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Abstract 
 

 In this paper we establish an interesting double integral involving the I-function of two 

variables recently introduced in the literature. Since I-function of two variables is a very 

generalized function of two variables and it includes as special cases many of the known 

functions appearing in the literature, a number of integrals can be obtained by reducing the I-

function of two variables to simpler special functions by suitably specializing the parameters. 

A few special cases of our result are also discussed. 
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1. Introduction 
 

In 1997, Rathie (1997) introduced a generalization of the H-function of Fox (1961)  in the  

literature namely the  “I-function" which is useful in Mathematics, Physics and other 

branches of  Applied  Mathematics.  Recently, the I-function introduced by Rathie (1997) and 

the generalized hypergeometric function of two variables introduced by Agarwal (1965) and 
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Sharma (1965) have found interesting and useful applications in wireless communications. 

[See Ansari et al. (2013, 2014) and Xia et al. (2012)].   

 

Motivated by this, very recently, Shantha Kumari et al. (2014) introduced the I-function of 

two variables, which gives a natural generalization of  H-function of two variables introduced 

by Mittal and Gupta (1972).   

 

The I-function of two variables defined and studied by Kumari et al. (2014) is represented by 

means of the double Mellin-Barnes contour integral as follows: 

 

I [𝑧1, 𝑧2] 

          = I
 0, 𝑛1: 𝑚2, 𝑛2;  𝑚3, 𝑛3

𝑝1, 𝑞1: 𝑝2, 𝑞2;  𝑝3, 𝑞3
 [

𝑧1

𝑧2
|
(𝑎𝑗; 𝛼𝑗 , 𝐴𝑗; 𝜉𝑗)

1,𝑝1
∶ (𝑐𝑗, 𝐶𝑗; 𝑈𝑗)

1,𝑝2
;  (𝑒𝑗 , 𝐸𝑗; 𝑃𝑗)

1,𝑝3

(𝑏𝑗; 𝛽𝑗 , 𝐵𝑗; 𝜂𝑗)
1,𝑞1

∶ (𝑑𝑗 , 𝐷𝑗; 𝑉𝑗)
1,𝑞2

; (𝑓𝑗 , 𝐹𝑗; 𝑄𝑗)
1,𝑞3

]          

 

               
2 1 2

(2πi)
 s tz z  

s t

1 2

L L

s,t  θ s  θ t    ds dt
1

,                                                 (1.1)                                                                  

 

where  𝜙(𝑠, 𝑡), 𝜃1(𝑠)   and  𝜃2(𝑡)  are given by  

 

𝜙(𝑠, 𝑡) =  
∏ Γ

ξj(1−𝑎𝑗+ 𝛼𝑗𝑠+𝐴𝑗𝑡)
𝑛1
𝑗=1

∏ Γ
ξj(𝑎𝑗− 𝛼𝑗𝑠−𝐴𝑗𝑡)

𝑝1
𝑗=𝑛1+1 

1

 ∏ Γ
ηj(1−𝑏𝑗+ 𝛽𝑗𝑠+𝐵𝑗𝑡)

𝑞1
𝑗=1

  ,                                            (1.2)     

   

                                                                                                        

 𝜃1(𝑠)  =    
∏ Γ

𝑈𝑗( 1−𝑐𝑗+ 𝐶𝑗𝑠)
𝑛2
𝑗=1    

∏ Γ
𝑈𝑗  (𝑐𝑗− 𝐶𝑗𝑠)

𝑝2
𝑗=𝑛2+1

  

∏ Γ
𝑉𝑗( 𝑑𝑗−𝐷𝑗𝑠)

𝑚2
𝑗=1

∏ Γ
𝑉𝑗(1−𝑑𝑗+𝐷𝑗𝑠)

𝑞2
𝑗=𝑚2+1

  ,                                                (1.3)  

                                       

 

 𝜃2(𝑡)  =    
∏ Γ

𝑃𝑗 
( 1−𝑒𝑗+ 𝐸𝑗𝑡)

𝑛3
𝑗=1      

∏ Γ
𝑃𝑗 

( 𝑒𝑗− 𝐸𝑗𝑡)
𝑝3
𝑗=𝑛3+1

     

∏ Γ
𝑄𝑗  ( 𝑓𝑗−𝐹𝑗𝑡)

𝑚3
𝑗=1

∏ Γ
𝑄𝑗(1−𝑓𝑗+𝐹𝑗𝑡)

𝑞3
𝑗=𝑚3+1

 .                                                (1.4) 

 

Moreover, 

 

(i) z1 ≠  0,  z2 ≠  0;  

(ii) i = √−1; 

(iii) an empty product is interpreted as unity;  

(iv) the parameters  𝑛𝑗 , 𝑝𝑗, 𝑞𝑗(𝑗 = 1,2,3),  𝑚𝑗(𝑗 = 2,3)  are nonnegative integers such that 

0 ≤ 𝑛𝑗 ≤ 𝑝𝑗(𝑗 = 1, 2, 3),  𝑞1 ≥ 0,  0 ≤ 𝑚𝑗 ≤ 𝑞𝑗(𝑗 = 2, 3) (not all zero simultaneously); 

(v) 𝛼𝑗 , 𝐴𝑗(𝑗 = 1, … , 𝑝1),  𝛽𝑗, 𝐵𝑗 (𝑗 = 1, … , 𝑞1), 𝐶𝑗(𝑗 = 1, … , 𝑝2), 𝐷𝑗(𝑗 = 1, … , 𝑞2),   𝐸𝑗(𝑗 =

1, … , 𝑝3), 𝐹𝑗(𝑗 = 1, … , 𝑞3)  are assumed to be positive quantities for standardization 

purpose.  

(vi) 𝑎𝑗(𝑗 = 1, … , 𝑝1),  𝑏𝑗(𝑗 = 1, … , 𝑞1), 𝑐𝑗(𝑗 = 1, … , 𝑝2),  𝑑𝑗(𝑗 = 1, … , 𝑞2), 𝑒𝑗(𝑗 = 1, … , 𝑝3)  

and  𝑓𝑗(𝑗 = 1, … , 𝑞3)  are complex numbers; 

(vii) The exponents   𝜉𝑗(𝑗 = 1, … , 𝑝),  𝜂𝑗(𝑗 = 1, … , 𝑞), 𝑈𝑗  (𝑗 = 1, … , 𝑝2),  𝑉𝑗(𝑗 = 1, … , 𝑞2),  

𝑃𝑗(𝑗 = 1, … , 𝑝3),  𝑄𝑗(𝑗 = 1, … , 𝑞3) of  various gamma  functions involved in (1.2), (1.3) 

and  (1.4)  may take non-integer values. 

2
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(viii) 𝐿𝑠   and  𝐿𝑡  are  suitable contours of  Mellin - Barnes type. Moreover, the contour  𝐿𝑠  
is in the complex s-plane and runs from 𝜎1 − 𝑖∞  to  𝜎1  +  𝑖∞,  (𝜎1 real) so that all the 

singularities of ΓVj(𝑑𝑗 − 𝐷𝑗𝑠)(𝑗 = 1, … , 𝑚2) lie to the right of 𝐿𝑠 and all the 

singularities of ΓUj(1 − 𝑐𝑗 + 𝐶𝑗𝑠)(𝑗 = 1, … , 𝑛2), Γξj(1 − 𝑎𝑗 + 𝛼𝑗𝑠 + 𝐴𝑗𝑡)(𝑗 = 1, … , 𝑛1) 

lie  to the left of  𝐿𝑠;  The other contour  𝐿𝑡 follows similar conditions in the complex t-

plane. 

 

The function defined by (1.1) is an analytic function of  𝑧1 and  𝑧2 if 

 

𝑅 =  ∑ 𝜉𝑗𝛼𝑗
𝑝1
𝑗=1 + ∑ 𝑈𝑗𝐶𝑗

𝑝2
𝑗=1 − ∑ 𝜂𝑗𝛽𝑗

𝑞1
𝑗=1 − ∑ 𝑉𝑗𝐷𝑗  

𝑞2
𝑗=1 < 0,                                       (1.5)  

 

𝑆 =  ∑ 𝜉𝑗𝐴𝑗
𝑝1
𝑗=1 + ∑ 𝑃𝑗𝐸𝑗

𝑝3
𝑗=1 − ∑ 𝜂𝑗𝐵𝑗

𝑞1
𝑗=1 − ∑ 𝑄𝑗𝐹𝑗  

𝑞3
𝑗=1 < 0.                                       (1.6) 

 

Further, the integral (1.1) is convergent if  

  

Δ1  =  [∑ 𝜉𝑗𝛼𝑗
𝑛1
𝑗=1 − ∑ 𝜉𝑗𝛼𝑗

𝑝1
𝑗=𝑛1+1 – ∑ 𝜂𝑗𝛽𝑗

𝑞1
𝑗=1 + ∑ 𝑈𝑗𝐶𝑗

𝑛2
𝑗=1   

 

           − ∑ 𝑈𝑗𝐶𝑗
𝑝2
𝑗=𝑛2+1 + ∑ 𝑉𝑗𝐷𝑗 − ∑ 𝑉𝑗𝐷𝑗

𝑞2
𝑗=𝑚2+1 

𝑚2
𝑗=1 ]  > 0,                         (1.7) 

 

Δ2  = [ ∑ 𝜉𝑗𝐴𝑗
𝑛1
𝑗=1 − ∑ 𝜉𝑗𝐴𝑗

𝑝1
𝑗=𝑛1+1 – ∑ 𝜂𝑗𝐵𝑗

𝑞1
𝑗=1 + ∑ 𝑃𝑗𝐸𝑗

𝑛3
𝑗=1   

 

            − ∑ 𝑃𝑗𝐸𝑗
𝑝3
𝑗=𝑛3+1 + ∑ 𝑄𝑗𝐹𝑗 − ∑ 𝑄𝑗𝐹𝑗

𝑄3
𝑗=𝑚3+1 

𝑚3
𝑗=1 ]  > 0,                       (1.8)  

 

 

|arg(𝑧1)| <  
1

2
 Δ1𝜋,      |arg(𝑧2)| <  

1

2
 Δ2𝜋.                                                                  (1.9) 

 

In this paper and for the  sake of  brevity,  we shall use the following contracted notation for 

the  I-function defined in (1.1) : 

 

I[z1, z2] = I
 0, 𝑛1 :  𝑚2, 𝑛2;  𝑚3, 𝑛3

𝑝1, 𝑞1:  𝑝2, 𝑞2;  𝑝3, 𝑞3
[
𝑧1

𝑧2
|
𝒜: 𝒞;  ℰ 
ℬ: 𝒟;  ℱ

].                                                      (1.10) 

 

Further, if   𝑉𝑗 = 1(𝑗 = 1, … , 𝑚2),  𝑄𝑗 = 1(𝑗 = 1, … , 𝑚3) in (1.1),   then the function will be 

denoted by   

 

 I ̅[z1, z2] = I
 0, 𝑛1 :  𝑚2, 𝑛2;  𝑚3, 𝑛3

𝑝1, 𝑞1 ∶ 𝑝2, 𝑞2;  𝑝3, 𝑞3
 [

𝑧1

𝑧2
|
𝒜: 𝒞;  ℰ 

ℬ: �́�;  ℱ́
],                                                   (1.11)  

   

where 

 

 𝒜  stands for  (𝑎𝑗; 𝛼𝑗 , 𝐴𝑗; 𝜉𝑗)
1,𝑝1

≡  (𝑎1; 𝛼1, 𝐴1; 𝜉1), … , (𝑎𝑝1
; 𝛼𝑝1

, 𝐴𝑝1
; 𝜉𝑝1

); 

 ℬ stands for  (𝑏𝑗; 𝛽𝑗, 𝐵𝑗; 𝜂𝑗)
1,𝑞1

  ≡ (𝑏1; 𝛽1, 𝐵1; 𝜂1), … , (𝑏𝑞1
; 𝛽𝑞1

, 𝐵𝑞1
;  𝜂𝑞1

); 

 𝒞  stands for  (𝑐𝑗 , 𝐶𝑗; 𝑈𝑗)
1,𝑝2

≡ (𝑐1, 𝐶1; 𝑈1), … , (𝑐𝑝2
, 𝐶𝑝2

; 𝑈𝑝2
); 

 𝒟  stands for (𝑑𝑗 , 𝐷𝑗; 𝑉𝑗)
1,𝑞2

≡  (𝑑1, 𝐷1; 𝑉1), … , (𝑑𝑞2
, 𝐷𝑞2

; 𝑉𝑞2
); 
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 ℰ  stands for  (𝑒𝑗, 𝐸𝑗; 𝑃𝑗  )
1,𝑝3

 ≡ (𝑒1, 𝐸1; 𝑃1 ), … , (𝑒𝑝3
, 𝐸𝑝3

; 𝑃𝑝3
); 

 ℱ stands for  (𝑓𝑗 , 𝐹𝑗; 𝑄𝑗)
1,𝑞3

  ≡ (𝑓1, 𝐹1; 𝑄1), … , (𝑓𝑞3
, 𝐹𝑞3

; 𝑄𝑞3
); 

 �́� stands for  (𝑑𝑗 , 𝐷𝑗; 1)
1,𝑚2

, (𝑑𝑗 , 𝐷𝑗; 𝑉𝑗)
𝑚2+1, 𝑞2

;  

 ℱ́ stands for  (𝑓𝑗 , 𝐹𝑗; 1)
1,𝑚3

, (𝑓𝑗 , 𝐹𝑗; 𝑄𝑗)
𝑚3+1, 𝑞3

. 

 

A more detailed account of  I-function, its behaviour and various special cases in one and two 

variables can be found in the paper by Shantha Kumari et al. (2014).  

 

For a  detailed study of  some  double  Mellin-Barnes type  integrals  known as   general  H-

functions  of  two  variables  and  their  applications   in  convolution  theory, we refer a book 

by   Hai  and  Yakubovich (1992)  to  the  readers. 

 

 

2.  Results Required 
 

We recall an interesting double integral recorded in Edwards (1922, p. 145): 

 

∫ ∫
𝑦𝛼 (1−𝑥)𝛼−1 (1−𝑦)𝛽−1

(1−𝑥𝑦)𝛼+𝛽−1

1

0

1

0
 𝑑𝑥 𝑑𝑦 =  

Γ(𝛼) Γ(𝛽)

Γ(𝛼+𝛽)
 , 

 

provided  ℜ(𝛼) > 0   and   ℜ(𝛽) > 0. 

 

 

3.  Main Result 
 

In this section, the following general double integral will be established.   

 

∫ ∫ {
𝑦𝛼 (1−𝑥)𝛼−1 (1−𝑦)𝛽−1

(1−𝑥𝑦)𝛼+𝛽−1

1

0

1

0
  

             ×  I̅  [
𝑧1 𝑦𝜆1  (1−𝑥)𝜆1−1 (1−𝑦)𝜇1  

(1−𝑥𝑦)𝜆1+ 𝜇1
,    

𝑧2 𝑦𝜆2  (1−𝑥)𝜆2−1 (1−𝑦)𝜇2  

(1−𝑥𝑦)𝜆2+ 𝜇2
] }  𝑑𝑥  

= I 
0,  𝑛1 + 2:  𝑚2, 𝑛2;  𝑚3, 𝑛3  

𝑝1 + 2, 𝑞1 + 1: 𝑝2, 𝑞2;  𝑝3, 𝑞3
 [

𝑧1

22𝜆1 

𝑧2

22𝜆2 

|
(1 − 𝛼, 𝜆1, 𝜆2 ; 1), (1 − 𝛽; 𝜇1,  𝜇2; 1), 𝒜: 𝒞;  ℰ

ℬ, (1 − 𝛼 − 𝛽;  𝜆1 + 𝜇1, 𝜆2 +  𝜇2;  1): �́�; ℱ́   
 ] ,                        

                                                                                                                                       (3.1)    

   

provided  

 

(i) 𝜆1 ≥  0,  𝜆2 ≥  0 (both  𝜆1  and 𝜆2 are  not simultaneously zero); 

(ii) 𝜇1 ≥  0,  𝜇2 ≥  0 (both  𝜇1  and  𝜇2  are  not simultaneously zero); 

(iii) The conditions given in  (1.7),  (1.8) and (1.9)  are satisfied with 

            𝑉𝑗 = 1(𝑗 = 1, … , 𝑚2),  𝑄𝑗 = 1(𝑗 = 1, … , 𝑚3); 

(iv) ℜ [𝛼 + 𝜆1 (
𝑑𝑖

𝐷𝑖
) + 𝜆2 ( 

𝑓𝑗

𝐹𝑗
)] > 0;  𝑖 = 1, … , 𝑚2, 𝑗 = 1, … , 𝑚3; 

(v) ℜ [𝛽 + 𝜇1 (
𝑑𝑖

𝐷𝑖
) + 𝜇2 (

𝑓𝑗

𝐹𝑗
)] > 0, 𝑖 = 1, … , 𝑚2;  𝑗 = 1, … , 𝑚3. 

 

 

 

4
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Proof:    
 

In order to prove the double integral (3.1), we proceed as follows. For this, denoting the left-

hand side of (3.1) by S, we first express the  I ̅- function of two variables in the integrand of 

(3.1)   by its Mellin-Barnes contour integral given by (1.1). Now changing the order of 

integration which is permissible under the conditions stated with (3.1),  we obtain the 

expression 

 

     2(2πi)
S   

s t

1 2

L L

s,t  θ s  θ t  
1

   s t
1 2z  z  

 

                      ×  ∫ ∫ {
𝑦𝛼+𝜆1𝑠+𝜆2𝑡−1 (1−𝑥)𝛼+𝜆1𝑠+𝜆2𝑡−1 (1−𝑦)𝛽+𝜇1𝑠+𝜇2𝑡−1

(1−𝑥𝑦)(𝛼+𝛽)+(𝜆1+𝜇1)𝑠+(𝜆2+ 𝜇2)𝑡−1 }
1

0
 𝑑𝑥𝑑𝑦

1

 0
]    𝑑𝑠𝑑𝑡      (3.2)   

 

Evaluating the inner  double integral with the help of result (2.1) we obtain 

 

     
   

 2

2

 
  

(2πi)
S ds dt

   


   


  
s t

1 2

L L

s,t  θ s  θ t      
1 1 2 1 2s t

1 2

1 1 2

Γ +λ s+λ t Γ + s+ t
z  z

Γ +(λ s+(λ t) )
     (3.3) 

 

Now interpreting the Mellin-Barnes contour integral in (3.3) with the help of the definition of 

the I-function of two variables (1.1), we arrive at the desired result. 

 

 

4.  Special Cases 
 

 On account of very general nature of the I-function of two variables,  it includes as special 

cases many of the known functions appearing in the literature and hence  the integral  derived 

in this paper will serve as the key formula  from  which  a  large  number of known and 

unknown results  can be obtained by reducing the I-function of two variables into simpler 

special functions  by suitably specializing the parameters. However,  here we shall mention 

some of these results.   

 

Special Case 4.1.  

 

 If  𝜇1 = 𝜇2 = 0,  then (3.1)   takes the following form: 

 

∫ ∫ {
𝑦𝛼 (1−𝑥)𝛼−1 (1−𝑦)𝛽−1

(1−𝑥𝑦)𝛼+𝛽−1

1

0

1

0
    

 

       ×  I̅  [
𝑧1 𝑦𝜆1  (1 − 𝑥)𝜆1  

(1 − 𝑥𝑦)𝜆1
 ,    

𝑧2 𝑦𝜆2  (1 − 𝑥)𝜆2   

(1 − 𝑥𝑦)𝜆2
] }  𝑑𝑥 𝑑𝑦  

 

= Γ(β) I 
0,  𝑛1 + 1:  𝑚2, 𝑛2;  𝑚3, 𝑛3     
𝑝1 + 1, 𝑞1 + 1: 𝑝2, 𝑞2;  𝑝3, 𝑞3

[
𝑧1

𝑧2
|
(1 − 𝛼, 𝜆1, 𝜆2 ; 1), 𝒜 ∶  𝒞;  ℰ            

ℬ, (1 − 𝛼 − 𝛽;  𝜆1, 𝜆2;  1) ∶ �́�; ℱ́
] ,     (4.1)    

   

provided that  the conditions easily obtainable from (3.1)  with 𝜇1 = 𝜇2 = 0  are  satisfied.  
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Special Case 4.2. 

 

If   𝜆1 = 𝜆2 = 0,  then (3.1) takes the following form: 

 

∫ ∫ {
𝑦𝛼 (1 − 𝑥)𝛼−1 (1 − 𝑦)𝛽−1

(1 − 𝑥𝑦)𝛼+𝛽−1

1

0

1

0

   

       

       ×  I̅  [
𝑧1  (1 − 𝑦)𝜇1  

(1 − 𝑥𝑦)𝜇1
 ,    

𝑧2 (1 − 𝑦)𝜇2   

(1 − 𝑥𝑦)𝜇2
] }  𝑑𝑥 𝑑𝑦  

 

= Γ(α) I 
 0,  𝑛1 + 1:  𝑚2, 𝑛2;  𝑚3, 𝑛3     
𝑝1 + 1, 𝑞1 + 1: 𝑝2, 𝑞2;  𝑝3, 𝑞3

 [
𝑧1

𝑧2
|

(1 − 𝛽,  𝜇1,  𝜇2 ; 1),   𝒜 ∶  𝒞;  ℰ      

 ℬ, (1 − 𝛼 − 𝛽; 𝜇1,   𝜇2;  1) ∶  �́�;  ℱ́
],    (4.2)  

 

provided that  the conditions easily obtainable from (3.1)  with  𝜆1 = 𝜆2 = 0  are  satisfied.  

                                                                                                  

 

Special Case 4.3. 

 

When all exponents  𝜉𝑗(𝑗 = 1, … , 𝑝1),  𝜂𝑗(𝑗 = 1, … , 𝑞1),  𝑈𝑗(𝑗 = 1, … , 𝑝2), 𝑉𝑗(𝑗 = 1, … , 𝑞2),  

𝑃𝑗(𝑗 = 1, … , 𝑝3),  𝑄𝑗(𝑗 = 1, … , 𝑞3) are equal to unity,  the I-function of two variables reduces 

to the H-function of two variables defined by Mittal and Gupta (1972) and therefore we 

obtain the  corresponding double integrals involving  H- function of two variables  recorded 

in (Srivastava et al. (1982)). 

    

Special Case 4.4 

 

If we take 𝑝1 = 𝑞1 = 𝑛1 = 𝑛3 = 𝑝3 = 𝑓1 = 0,  𝑚3 = 𝑞3 = 1, 𝐸𝑗 = 𝐹𝑗 = 𝑃𝑗 = 𝑄𝑗 = 1 and let  

𝑧2  → 0, and further specializing the parameters  of (4.1) and (4.2), these results  reduce  to  

double integrals involving I-function of one variable introduced by Rathie, (1997). 

 

 

5.  Conclusion 
 

In this research paper we have evaluated a double integral involving the I-function of two 

variables recently introduced by Shantha Kumari et al. (2014).  The integral established in 

this paper is  of  very general  nature as it contains  I-functions of two variables, which is  a 

very  general function  of two variables studied so far.   Thus, the integral established in this 

research work would serve as  a  key formula  from which, upon specializing the parameters, 

as many as desired results involving special functions of one and two variables can be 

obtained.  Since the generalized function of two variables introduced by Agarwal (1965)  and  

Sharma(1965) have found interesting applications in wireless communication (see  Xia et al. 

(2012)) the  double integral  evaluated  in this paper may be potentially useful. 
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