu_{\left(M_{1} \times M_{2}\right)}^{P}\left(u b_{2}\right), \\
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{N}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{N}(u) \vee \mu_{N_{2 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{1}}^{N}(u) \vee\left[\mu_{M_{2}}^{N}\left(b_{1}\right) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \times M_{2}\right)}^{N}\left(u b_{1}\right) \vee \mu_{\left(M_{1} \times M_{2}\right)}^{N}\left(u b_{2}\right),
\end{aligned}
$$

for $u b_{1}, u b_{2} \in U_{1} \times U_{2}$.
Case 2. When $u \in U_{2}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{P}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =\mu_{M_{2}}^{P}(u) \wedge \mu_{N_{1 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{2}}^{P}(u) \wedge\left[\mu_{M_{1}}^{P}\left(b_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{P}(u) \wedge \mu_{M_{1}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{2}}^{P}(u) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \times M_{2}\right)}^{P}\left(b_{1} u\right) \wedge \mu_{\left(M_{1} \times M_{2}\right)}^{P}\left(b_{2} u\right), \\
\mu_{\left(N_{1 i} \times N_{2 i}\right)}^{N}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =\mu_{M_{2}}^{N}(u) \vee \mu_{N_{1 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{2}}^{N}(u) \vee\left[\mu_{M_{1}}^{N}\left(b_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{N}(u) \vee \mu_{M_{1}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{2}}^{N}(u) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \times M_{2}\right)}^{N}\left(b_{1} u\right) \vee \mu_{\left(M_{1} \times M_{2}\right)}^{N}\left(b_{2} u\right),
\end{aligned}
$$

for $b_{1} u, b_{2} u \in U_{1} \times U_{2}$.
Both cases hold for $i=1,2, \ldots, n$. This completes the proof.

Definition 7.

Let $\breve{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\breve{G}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. The cross product $\check{G_{b 1}} * \check{G_{b 2}}$ of $\check{G_{b 1}}$ and $\check{G} \breve{G}_{b 2}$ is a $B F G S$ of $G_{1}^{*} * G_{2}^{*}=\left(U_{1} * U_{2}, E_{11} * E_{21}, E_{12} * E_{22}, \ldots, E_{1 n} * E_{2 n}\right)$ is given by

$$
\left(M_{1} * M_{2}, \quad N_{11} * N_{21}, \quad N_{12} * N_{22}, \ldots, \quad N_{1 n} * N_{2 n}\right)
$$

such that

$$
\left\{\begin{array}{l}
\mu_{\left(M_{1} * M_{2}\right)}^{P}(x y)=\left(\mu_{M_{1}}^{P} * \mu_{M_{2}}^{P}\right)(x y)=\mu_{M_{1}}^{P}(x) \wedge \mu_{M_{2}}^{P}(y), \\
\mu_{\left(M_{1} * M_{2}\right)}^{N}(x y)=\left(\mu_{M_{1}}^{N} * \mu_{M_{2}}^{N}\right)(x y)=\mu_{M_{1}}^{N}(x) \vee \mu_{M_{2}}^{N}(y) \forall x y \in U_{1} \times U_{2},
\end{array}\right.
$$

$$
\left\{\begin{aligned}
\mu_{\left(N_{1 i} * N_{2 i}\right)}^{P}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{P} * \mu_{N_{2 i}}^{P}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\mu_{N_{2 i}}^{P}\left(y_{1} y_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(x_{1} x_{2}\right), \\
\mu_{\left(N_{1 i} * N_{2 i}\right)}^{N}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{N} * \mu_{N_{2 i}}^{N}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\mu_{N_{2 i}}^{N}\left(y_{1} y_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(x_{1} x_{2}\right) \\
& \forall y_{1} y_{2} \in E_{2 i}, x_{1} x_{2} \in E_{1 i} .
\end{aligned}\right.
$$

Example 4.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs as shown in Figure 2 and cross product $\check{G_{b 1}} * \check{G_{b 2}}=\left(M_{1} * M_{2}, N_{11} *\right.$ $\left.N_{21}, N_{12} * N_{22}\right)$ is as shown in Figure 6.

Figure 6: Cross Product of Two BFGSs

Example 5.

$\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}\right)$ be BFGSs as shown in Figure 4 and their cross product given by $\check{G_{b 1}} * \breve{G_{b 2}}=\left(M_{1} * M_{2}, N_{11} * N_{21}, N_{12} * N_{22}\right)$ is shown in Figure 7.

Theorem 2.

Let $G^{*}=\left(U_{1} * U_{2}, E_{11} * E_{21}, E_{12} * E_{22}, \ldots, E_{1 n} * E_{2 n}\right)$ be cross product of GSs $G_{1}^{*}=$ $\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Let $G_{b 1}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of G_{1}^{*} and G_{2}^{*}. Then $\left(M_{1} * M_{2}, N_{11} *\right.$ $\left.N_{21}, N_{12} * N_{22}, \ldots, N_{1 n} * N_{2 n}\right)$ is a BFGS of G^{*}.

Figure 7: Cross Product of Two BFGSs

Proof:
For all $b_{1} u_{1}, b_{2} u_{2} \in U_{1} * U_{2}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} * N_{2 i}\right)}^{P}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(b_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{2}}^{P}\left(u_{2}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} * M_{2}\right)}^{P}\left(b_{1} u_{1}\right) \wedge \mu_{\left(M_{1} * M_{2}\right)}^{P}\left(b_{2} u_{2}\right), \\
& \\
\mu_{\left(N_{1 i} * N_{2 i}\right)}^{N}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(b_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{2}}^{N}\left(u_{2}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} * M_{2}\right)}^{N}\left(b_{1} u_{1}\right) \vee \mu_{\left(M_{1} * M_{2}\right)}^{N}\left(b_{2} u_{2}\right),
\end{aligned}
$$

for $i=1,2, \ldots, n$. This completes the proof.

Definition 8.

Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of $G S s G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. The lexicographic product $\check{G_{b 1}} \bullet \check{G_{b 2}}$ of $\check{G_{b 1}}$ and $\check{G_{b 2}}$ is a BFGS of $G_{1}^{*} \bullet G_{2}^{*}=\left(U_{1} \bullet U_{2}, E_{11} \bullet E_{21}, E_{12} \bullet E_{22}, \ldots, E_{1 n} \bullet E_{2 n}\right)$ is given by

$$
\left(M_{1} \bullet M_{2}, N_{11} \bullet N_{21}, N_{12} \bullet N_{22}, \ldots, N_{1 n} \bullet N_{2 n}\right)
$$

such that
$\left\{\begin{array}{l}\mu_{\left(M_{1} \bullet M_{2}\right)}^{P}(x y)=\left(\mu_{M_{1}}^{P} \bullet \mu_{M_{2}}^{P}\right)(x y)=\mu_{M_{1}}^{P}(x) \wedge \mu_{M_{2}}^{P}(y), \\ \mu_{\left(M_{1} \bullet M_{2}\right)}^{N}(x y)=\left(\mu_{M_{1}}^{N} \bullet \mu_{M_{2}}^{N}\right)(x y)=\mu_{M_{1}}^{N}(x) \vee \mu_{M_{2}}^{N}(y), \quad \forall x y \in U_{1} \times U_{2}\end{array}\right.$
$\left\{\begin{aligned} \mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{P}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{P} \bullet \mu_{N_{2 i}}^{P}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{P}(x) \wedge \mu_{N_{2 i}}^{P}\left(y_{1} y_{2}\right), \\ \mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{N}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{N} \bullet \mu_{N_{2 i}}^{N}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{N}(x) \vee \mu_{N_{2 i}}^{N}\left(y_{1} y_{2}\right), \\ & \forall x \in u_{1}, y_{1} y_{2} \in E_{2 i}\end{aligned}\right.$
$\left\{\begin{aligned} \mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{P}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{P} \bullet \mu_{N_{2 i}}^{P}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\mu_{N_{2 i}}^{P}\left(y_{1} y_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(x_{1} x_{2}\right), \\ \mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{N}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{N} \bullet \mu_{N_{2 i}}^{N}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\mu_{N_{2 i}}^{N}\left(y_{1} y_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(x_{1} x_{2}\right), \\ & \forall y_{1} y_{2} \in E_{2 i}, x_{1} x_{2} \in E_{1 i} .\end{aligned}\right.$

Example 6.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs shown in Figure 2 and lexicographic product $\check{G_{b 1}} \bullet \check{G_{b 2}}=\left(M_{1} \bullet\right.$ $\left.M_{2}, N_{11} \bullet N_{21}, N_{12} \bullet N_{22}\right)$ is as shown in Figure 8.

Figure 8: Lexicographic Product of Two BFGSs

Example 7.

$\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}\right)$ be BFGSs as shown in Figure 4 and their lexicographic product given by $\check{G_{b 1}} \bullet \breve{G_{b 2}}=\left(M_{1} \bullet M_{2}, N_{11} \bullet N_{21}, N_{12} \bullet N_{22}\right)$ is shown in Figure 9.

Figure 9: Lexicographic Product of Two BFGSs

Theorem 3.

Let $G^{*}=\left(U_{1} \bullet U_{2}, E_{11} \bullet E_{21}, E_{12} \bullet E_{22}, \ldots, E_{1 n} \bullet E_{2 n}\right)$ be lexicographic product of GSs $G_{1}^{*}=$ $\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Let $G_{b 1}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of G_{1}^{*} and G_{2}^{*}. Then $\left(M_{1} \bullet M_{2}, N_{11} \bullet\right.$ $\left.N_{21}, N_{12} \bullet N_{22}, \ldots, N_{1 n} \bullet N_{2 n}\right)$ is a BFGS of G^{*}.

Proof:

Case 1. When $u \in U_{1}, b_{1} b_{2} \in E_{2 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{P}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{P}(u) \wedge \mu_{N_{2 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{1}}^{P}(u) \wedge\left[\mu_{M_{2}}^{P}\left(b_{1}\right) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \bullet M_{2}\right)}^{P}\left(u b_{1}\right) \wedge \mu_{\left(M_{1} \bullet M_{2}\right)}^{P}\left(u b_{2}\right), \\
& \\
\mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{N}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{N}(u) \vee \mu_{N_{2 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{1}}^{N}(u) \vee\left[\mu_{M_{2}}^{N}\left(b_{1}\right) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \bullet M_{2}\right)}^{N}\left(u b_{1}\right) \vee \mu_{\left(M_{1} \bullet M_{2}\right)}^{N}\left(u b_{2}\right),
\end{aligned}
$$

for $u b_{1}, u b_{2} \in U_{1} \bullet U_{2}$.

Case 2. When $u_{1} u_{2} \in E_{2 i}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{P}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(b_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{2}}^{P}\left(u_{2}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \bullet M_{2}\right)}^{P}\left(b_{1} u_{1}\right) \wedge \mu_{\left(M_{1} \bullet M_{2}\right)}^{P}\left(b_{2} u_{2}\right), \\
\mu_{\left(N_{1 i} \bullet N_{2 i}\right)}^{N}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(b_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{2}}^{N}\left(u_{2}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \bullet M_{2}\right)}^{N}\left(b_{1} u_{1}\right) \vee \mu_{\left(M_{1} \bullet M_{2}\right)}^{N}\left(b_{2} u_{2}\right),
\end{aligned}
$$

for $b_{1} u_{1}, b_{2} u_{2} \in U_{1} \bullet U_{2}$.
Both cases hold for $i=1,2, \ldots, n$. This completes the proof.

Definition 9.

Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. The strong product $\check{G_{b 1}} \boxtimes \check{G_{b 2}}$ of $\check{G_{b 1}}$ and $\check{G_{b 2}}$ is then a $B F G S$ of $G_{1}^{*} \boxtimes G_{2}^{*}=\left(U_{1} \boxtimes U_{2}, E_{11} \boxtimes E_{21}, E_{12} \boxtimes E_{22}, \ldots, E_{1 n} \boxtimes\right.$ $\left.E_{2 n}\right)$ is given by

$$
\left(M_{1} \boxtimes M_{2}, \quad N_{11} \boxtimes N_{21}, \quad N_{12} \boxtimes N_{22}, \ldots, \quad N_{1 n} \boxtimes N_{2 n}\right)
$$

such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{P}(x y)=\left(\mu_{M_{1}}^{P} \boxtimes \mu_{M_{2}}^{P}\right)(x y)=\mu_{M_{1}}^{P}(x) \wedge \mu_{M_{2}}^{P}(y), \\
\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{N}(x y)=\left(\mu_{M_{1}}^{N} \boxtimes \mu_{M_{2}}^{N}\right)(x y)=\mu_{M_{1}}^{N}(x) \vee \mu_{M_{2}}^{N}(y), \forall x y \in U_{1} \times U_{2}
\end{array}\right. \\
& \left\{\begin{aligned}
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{P}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{P} \boxtimes \mu_{N_{2 i}}^{P}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{P}(x) \wedge \mu_{N_{2 i}}^{P}\left(y_{1} y_{2}\right), \\
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{N}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{N} \boxtimes \mu_{N_{2 i}}^{N}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{N}(x) \vee \mu_{N_{2 i}}^{N}\left(y_{1} y_{2}\right), \\
& \forall x \in u_{1}, y_{1} y_{2} \in E_{2 i}
\end{aligned}\right. \\
& \left\{\begin{aligned}
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{P}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)= & \left(\mu_{N_{1 i}}^{P} \boxtimes \mu_{N_{2 i}}^{P}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\mu_{M_{2}}^{P}(y) \wedge \mu_{N_{1 i}}^{P}\left(x_{1} x_{2}\right), \\
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{N}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)= & \left(\mu_{N_{1 i}}^{N} \boxtimes \mu_{N_{2 i}}^{N}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\mu_{M_{2}}^{N}(y) \vee \mu_{N_{1 i}}^{N}\left(x_{1} x_{2}\right), \\
& \forall y \in U_{2}, x_{1} x_{2} \in E_{1 i} .
\end{aligned}\right. \\
& \left\{\begin{aligned}
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{P}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{P} \boxtimes \mu_{N_{2 i}}^{P}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\mu_{N_{2 i}}^{P}\left(y_{1} y_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(x_{1} x_{2}\right), \\
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{N}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{N} \boxtimes \mu_{N_{2 i}}^{N}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\mu_{N_{2 i}}^{N}\left(y_{1} y_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(x_{1} x_{2}\right), \\
& \forall y_{1} y_{2} \in E_{2 i}, x_{1} x_{2} \in E_{1 i} .
\end{aligned}\right.
\end{aligned}
$$

Example 8.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs as shown in Figure 2 and strong product $\check{G_{b 1}} \boxtimes \check{G_{b 2}}=\left(M_{1} \boxtimes\right.$ $\left.M_{2}, \quad N_{11} \boxtimes N_{21}, \quad N_{12} \boxtimes N_{22}\right)$ is shown in Figure 10.

Figure 10: Strong Product of Two BFGSs

Example 9.

$\breve{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}\right)$ and $\breve{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}\right)$ be BFGSs as shown in Figure 4 and their strong product given by $\check{G_{b 1}} \boxtimes \breve{G_{b 2}}=\left(M_{1} \boxtimes M_{2}, \quad N_{11} \boxtimes N_{21}, N_{12} \boxtimes N_{22}\right)$ is as shown in Figure 11.

Theorem 4.

Let $G^{*}=\left(U_{1} \boxtimes U_{2}, \quad E_{11} \boxtimes E_{21}, \quad E_{12} \boxtimes E_{22}, \ldots, \quad E_{1 n} \boxtimes E_{2 n}\right)$ be strong product of GSs $G_{1}^{*}=$ $\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Let $G_{b 1}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of G_{1}^{*} and G_{2}^{*}. Then $\left(M_{1} \boxtimes M_{2}, N_{11} \boxtimes\right.$ $\left.N_{21}, N_{12} \boxtimes N_{22}, \ldots, N_{1 n} \boxtimes N_{2 n}\right)$ is a BFGS of G^{*}.

Proof:

Case 1. When $u \in U_{1}, b_{1} b_{2} \in E_{2 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{P}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{P}(u) \wedge \mu_{N_{N_{2 i}}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{1}}^{P}(u) \wedge\left[\mu_{M_{2}}^{P}\left(b_{1}\right) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{P}\left(u b_{1}\right) \wedge \mu_{\left(M_{1} \boxtimes M_{2}\right)}^{P}\left(u b_{2}\right),
\end{aligned}
$$

Figure 11: Strong Product of Two BFGSs

$$
\begin{aligned}
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{N}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{N}(u) \vee \mu_{N_{2 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{1}}^{N}(u) \vee\left[\mu_{M_{2}}^{N}\left(b_{1}\right) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{N}\left(u b_{1}\right) \vee \mu_{\left(M_{1} \boxtimes M_{2}\right)}^{N}\left(u b_{2}\right),
\end{aligned}
$$

for $u b_{1}, u b_{2} \in U_{1} \boxtimes U_{2}$.
Case 2. When $u \in U_{2}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{P}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =\mu_{M_{2}}^{P}(u) \wedge \mu_{N_{1 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{2}}^{P}(u) \wedge\left[\mu_{M_{1}}^{P}\left(b_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{P}(u) \wedge \mu_{M_{1}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{2}}^{P}(u) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{P}\left(b_{1} u\right) \wedge \mu_{\left(M_{1} \boxtimes M_{2}\right)}^{P}\left(b_{2} u\right), \\
& \\
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{N}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =\mu_{M_{2}}^{N}(u) \vee \mu_{N_{1 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{2}}^{N}(u) \vee\left[\mu_{M_{1}}^{N}\left(b_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{N}(u) \vee \mu_{M_{1}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{2}}^{N}(u) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{N}\left(b_{1} u\right) \vee \mu_{\left(M_{1} \boxtimes M_{2}\right)}^{N}\left(b_{2} u\right),
\end{aligned}
$$

for $b_{1} u, b_{2} u \in U_{1} \boxtimes U_{2}$.

Case 3. When $u_{1} u_{2} \in E_{2 i}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
\left.\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{P}\right)\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(b_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{2}}^{P}\left(u_{2}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{P}\left(b_{1} u_{1}\right) \wedge \mu_{\left(M_{1} \boxtimes M_{2}\right)}^{P}\left(b_{2} u_{2}\right), \\
\mu_{\left(N_{1 i} \boxtimes N_{2 i}\right)}^{N}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(b_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{2}}^{N}\left(u_{2}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \boxtimes M_{2}\right)}^{N}\left(b_{1} u_{1}\right) \vee \mu_{\left(M_{1} \boxtimes M_{2}\right)}^{N}\left(b_{2} u_{2}\right),
\end{aligned}
$$

for $b_{1} u_{1}, \quad b_{2} u_{2} \in U_{1} \boxtimes U_{2}$.
All three cases hold for $i=1,2, \ldots, n$. This completes the proof.

Definition 10.

Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of $G S s G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. The composition $\check{G_{b 1}} \circ \check{G_{b 2}}$, of $\check{G_{b 1}}$ and $\check{G_{b 2}}$ is then a BFGS of $G_{1}^{*} \circ G_{2}^{*}=\left(U_{1} \circ U_{2}, E_{11} \circ E_{21}, E_{12} \circ E_{22}, \ldots, E_{1 n} \circ E_{2 n}\right)$ is given by

$$
\left(M_{1} \circ M_{2}, N_{11} \circ N_{21}, N_{12} \circ N_{22}, \ldots, N_{1 n} \circ N_{2 n}\right)
$$

such that

$$
\left\{\begin{array}{l}
\mu_{\left(M_{1} \circ M_{2}\right)}^{P}(x y)=\left(\mu_{M_{1}}^{P} \circ \mu_{M_{2}}^{P}\right)(x y)=\mu_{M_{1}}^{P}(x) \wedge \mu_{M_{2}}^{P}(y), \\
\mu_{\left(M_{1} \circ M_{2}\right)}^{N}(x y)=\left(\mu_{M_{1}}^{N} \circ \mu_{M_{2}}^{N}\right)(x y)=\mu_{M_{1}}^{N}(x) \vee \mu_{M_{2}}^{N}(y), \forall x y \in U_{1} \times U_{2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{P}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(\mu_{N_{1 i}}^{P} \circ \mu_{N_{2 i}}^{P}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{P}(x) \wedge \mu_{N_{2 i}}^{P}\left(y_{1} y_{2}\right), \\
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{N}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(\mu_{N_{1 i}}^{N} \circ \mu_{N_{2 i}}^{N}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\mu_{M_{1}}^{N}(x) \vee \mu_{N_{2 i}}^{N}\left(y_{1} y_{2}\right), \forall x \in U_{1}, y_{1} y_{2} \in E_{2 i}
\end{array}\right.
$$

$$
\left\{\begin{aligned}
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{P}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(\mu_{N_{1 i}}^{P} \circ \mu_{N_{2 i}}^{P}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)= & \mu_{M_{2}}^{P}(y) \wedge \mu_{N_{1 i}}^{P}\left(x_{1} x_{2}\right), \\
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{N}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(\mu_{N_{1 i}}^{N} \circ \mu_{N_{2 i}}^{N}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)= & \mu_{M_{2}}^{N}(y) \vee \mu_{N_{1 i}}^{N}\left(x_{1} x_{2}\right), \\
& \forall y \in U_{2}, x_{1} x_{2} \in E_{1 i}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{P}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i}}^{P} \circ \mu_{N_{2 i}}^{P}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\mu_{M_{2}}^{P}\left(y_{1}\right) \wedge \mu_{M_{2}}^{P}\left(y_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(x_{1} x_{2}\right), \\
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{N}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)= & \left(\mu_{N_{1 i} \circ}^{N} \circ \mu_{N_{2 i}}^{N}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right) \\
= & \mu_{M_{2}}^{N}\left(y_{1}\right) \vee \mu_{M_{2}}^{N}\left(y_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(x_{1} x_{2}\right), \\
& \forall x_{1} x_{2} \in E_{1 i}, y_{1}, y_{2} \in U_{2} \text { such that } y_{1} \neq y_{2} .
\end{aligned}\right.
$$

Example 10.

Consider $\check{G_{b 1}}$ and $\check{G_{b 2}}$ as shown in Figure 2. Their composition represented by $\check{G_{b 1}} \circ \check{G_{b 2}}=$ $\left(M_{1} \circ M_{2}, N_{11} \circ N_{21}, N_{12} \circ N_{22}\right)$ is shown in Figure 12.

Figure 12: Composition of Two BFGSs

Example 11.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs as shown in Figure 4. Their composition represented by $\check{G_{b 1}} \circ \check{G_{b 2}}=$ $\left(M_{1} \circ M_{2}, N_{11} \circ N_{21}, N_{12} \circ N_{22}\right)$ is shown in Figure 13.

Figure 13: Composition of Two BFGSs

Theorem 5.

Let $G^{*}=\left(U_{1} \circ U_{2}, E_{11} \circ E_{21}, E_{12} \circ E_{22}, \ldots, E_{1 n} \circ E_{2 n}\right)$ be the composition of GSs $G_{1}^{*}=$ $\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $G_{b 2}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of G_{1}^{*} and G_{2}^{*}. Then $\widetilde{G}_{b 1} \circ G_{b 2}=$ $\left(M_{1} \circ M_{2}, N_{11} \circ N_{21}, N_{12} \circ N_{22}, \ldots, N_{1 n} \circ N_{2 n}\right)$ is a BFGS of G^{*}.

Proof:

Case 1. When $u \in U_{1}, b_{1} b_{2} \in E_{2 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{P}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{P}(u) \wedge \mu_{N_{2 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{1}}^{P}(u) \wedge\left[\mu_{M_{2}}^{P}\left(b_{1}\right) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}(u) \wedge \mu_{M_{2}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \circ M_{2}\right)}^{P}\left(u b_{1}\right) \wedge \mu_{\left(M_{1} \circ M_{2}\right)}^{P}\left(u b_{2}\right), \\
& \\
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{N}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =\mu_{M_{1}}^{N}(u) \vee \mu_{N_{2 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{1}}^{N}(u) \vee\left[\mu_{M_{2}}^{N}\left(b_{1}\right) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}(u) \vee \mu_{M_{2}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \circ M_{2}\right)}^{N}\left(u b_{1}\right) \vee \mu_{\left(M_{1} \circ M_{2}\right)}^{N}\left(u b_{2}\right),
\end{aligned}
$$

for $u b_{1}, u b_{2} \in U_{1} \circ U_{2}$.
Case 2. When $u \in U_{2}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{P}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =\mu_{M_{2}}^{P}(u) \wedge \mu_{N_{1 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{2}}^{P}(u) \wedge\left[\mu_{M_{1}}^{P}\left(b_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{P}(u) \wedge \mu_{M_{1}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{2}}^{P}(u) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \circ M_{2}\right)}^{P}\left(b_{1} u\right) \wedge \mu_{\left(M_{1} \circ M_{2}\right)}^{P}\left(b_{2} u\right), \\
& \\
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{N}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =\mu_{M_{2}}^{N}(u) \vee \mu_{N_{1 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{2}}^{N}(u) \vee\left[\mu_{M_{1}}^{N}\left(b_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{N}(u) \vee \mu_{M_{1}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{2}}^{N}(u) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \circ M_{2}\right)}^{N}\left(b_{1} u\right) \vee \mu_{\left(M_{1} \circ M_{2}\right)}^{N}\left(b_{2} u\right),
\end{aligned}
$$

for $b_{1} u, b_{2} u \in U_{1} \circ U_{2}$.
Case 3. When $b_{1} b_{2} \in E_{1 i}, u_{1}, u_{2} \in U_{2}$ such that $u_{1} \neq u_{2}$,

$$
\begin{aligned}
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{P}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right) \wedge \mu_{N_{1 i}}^{P}\left(b_{1} b_{2}\right) \\
& \leq \mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right) \wedge\left[\mu_{M_{1}}^{P}\left(b_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{1}}^{P}\left(b_{1}\right)\right] \wedge\left[\mu_{M_{2}}^{P}\left(u_{2}\right) \wedge \mu_{M_{1}}^{P}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \circ M_{2}\right)}^{P}\left(b_{1} u_{1}\right) \wedge \mu_{\left(M_{1} \circ M_{2}\right)}^{P}\left(b_{2} u_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\mu_{\left(N_{1 i} \circ N_{2 i}\right)}^{N}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right) \vee \mu_{N_{1 i}}^{N}\left(b_{1} b_{2}\right) \\
& \geq \mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right) \vee\left[\mu_{M_{1}}^{N}\left(b_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{1}}^{N}\left(b_{1}\right)\right] \vee\left[\mu_{M_{2}}^{N}\left(u_{2}\right) \vee \mu_{M_{1}}^{N}\left(b_{2}\right)\right] \\
& =\mu_{\left(M_{1} \circ M_{2}\right)}^{N}\left(b_{1} u_{1}\right) \vee \mu_{\left(M_{1} \circ M_{2}\right)}^{N}\left(b_{2} u_{2}\right),
\end{aligned}
$$

for $b_{1} u_{1}, b_{2} u_{2} \in U_{1} \circ U_{2}$.
All three cases hold for $i=1,2, \ldots, n$. This completes the proof.

Definition 11.

Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$ and let $U_{1} \cap U_{2}=\emptyset$. The union $\check{G_{b 1}} \cup \check{G_{b 2}}$, of $\check{G_{b 1}}$ and $\check{G_{b 2}}$ is then a BFGS of $G_{1}^{*} \cup G_{2}^{*}=\left(U_{1} \cup U_{2}, E_{11} \cup E_{21}, E_{12} \cup\right.$ $\left.E_{22}, \ldots, E_{1 n} \cup E_{2 n}\right)$ is given by

$$
\left(M_{1} \cup M_{2}, \quad N_{11} \cup N_{21}, \quad N_{12} \cup N_{22}, \ldots, \quad N_{1 n} \cup N_{2 n}\right)
$$

such that $M_{1} \cup M_{2}$ is defined by

$$
\begin{gathered}
\mu_{\left(M_{1} \cup M_{2}\right)}^{P}(x)=\left(\mu_{M_{1}}^{P} \cup \mu_{M_{2}}^{P}\right)(x)=\mu_{M_{1}}^{P}(x) \vee \mu_{M_{2}}^{P}(x), \\
\mu_{\left(M_{1} \cup M_{2}\right)}^{N}(x)=\left(\mu_{M_{1}}^{N} \cup \mu_{M_{2}}^{N}\right)(x)=\mu_{M_{1}}^{N}(x) \wedge \mu_{M_{2}}^{N}(x) \forall x \in U_{1} \cup U_{2}
\end{gathered}
$$

(assuming $\mu_{M_{j}}^{P}(x)=0, \mu_{M_{j}}^{N}(x)=0$ if $x \notin U_{j}, j=1,2$)
and $N_{1 i} \cup N_{2 i}$ for $i=1,2, \ldots, n$, is defined by

$$
\begin{gathered}
\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{P}(x y)=\left(\mu_{N_{1 i}}^{P} \cup \mu_{N_{2 i}}^{P}\right)(x y)=\mu_{N_{1 i}}^{P}(x y) \vee \mu_{N_{2 i}}^{P}(x y), \\
\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{N}(x)=\left(\mu_{N_{1 i}}^{N} \cup \mu_{N_{2 i}}^{N}\right)(x y)=\mu_{N_{1 i}}^{N}(x) \wedge \mu_{N_{2 i}}^{N}(x) \forall x y \in E_{1 i} \cup E_{2 i}
\end{gathered}
$$

(assuming $\mu_{N_{j i}}^{P}(x y)=0, \mu_{N_{j i}}^{N}(x y)=0$ if $x y \notin E_{j i}, j=1,2$).

Example 12.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs as shown in Figure 2. Their union represented by $\check{G_{b 1}} \cup \check{G_{b 2}}=$ $\left(M_{1} \cup M_{2}, N_{11} \cup N_{21}, N_{12} \cup N_{22}\right)$ is shown in Figure 14.

Figure 14: Union of Two BFGSs

Example 13.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs as shown in Figure 4. Their union represented by $\check{G_{b 1}} \cup \check{G_{b 2}}=$ $\left(M_{1} \cup M_{2}, N_{11} \cup N_{21}, N_{12} \cup N_{22}\right)$ is shown in Figure 15.

Figure 15: Union of Two BFGSs

Theorem 6.
Let $G^{*}=\left(U_{1} \cup U_{2}, E_{11} \cup E_{21}, E_{12} \cup E_{22}, \ldots, E_{1 n} \cup E_{2 n}\right)$ be the union of GSs $G_{1}^{*}=$ $\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Let $G_{b 1}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of G_{1}^{*} and G_{2}^{*}. Then $\check{G_{b 1}} \cup \widetilde{G_{b 2}}=$ $\left(M_{1} \cup M_{2}, N_{11} \cup N_{21}, N_{12} \cup N_{22}, \ldots, N_{1 n} \cup N_{2 n}\right)$ is a BFGS of G^{*}.

Proof:

Let $u_{1} u_{2} \in E_{1 i} \cup E_{2 i}$.
Case 1. When $u_{1}, u_{2} \in U_{1}$, then by definition 11

$$
\mu_{M_{2}}^{P}\left(u_{1}\right)=\mu_{M_{2}}^{P}\left(u_{2}\right)=\mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right)=0, \mu_{M_{2}}^{N}\left(u_{1}\right)=\mu_{M_{2}}^{N}\left(u_{2}\right)=\mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right)=0,
$$

so we have

$$
\begin{aligned}
\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{P}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right) \vee \mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \\
& =\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right) \vee 0 \\
& \leq\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \wedge \mu_{M_{1}}^{P}\left(u_{2}\right)\right] \vee 0 \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee 0\right] \wedge\left[\mu_{M_{1}}^{P}\left(u_{2}\right) \vee 0\right] \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee \mu_{M_{2}}^{P}\left(u_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(u_{2}\right) \vee \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1} \cup M_{2}\right)}^{P}\left(u_{1}\right) \wedge \mu_{\left(M_{1} \cup M_{2}\right)}^{P}\left(u_{2}\right), \\
\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{N}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right) \wedge \mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \\
& =\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right) \wedge 0 \\
& \geq\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \vee \mu_{M_{1}}^{N}\left(u_{2}\right)\right] \wedge 0 \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge 0\right] \vee\left[\mu_{M_{1}}^{N}\left(u_{2}\right) \wedge 0\right] \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge \mu_{M_{2}}^{N}\left(u_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(u_{2}\right) \wedge \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1} \cup M_{2}\right)}^{N}\left(u_{1}\right) \vee \mu_{\left(M_{1} \cup M_{2}\right)}^{N}\left(u_{2}\right),
\end{aligned}
$$

for $u_{1}, u_{2} \in U_{1} \cup U_{2}$.

Case 2 . When $u_{1}, u_{2} \in U_{2}$, then by definition 11

$$
\mu_{M_{1}}^{P}\left(u_{1}\right)=\mu_{M_{1}}^{P}\left(u_{2}\right)=\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right)=0, \mu_{M_{1}}^{N}\left(u_{1}\right)=\mu_{M_{1}}^{N}\left(u_{2}\right)=\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right)=0
$$

so we have

$$
\begin{aligned}
\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{P}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right) \vee \mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \\
& =0 \vee \mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \\
& \leq 0 \vee\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& =\left[0 \vee \mu_{M_{2}}^{P}\left(u_{1}\right)\right] \wedge\left[0 \vee \mu_{M_{1}}^{P}\left(u_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee \mu_{M_{2}}^{P}\left(u_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(u_{2}\right) \vee \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1} \cup M_{2}\right)}^{P}\left(u_{1}\right) \wedge \mu_{\left(M_{1} \cup M_{2}\right)}^{P}\left(u_{2}\right), \\
\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{N}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right) \wedge \mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \\
& =0 \wedge \mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \\
& \geq 0 \wedge\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\left[0 \wedge \mu_{M_{2}}^{N}\left(u_{1}\right)\right] \vee\left[0 \wedge \mu_{M_{1}}^{N}\left(u_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge \mu_{M_{2}}^{N}\left(u_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(u_{2}\right) \wedge \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1} \cup M_{2}\right)}^{N}\left(u_{1}\right) \vee \mu_{\left(M_{1} \cup M_{2}\right)}^{N}\left(u_{2}\right),
\end{aligned}
$$

for $u_{1}, u_{2} \in U_{1} \cup U_{2}$.
Both cases hold for $i=1,2, \ldots, n$. This completes the proof.

Theorem 7.

If $G^{*}=\left(U_{1} \cup U_{2}, E_{11} \cup E_{21}, E_{12} \cup E_{22}, \ldots, E_{1 n} \cup E_{2 n}\right)$ is the union of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Then every BFGS $\breve{G}_{b}=\left(M, N_{1}, N_{2}, \ldots, N_{n}\right)$ of G^{*} is the union of a BFGS $G_{b 1}$ of G_{1}^{*} and a BFGS $G_{b 2}$ of G_{2}^{*}.

Proof:

We define $M_{1}, \quad M_{2}, N_{1 i}$ and $N_{2 i}$ for $i=1,2, \ldots, n$ as

$$
\begin{array}{ll}
\mu_{M_{1}}^{P}(u)=\mu_{M}^{P}(u), \mu_{M_{1}}^{N}(u)=\mu_{M}^{N}(u), & \text { if } u \in U_{1} \\
\mu_{M_{2}}^{P}(u)=\mu_{M}^{P}(u), \mu_{M_{2}}^{N}(u)=\mu_{M}^{N}(u), & \text { if } u \in U_{2} \\
\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{P}\left(u_{1} u_{2}\right), \mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{N}\left(u_{1} u_{2}\right), & \text { if } u_{1} u_{2} \in E_{1} i \\
\mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{P}\left(u_{1} u_{2}\right), \mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{N}\left(u_{1} u_{2}\right), & \text { if } u_{1} u_{2} \in E_{2} i .
\end{array}
$$

Then, $M=M_{1} \cup M_{2}$ and $N_{i}=N_{1 i} \cup N_{2 i}, i=1,2, \ldots, n$.
Now for $u_{1} u_{2} \in E_{j i}, j=1,2$ and $i=1,2, \ldots, n$
$\mu_{N_{j i}}^{P}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{P}\left(u_{1} u_{2}\right) \leq \mu_{M}^{P}\left(u_{1}\right) \wedge \mu_{M}^{P}\left(u_{2}\right)=\mu_{M_{j}}^{P}\left(u_{1}\right) \wedge \mu_{M_{j}}^{P}\left(u_{2}\right)$
$\mu_{N_{j i}}^{N}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{N}\left(u_{1} u_{2}\right) \geq \mu_{M}^{N}\left(u_{1}\right) \vee \mu_{M}^{N}\left(u_{2}\right)=\mu_{M_{j}}^{N}\left(u_{1}\right) \vee \mu_{M_{j}}^{N}\left(u_{2}\right)$,
i.e.,
$\check{G_{b j}}=\left(M_{j}, N_{j 1}, N_{j 2}, \ldots, N_{j n}\right)$ is a $B F G S$ of $G_{j}^{*}, j=1,2$.

Thus, $\check{G}_{b}=\left(M, N_{1}, N_{2}, \ldots, N_{n}\right)$, a BFGS of $G^{*}=G_{1} \cup G_{2}$, is the union of a BFGS of G_{1}^{*} and a BFGS of G_{2}^{*}.

Definition 12.

Let $\check{G_{b 1}}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of $G S s G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$ and let $U_{1} \cap U_{2}=\emptyset$. The join $\check{G_{b 1}}+\check{G_{b 2}}$ of $\check{G} \check{b 1}$ and $\check{G_{b 2}}$, is then a BFGS of $G_{1}^{*}+G_{2}^{*}=\left(U_{1}+U_{2}, E_{11}+E_{21}, E_{12}+\right.$ $\left.E_{22}, \ldots, E_{1 n}+E_{2 n}\right)$ is given by

$$
\left(M_{1}+M_{2}, N_{11}+N_{21}, N_{12}+N_{22}, \ldots, N_{1 n}+N_{2 n}\right)
$$

such that $M_{1}+M_{2}$ is defined by

$$
\begin{gathered}
\mu_{\left(M_{1}+M_{2}\right)}^{P}(x)=\mu_{\left(M_{1} \cup M_{2}\right)}^{P}(x) \\
\mu_{\left(M_{1}+M_{2}\right)}^{N}(x)=\mu_{\left(M_{1} \cup M_{2}\right)}^{N}(x) \forall x \in U_{1} \cup U_{2}
\end{gathered}
$$

$N_{1 i}+N_{2 i}$ for $i=1,2, \ldots, n$ is defined by

$$
\begin{gathered}
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{P}(x y)=\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{P}(x y) \\
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{N}(x)=\mu_{\left(N_{1 i} \cup N_{2 i}\right)}^{N}(x) \forall x y \in E_{1 i} \cup E_{2 i}
\end{gathered}
$$

and

$$
\begin{gathered}
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{P}(x y)=\left(\mu_{N_{1 i}}^{P}+\mu_{N_{2 i}}^{P}\right)(x y)=\mu_{M_{1}}^{P}(x) \wedge \mu_{M_{2}}^{P}(y), \\
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{N}(x)=\left(\mu_{N_{1 i}}^{N}+\mu_{N_{2 i}}^{N}\right)(x y)=\mu_{M_{1}}^{N}(x) \vee \mu_{M_{2}}^{N}(y) \forall x \in U_{1}, y \in U_{2} .
\end{gathered}
$$

Example 14.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs as shown in Figure 2. Their join represented by $\check{G_{b 1}}+\check{G_{b 2}}=$ $\left(M_{1}+M_{2}, N_{11}+N_{21}, N_{12}+N_{22}\right)$ is shown in Figure 16.

Figure 16: Join of Two BFGSs

Example 15.

Let $\check{G_{b 1}}$ and $\check{G_{b 2}}$ be BFGSs as shown in Figure 4. Their join represented by $\check{G_{b 1}}+\check{G_{b 2}}=$ $\left(M_{1}+M_{2}, N_{11}+N_{21}, N_{12}+N_{22}\right)$ is shown in Figure 17.

Figure 17: Join of Two BFGSs

Theorem 8.

Let $G^{*}=\left(U_{1}+U_{2}, E_{11}+E_{21}, E_{12}+E_{22}, \ldots, E_{1 n}+E_{2 n}\right)$ be the join of GSs $G_{1}^{*}=$ $\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$. Let $G_{b 1}=\left(M_{1}, N_{11}, N_{12}, \ldots, N_{1 n}\right)$ and $\check{G_{b 2}}=\left(M_{2}, N_{21}, N_{22}, \ldots, N_{2 n}\right)$ be respective BFGSs of G_{1}^{*} and G_{2}^{*}. Then $\check{G_{b 1}}+\check{G_{b 2}}=$ $\left(M_{1}+M_{2}, N_{11}+N_{21}, N_{12}+N_{22}, \ldots, N_{1 n}+N_{2 n}\right)$ is a BFGS of G^{*}.

Proof:

Let $u_{1} u_{2} \in E_{1 i}+E_{2 i}$.
Case 1 . When $u_{1}, u_{2} \in U_{1}$, then by definition 12

$$
\mu_{M_{2}}^{P}\left(u_{1}\right)=\mu_{M_{2}}^{P}\left(u_{2}\right)=\mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right)=0, \mu_{M_{2}}^{N}\left(u_{1}\right)=\mu_{M_{2}}^{N}\left(u_{2}\right)=\mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right)=0
$$

so we have

$$
\begin{aligned}
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{P}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right) \vee \mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \\
& =\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right) \vee 0 \\
& \leq\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \wedge \mu_{M_{1}}^{P}\left(u_{2}\right)\right] \vee 0 \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee 0\right] \wedge\left[\mu_{M_{1}}^{P}\left(u_{2}\right) \vee 0\right] \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee \mu_{M_{2}}^{P}\left(u_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(u_{2}\right) \vee \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1}+M_{2}\right)}^{P}\left(u_{1}\right) \wedge \mu_{\left(M_{1}+M_{2}\right)}^{P}\left(u_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{N}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right) \wedge \mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \\
& =\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right) \wedge 0 \\
& \geq\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \vee \mu_{M_{1}}^{N}\left(u_{2}\right)\right] \wedge 0 \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge 0\right] \vee\left[\mu_{M_{1}}^{N}\left(u_{2}\right) \wedge 0\right] \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge \mu_{M_{2}}^{N}\left(u_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(u_{2}\right) \wedge \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1}+M_{2}\right)}^{N}\left(u_{1}\right) \vee \mu_{\left(M_{1}+M_{2}\right)}^{N}\left(u_{2}\right),
\end{aligned}
$$

for $u_{1}, u_{2} \in U_{1}+U_{2}$.
Case 2 . When $u_{1}, u_{2} \in U_{2}$, then by definition 12

$$
\mu_{M_{1}}^{P}\left(u_{1}\right)=\mu_{M_{1}}^{P}\left(u_{2}\right)=\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right)=0, \mu_{M_{1}}^{N}\left(u_{1}\right)=\mu_{M_{1}}^{N}\left(u_{2}\right)=\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right)=0,
$$

so we have

$$
\begin{aligned}
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{P}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{P}\left(u_{1} u_{2}\right) \vee \mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \\
& =0 \vee \mu_{N_{2 i}}^{P}\left(u_{1} u_{2}\right) \\
& \leq 0 \vee\left[\mu_{M_{2}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& =\left[0 \vee \mu_{M_{2}}^{P}\left(u_{1}\right)\right] \wedge\left[0 \vee \mu_{M_{1}}^{P}\left(u_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee \mu_{M_{2}}^{P}\left(u_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(u_{2}\right) \vee \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& \left.=\mu_{\left(M_{1}+M_{2}\right)}^{P}\left(u_{1}\right) \wedge \mu_{\left(M_{1}+M_{2}\right)}^{P} u_{2}\right), \\
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{N}\left(u_{1} u_{2}\right) & =\mu_{N_{1 i}}^{N}\left(u_{1} u_{2}\right) \wedge \mu_{N_{2 i}}^{N}\left(u_{1} u_{2}\right) \\
& =0 \wedge \mu_{N_{N_{2 i}}}^{N}\left(u_{1} u_{2}\right) \\
& \geq 0 \wedge\left[\mu_{M_{2}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\left[0 \wedge \mu_{M_{2}}^{N}\left(u_{1}\right)\right] \vee\left[0 \wedge \mu_{M_{1}}^{N}\left(u_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge \mu_{M_{2}}^{N}\left(u_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(u_{2}\right) \wedge \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1}+M_{2}\right)}^{N}\left(u_{1}\right) \vee \mu_{\left(M_{1}+M_{2}\right)}^{N}\left(u_{2}\right),
\end{aligned}
$$

for $u_{1}, u_{2} \in U_{1}+U_{2}$.
Case 3 . When $u_{1} \in U_{1}, u_{2} \in U_{2}$ then by definition 12

$$
\mu_{M_{1}}^{P}\left(u_{2}\right)=\mu_{M_{2}}^{P}\left(u_{1}\right)=\mu_{M_{1}}^{N}\left(u_{2}\right)=\mu_{M_{2}}^{N}\left(u_{1}\right)=0
$$

and we have

$$
\begin{aligned}
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{P}\left(u_{1} u_{2}\right) & =\mu_{M_{1}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right) \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee 0\right] \wedge\left[0 \vee \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{P}\left(u_{1}\right) \vee \mu_{M_{2}}^{P}\left(u_{1}\right)\right] \wedge\left[\mu_{M_{1}}^{P}\left(u_{2}\right) \vee \mu_{M_{2}}^{P}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1}+M_{2}\right)}^{P}\left(u_{1}\right) \wedge \mu_{\left(M_{1}+M_{2}\right)}^{P}\left(u_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\mu_{\left(N_{1 i}+N_{2 i}\right)}^{N}\left(u_{1} u_{2}\right) & =\mu_{M_{1}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right) \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge 0\right] \vee\left[0 \wedge \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\left[\mu_{M_{1}}^{N}\left(u_{1}\right) \wedge \mu_{M_{2}}^{N}\left(u_{1}\right)\right] \vee\left[\mu_{M_{1}}^{N}\left(u_{2}\right) \wedge \mu_{M_{2}}^{N}\left(u_{2}\right)\right] \\
& =\mu_{\left(M_{1}+M_{2}\right)}^{N}\left(u_{1}\right) \vee \mu_{\left(M_{1}+M_{2}\right)}^{N}\left(u_{2}\right)
\end{aligned}
$$

for $u_{1}, u_{2} \in U_{1}+U_{2}$.
All three cases hold for $i=1,2, \ldots, n$. This completes the proof.

Theorem 9.

If $G^{*}=\left(U_{1}+U_{2}, E_{11}+E_{21}, E_{12}+E_{22}, \ldots, E_{1 n}+E_{2 n}\right)$ is the join of $G S s G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \ldots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \ldots, E_{2 n}\right)$ and $\check{G}_{b}=\left(M, N_{1}, N_{2}, \ldots, N_{n}\right)$ is a strong BFGS of G^{*} Then \check{G}_{b} is the join of $\check{G_{b 1}}$, a strong BFGS of G_{1}^{*}, and $\check{G_{b 2}}$, a strong BFGS of G_{2}^{*}.

Proof:

Let define M_{j} and $N_{j i}$ for $i=1,2, \ldots, n$ and $j=1,2$ as

$$
\begin{array}{ll}
\mu_{M_{j}}^{P}(u)=\mu_{M}^{P}(u), \mu_{M_{j}}^{N}(u)=\mu_{M}^{N}(u), & \text { if } u \in U_{j} \\
\mu_{N_{j i}}^{P}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{P}\left(u_{1} u_{2}\right), \mu_{N_{j i}}^{N}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{N}\left(u_{1} u_{2}\right), & \text { if } u_{1} u_{2} \in E_{j i} .
\end{array}
$$

By similar way as in the proof of Theorem 7, for $u_{1} u_{2} \in E_{j i}, j=1,2$ and $i=1,2, \ldots, n$

$$
\begin{gathered}
\mu_{N_{j i}}^{P}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{P}\left(u_{1} u_{2}\right)=\mu_{M}^{P}\left(u_{1}\right) \wedge \mu_{M}^{P}\left(u_{2}\right)=\mu_{M_{j}}^{P}\left(u_{1}\right) \wedge \mu_{M_{j}}^{P}\left(u_{2}\right) \\
\mu_{N_{j i}}^{N}\left(u_{1} u_{2}\right)=\mu_{N_{i}}^{N}\left(u_{1} u_{2}\right)=\mu_{M}^{N}\left(u_{1}\right) \vee \mu_{M}^{N}\left(u_{2}\right)=\mu_{M_{j}}^{N}\left(u_{1}\right) \vee \mu_{M_{j}}^{N}\left(u_{2}\right) .
\end{gathered}
$$

So $\check{G_{b j}}=\left(M_{j}, N_{j 1}, N_{j 2}, \ldots, N_{j n}\right)$ is a strong BFGS of $G_{j}^{*}, j=1,2$.
Moreover, \breve{G}_{b} is the join of $\check{G_{b 1}}$ and $G_{b 2}$ as shown in the following.
Using definitions 11 and $12, M=M_{1} \cup M_{2}=M_{1}+M_{2}$ and

$$
N_{i}=N_{1 i} \cup N_{2 i}=N_{1 i}+N_{2 i}, \forall u_{1} u_{2} \in E_{1 i} \cup E_{2 i} .
$$

When $u_{1} u_{2} \in E_{1 i}+E_{2 i} \backslash\left(E_{1 i} \cup E_{2 i}\right)$, i.e., $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$

$$
\begin{aligned}
& \mu_{N_{i}}^{P}\left(u_{1} u_{2}\right)=\mu_{M}^{P}\left(u_{1}\right) \wedge \mu_{M}^{P}\left(u_{2}\right)=\mu_{M_{1}}^{P}\left(u_{1}\right) \wedge \mu_{M_{2}}^{P}\left(u_{2}\right)=\mu_{N_{1 i}+N_{2 i}}^{P}\left(u_{1} u_{2}\right) \\
& \mu_{N_{i}}^{N}\left(u_{1} u_{2}\right)=\mu_{M}^{N}\left(u_{1}\right) \vee \mu_{M}^{N}\left(u_{2}\right)=\mu_{M_{1}}^{N}\left(u_{1}\right) \vee \mu_{M_{2}}^{N}\left(u_{2}\right)=\mu_{N_{1 i}+N_{2 i}}^{N}\left(u_{1} u_{2}\right)
\end{aligned}
$$

There are similar calculations when $u_{1} \in U_{2}$ and $u_{2} \in U_{1}$. This is true for $i=1,2, \ldots, n$. This ends the proof.

4. Conclusions

Graph theoretical concepts are widely used to study and model various applications in different areas. However, in many cases, some aspects of a graph-theoretic problem may be vague or uncertain. It is natural to deal with the vagueness and uncertainty using the methods of fuzzy sets or bipolar fuzzy sets which have shown advantages in handling vagueness and uncertainty
than fuzzy sets. So we have applied the concept of bipolar fuzzy sets to graph structures. We have discussed some operations on bipolar fuzzy graph structures. We are extending our work to: (1) Bipolar fuzzy soft graph structures, (2) Soft graph structures, (3) Rough fuzzy soft graph structures, and (4) Roughness in fuzzy graph structures.

Acknowledgment:

The authors are thankful to the referees and Professor Aliakbar Montazer Haghighi for their valuable comments and suggestions.

REFERENCES

Akram, M. (2011). Bipolar fuzzy graphs, Information Sciences, Vol. 181, pp. 5548-5564.
Akram, M. (2013). Bipolar fuzzy graphs with applications, Knowledge-Based Systems, Vol. 39, pp. 1-8.
Akram, M. and Dudek, W. A. (2012). Regular bipolar fuzzy graphs, Neural Computing \& Applications, Vol. 21, No. 1, pp. 197-205.
Akram, M., Li, S. -G. and Shum, K. P. (2013). Antipodal bipolar fuzzy graphs, Italian Journal of Pure and Applied Mathematics, Vol.31, pp. 97-110.
Akram, M. and Akmal, R. (2016). Application of bipolar fuzzy sets in graph structures, Applied Computational Intelligence and Soft Computing, Article ID 5859080, pp. 1-13.
Bhattacharya, P. (1987). Some remarks on fuzzy graphs, Pattern Recognition Letter, Vol. 6, pp. 297-302.
Deb, M. and De, P.K. (2015). Optimal solution of a fully fuzzy linear fractional programming problem by using graded mean integration representation method, Applications and Applied Mathematics, Vol. 10, No. 1, pp. 571-587.
Dinesh, T. (2011). A study on graph structures, incidence algebras and their fuzzy analogues [Ph.D. thesis], Kannur University, Kannur, India.
Dinesh, T. and Ramakrishnan, T. V. (2011). On generalised fuzzy graph structures, Applied Mathematical Sciences, Vol. 5, No. 4, pp. 173-180.
Gulistan, M., Shahzad, M., Ahmed, S. and Ilyas, M. (2015). Characterization of gamma hemirings by generalized fuzzy gamma ideals, Applications and Applied Mathematics, Vol. 10, No. 1, pp. 495-520.
Kauffman, A. (1973). Introduction a la Theorie des Sous-emsembles Flous, Masson et Cie, Vol.1.
Lee, K.-M. (2000). Bipolar-valued fuzzy sets and their basic operations, Proc. Int. Conf., Bangkok, Thailand, pp. 307-317.
Mordeson, J. N. and Nair, P. S. (1998). Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidelberg.
Rosenfeld, A. (1975). Fuzzy graphs, Fuzzy Sets and their Applications (L.A. Zadeh, K.S. Fu, M. Shimura, Eds.), Academic Press, New York, pp. 77-95.

Sampathkumar, E. (2006). Generalized graph structures, Bull. Kerala Math. Assoc., Vol 3, No.

2, pp. 65-123.
Zadeh, L. A. (1965). Fuzzy sets, Information and Control, Vol. 8, pp. 338-353. Zhang, W.-R. (1998). Bipolar fuzzy sets, Proc. of FUZZ-IEEE, pp. 835-840.

