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Abstract 
 

This paper considers minimum cost flow problem in dynamic networks with uncertain costs. 

First, we present a short introduction of dynamic minimum cost flow. Then, we survey discrete 

and continuous dynamic minimum cost flow problems, their properties and relationships 

between them. After that, the minimum cost flow problem in discrete dynamic network with 

uncertainty in the cost vector is considered such that the arc cost can be changed within an 

interval. Finally, we propose an algorithm to find the optimal solution of the proposed model. 

 

 

Keywords:  Dynamic network flows; Robust optimization; Duality theorem; Uncertain cost; 

Discrete dynamic network 

 

MSC 2010 No.:  90B10, 90B18 

 

 

1. Introduction 
 

The network flow problems are divided into static and dynamic problems. A complete survey of 

static network flow problems has been widely studied by Ahuja et al. (1993). Ford and Fulkerson 

(1958) introduced dynamic network flow problems. They presented the concept of dynamic 

flows in networks with the maximal dynamic network flow problems. Their work was extended 

later in [Aronson (1989), Fonoberova (2007), Glockner and Nemhauser (2000), Hashemi et al. 

(2010), Hashemi and Nasrabadi (2012), Hoppe (1995), Salehi and Hosseini (2011), Salehi and 
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Hosseini (2010), Tahmasbi et al. (2013)]. Algorithms, their implementations for dynamic 

network flow models and a survey of known results were presented by Aronson (1989). Hoppe 

(1995) provided extension of the dynamic network flows algorithms and proposed the 

polynomial algorithm to compute the value of a universally maximum dynamic flow. Glockner 

and Nemhauser (2000) studied dynamic network flow problems with uncertainty of arc 

capacities. The dynamic network flow problem with nonlinear cost function was considered by 

Fonoberova (2007). Moreover, she studied one case of the minimum cost flow problem with cost 

functions dependent on times instead of flows, where capacities of edges, supply and demand 

functions depend on time. Salehi and Hosseini (2010, 2011) focused on minimum cost flow and 

maximum flow problems on dynamic generative network flows with time-varying bounds, in 

which the flow was dynamically generated at a source node and dynamically consumed at a sink 

node and the arc-flow bounds are time dependent. They presented a method for solving the 

maximum flows problem in dynamic generative network flows. Nasrabadi and Hashemi (2010) 

presented an algorithm of time complexity   O VnT n T , where V  is an upper bound on the 

total supply, n  is the number of nodes and T  is a given time horizon for a general minimum cost 

dynamic network flow problem in a discrete time model. In 2012, Hashemi and Nasrabadi 

(2012) studied a general class of dynamic network flow problem in the continuous-time model, 

where the input functions are assumed to be piecewise linear or constant. 

 

In mathematical optimization models, it is commonly assumed that the data inputs are known. In 

recent years, it has been recognized that dealing with uncertain data is a major challenge in 

optimization. The approach to address data uncertainty has developed under the name Robust 

optimization. Robust optimization is a recent optimization approach that deals with data 

uncertainty and does not assume probability distributions of random parameters. In general, a 

robust solution is not optimal for all realizations of the uncertain data, but performs well even for 

the worst case scenario.  

 

The first robust approach was proposed by Soyster (1973), where he considered inexact linear 

programming with convex uncertainty sets. The approach of Soyster (1973) can directly be 

applied to minimum cost flow problems with uncertain demand. Kouvelis and Yu (1997) 

proposed a general scenario-based approach for robust optimization in discrete optimization 

problems. Their approach is also a scenario-based one. For a specific scenario S, their proposed 

optimization problem has been given, as follows: 

 

 min ( , ),
s

s

X F
f X D


                   (1) 

  

where X is the set of decision variables, sF  is the set of all feasible decisions, when scenario S is 

realized, sD  is the input data scenario S, and f is the function which evaluates the quality of the 

decision X dependent on the input data instance sD .  In 1998, Ben-Tal and Nemirovski (1998) 

suggested a model for uncertain linear problems with ellipsoidal uncertainty. Their approach 

assumes that the linear programming problems are uncertain and have hard constraints. This is 

an approach which deals with linear problems in general form and can be applied to the network 

flows problems. For more details, we  refer the reader to Ben Tal and Nemirovski (1998, 1999 

and 2000). 
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The robust approach of Bertsimas and Sim (2003) examines the minimum cost flow problem 

with uncertainty in the cost vector. They proposed a general approach to obtain a solution of 

robust optimization, which leads to an efficient algorithm for solving minimum cost flow 

problem with uncertainty in the cost vector. Their approach conserves the network structure, 

such that the robust counterpart can be solved by solving several minimum cost flow problems. 

In addition, they introduce a parameter   to control the price of robustness, the trade-off 

between the degree of uncertainty taking into account and the cost of this additional feature. 

Tahmasebi et al. (2013) studied the maximum flow problem in stochastic networks with random 

arc failures. They presented the concept of expected value of a given flow and expected capacity 

of a given cut. 

 

In this paper, dynamic network flows with uncertain costs belonging to interval is studied. In 

Section 2, discrete and continuous minimum cost flow models are presented. Moreover, the 

relationships between them are mentioned. The formulation of the dynamic minimum cost flow 

with uncertain cost is given in Section 3. Finally, the new algorithm for solving the proposed 

formulation is given in Section 4. 

 

2.  Preliminary 
 

In this section, some basic concepts, formulations and theorems of dynamic network problems 

are reviewed. For more details see [Fonoberova (2007), Ford and Fulkerson (1958), Hoppe 

(1995), Klinz and Woeginger (2004), Salehi and Hosseini (2011)]. Let  ,G N A  be a directed 

network, where N  and A  are sets of nodes and sets of directed arcs, respectively. In Subsection 

2.1, the discrete dynamic minimum cost flow and its formulations will be presented, where the 

time t  is dependent on the discrete values of the time {0,1,2,..., 1}T    and 0T   is the 

maximum allowable time. In Subsection 2.2, the dynamic minimum cost flow will be surveyed, 

such that the problem parameters change in continuous time interval [0, ]T . For finding a 

solution of this problem, the time interval [0, ]T  can be divided into a finite number of 

subintervals and an approximation discrete structure can be obtained. In Subsection 2.3, discrete 

and continuous models relationships will be reviewed. 

 

2.1. Discrete minimum cost flow in dynamic networks  
 

Consider  ,G N A  to be a directed dynamic network flow. Capacity function is defined as 

RAU :  such that )(tUij  shows arc capacity ),( ji at the moment t , in which t  changes in 

{0,1,2,..., 1}T   . Moreover, flow function is defined as :X A R  , where )(tX ij  is the 

flow on the arc ),( ji  at the moment t . Cost function and transmission time function are also 

defined as : , :C A R A R      , respectively. If it is assumed that arcs transmission 

time are non-negative integers, then the discrete minimum cost flow problem on the dynamic 

network G  can be formulated, as follows: 
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1

( , ) 0

min ( ) ( ),
T

ij ij

i j A t

C t x t


 

                  (2) 

0 0 : ( )

( ) ( ( )) 0, , ,
ji

ij ji ji

j t j t t t t t

x t x t t i N
 



  
     

          (3) 

1 1

0 0 : ( )

( ) ( ( )) ( ), ,
ji

T T

ij ji ji

j t j t t t t t

x t x t t b i i N



 

     

         (4) 

0 ( ) ( ), ( , ) , ,ij ijx t U t i j A t         (5) 

 

Constraint (2) shows the objective function which deals with network cost minimization on all 

time-steps and arcs. Constraints (3) indicate that storage in middle nodes is not allowed. 

Constraints (4) show that the discrete-time flow should be valid during the time-steps 

{0,1,2,..., 1}T   for supply and demand nodes. In other words, after the final solution is 

obtained, supply nodes should consume all their supplies and demand nodes should have all their 

needs. The equality constraints (4) are called balance constraints or flow conservation 

constraints. A discrete dynamic flow with time horizon T  is a feasible flow like x , which 

satisfies all constraints (3), (4) and (5) and we must have:  

 

( ) 0, ( , ) , 1.ijx t i j A t T                   (6) 

 

2.2. Continuous minimum cost flow in dynamic networks 

 

Suppose that [0, ]T   and also all the other definitions in Section 2.1 are valid. The continuous 

minimum cost flow in dynamic networks is modeled as follows: 

 

( , ) 0

min ( ) ( ) ,

T

ij ij

i j A

C t x t dt


                  (7) 

0 0
: ( )

( ) ( ( )) 0, , [0, ],
ji

ij ji ji

j j t t t t

x t x t t i N T
 



 
   

           (8) 

0 0
: ( )

( ) ( ( )) ( ), ,
ji

TT T

ij ji ji

j j t t t t

x t x t t b i i N



   

          (9) 

0 ( ) ( ), ( , ) , [0, ],ij ijx t U t i j A t T        (10) 

 

Constraints (8) and (9) indicate the storage and the flow constraints, respectively. 

 

2.3. Discrete and Continuous models relationship 

 

In this section, the relationship between dynamic discrete and continuous time network flow 

problem is detected. Every discrete-time flow x  in the dynamic network G  corresponds to the 

continuous-time flow x  in G  and vice versa [Ford and Fulkerson (1958), Hoppe (1995), Klinz 

and Woeginger (2004), Salehi and Hosseini (2011)]. 
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Lemma 2.1. [Salehi and Hosseini (2010, 2011)] 

 

Every feasible flow of continuous time like x on dynamic network flow of G  corresponds with 

a feasible flow of continuous time like x  on G  and vice versa. 

 

In Lemma 2.1, the cost of the flow is fixed. Therefore, for dynamic network flow, each problem 

of continuous time could be turned into a discrete one. Fleischer and Tardos (1998) showed that 

many of the applied algorithms to solve discrete time problems could be expanded to solve 

continuous time problems even if T is not an integer.  

 

Theorem 2.2. [Klinz and Woeginger (2004)] 

 

The minimum cost problem on dynamic network flows is NP-hard. 

 

Theorem 2.3. [Klinz and Woeginger (2004)] 

 

The complexity time of the minimum cost problem on dynamic network flows is pseudo 

polynomial. 

 

3. Dynamic minimum cost flow with uncertain costs 
 

In this section, the dynamic minimum cost flow problem is discussed in which the arc costs are 

uncertain and belong to the intervals. 

 

3.1. Problem formulation 

 

Consider the formulations in the previous section. In a network flow problem, the cost values on 

the arcs can be subject to uncertainty, where not necessarily all arcs must be concerned. In this 

case, discrete dynamic network flow formulation with uncertain cost is, as follows: 

 
1

( , ) 0

0 0 : ( )

1 1

0 0 : ( )

min ( ) ( ),

( ) ( ( )) 0, , ,

( ) ( ( )) ( ), ,

0 ( ) ( ), ( , ) , ,

ji

ji

T

ij ij

i j A t

ij ji ji

j t j t t t t t

T T

ij ji ji

j t j t t t t t

ij ij

C t x t

x t x t t i N

x t x t t b i i N

x t U t i j A t

 





  







 

     

 

     

     

    

     

 

  

           (11) 

where 

 

 ( ) [ ( ), ( ) ( )].ij ij ij ijC t C t C t C t   
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For each arc Aji ),( , ( )ijC t  is the nominal cost on arc ( , )i j , ( )ijC t  describes the possible 

uncertainty in the cost value on arc ( , )i j . Now we put: 

 

 ( ) ( , , ) : ( ) 0 .ijA t i j t C t               (12) 

 

So the purpose of the robust optimization is the minimization of total nominal costs plus most 

value of uncertainty set for all time-steps. Then the robust dynamic minimum cost flow problem 

formulation is presented, as follows: 

 
1

( )( , ) 0 ( , , ) ( )

0 0 : ( )

1 1

0 0 : ( )

min ( ) ( ) max ( ) ( ),

( ) ( ( )) 0, , ,

( ) ( ( )) ( ), ,

0

ji

ji

T

ij ij ij ij
A ti j A t i j t A t

ij ji ji

j t j t t t t t

T T

ij ji ji

j t j t t t t t

i

C t x t C t x t

x t x t t i N

x t x t t b i i N

x

 





  





   

     

 

     



     

    



  

  

  

( ) ( ), ( , ) , ,

( ) ( ), ( ) , [0,| | ],

j ijt U t i j A t

A t A t A t A T

    

    

       (13) 

 

Assume that X is the feasible region of formulation (13), then formulation (13) can be converted, 

as follows (for more details see Bertsimas and Sim (2003)): 

 
1

( , ) 0 ( , , ) ( )

( , ) ( )

min ( ) ( ) max ( ) ( ) ( ),

.

0 ( ) 1, ( , ) ( ) , ,

( ) ( ), 0,1,..., 1,

T

ij ij ij ij ij
x X

i j A t i j t A t

ij

ij

i j A t

C t x t C t x t t

s t

t i j A t t

t t t T



 






  





     

  

  



        (14) 

 
For a fixed x X , the dual of the inner maximization problem of (14) is: 

 

( , , ) ( )

min ( ),

s.t.

( ) ( ) ( ), ( , , ) ( ) , ,

( ) 0, ( , , ) ( ) , ,

0,

ij

i j t A t

ij ij ij

ij

V W t

W t V C t x t i j t A t t

W t i j t A t t

V







 

      

    





         (15) 
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By applying the strong Duality Theorem and formulation (15), formulation (14) can be rewritten 

as follows: 

 

1

,
( , ) 0 ( , , ) ( )

min ( ) ( ) ( ) ,

s.t.

( ) ( ) ( ), ( , , ) ( ), ,

( ) 0, ( , , ) ( ), ,

0,

,

T

ij ij ij
W V

i j A t i j t A t

ij ij ij

ij

C t x t Min V W t

W t V C t x t i j t A t t

W t i j t A t t

V

x X







  

  
    

   

      

    





  

        (16) 

 
The variables ,X V and W  are minimization variables in formulation (16). Moreover, both 

types of optimization are minimization in objective function (16). So problem (16) can be 

rewritten as follows: 

 

min ( ),
V

Z V


              (17) 

 

where 

 

1

,
0 ( , ) ( , ) ( )

( ) ( ) ( ) ( ) ,

.

( ) ( ) ( ) ( ), ( , , ) ( ) , ,

( ) 0, ( , , ) ( ) , ,

0 , ,

T

ij ij ij
x w

t i j A i j A t

ij ij ij

ij

Z V V Min C t x t W t

s t

W t C t x t V t i j t A t t

W t i j t A t t

V x X







  

 
    

 

      

    

  

  

        (18) 

 

Theorem 3.1. 

 

( )Z V  is convex function of V . 

 

Proof: 

 

Assume that 1 0V  , 
2 0V  , 1 1( , )x w  and 2 2( , )x w  are optimal solutions for formulation (18), 

corresponding to 1 2,V V , respectively. The feasible region formulation (18) is convex; so for 

each ]1,0[ : 
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 

1 2

1

1 1 1

0 ( , ) ( , , ) ( )

1

2 2 2

0 ( , ) ( , , ) ( )

1 2 1 2

( ) (1 ) ( )

( ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) ( ) (1 )( ) ( )

T

ij ij ij

t i j A i j t A t

T

ij ij ij

t i j A i j t A t

ij ij ij

Z V Z V

V C t x t W t

V C t x t W t

V V C t x t x t

 





   



  



  

 

 
    

 

 
     

 

      

  

  

1

0 ( , )

1 2 1 2

( , , ) ( )

( ) ( ) (1 ) ( ) ( ) ( (1 ) ).

T

t i j A

ij ij

i j t A t

W t W t Z V V   



 





       

 



 

 

Our purpose is to solve the discrete dynamic minimum cost flow problem with uncertain arc 

cost. For this purpose, by eliminating ( )ijw t  from formulation (18), Z(V)  is equal to: 

 

 
1

0 ( , ) ( , , ) ( ) ij

V
min ( ) ( ) ( ) ( ) ,0 19

C ( )

T

ij ij ij ij
x

t i j A i j t A t

V C x x t C t Max x t
t



  

   
     

    
  

 

such that 0V   and x X . 

 

Considering the above problem for fixed V , then we have: 

 

 
1

0 ( , ) ( , , ) ( ) ij

V
( ) min ( ) ( ) ( ) ( ) ,0

C (
20

)

T

ij ij ij ij
x X

t i j A i j t A t

Z V C x x t C t Max x t
t




  

   
    

    
  

 

We insert two new nodes i  and j , which would be introduced for each arc ( , )i j . Meanwhile, 

four arcs ( , )i i , ( , )i j  , ( , )j i  and ( , )i j  with the new capacity and costs introduced in Figure 

1, would be added to the network and arc ( , )i j  would be eliminated finally. 

 

               
( ( ), ( ))ij ijC t U t

                     
( ( ), ( ))ij ijC t U t

   

(0, )
( )ij

V

C t
           

                                                                                                                     ( ),ijC t                             0,  

 

Figure 1. Improved network 

 

 

j

 
i
i 

i
i 

j

i 

j

i 

i
i 
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3.2. How to create an improved network 

 

An improved network can be created where it can convert a robust dynamic network to 

deterministic one. It is clear that an improved network can be considered with infinite capacities. 

 

Theorem 3.2. 

 

For fixed V , formulation (20) can be considered as a discrete dynamic network flow problem by 

using the mentioned improved network. 

 

Proof: 

 

Suppose that x  is optimal solution of formulation (20), in which it is transferred to the improved 

network ),( ANG  . In G , if ( )
( )

ij

ij

V
x t

c t



, then by passing from arcs ),( ii   and ),( ji , the 

cost of flow sending along path i i j   is: 

 

)t(x)t(C)t(x)t(C)t(x)t(C ijijijjiijii   . 

 

If ( )
( )

ij

ij

V
x t

c t



, for a given time t  and a given arc ( , )i j  with ( , , ) A (t)i j t  , then in G  the flow 

would be first passed along the arc ),( ii  . Then, an amount of 
( )ij

V

c t
 would be passed from i  to 

j  along arc ( , )i j  and the excess amount ( )
( )

ij

ij

V
x t

c t



 would be passed along the arcs ( , )i j   

and ( , )j j . Then the cost of flow sending from i  to j  under condition that ( )
( )

ij

ij

V
x t

c t



 is  

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) .
( )

ii ij i j i j ij j j ij

ij ij ij

ij ij ij ij

ij

V V V
C t x t C t C x t C x t

C t C t C t

V
C t x t C t x t

C t

    

   
               

 
     

 

4.  Algorithm 
 

Definition 4.1. 

A function ( )f x  is unimodal: 

I. If *

1 2x x x   then  1 2( ) ( )f x f x , or  

II. If *

1 2x x x   then  1 2( ) ( )f x f x . 
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Here, 
*x  is the minimizer of ( )f x . 

 

Remark 4.2. 

 

Some instances of unimodal functions are illustrated in Figure 2. 

 

 

 

        

 

Figure 2. Some instances of unimodal functions 

 

A unimodal function can be a non-differentiable or a discontinues function. 

 

The optimum point 
*V  is obtained by using the outcomes of Theorem 3.1 and 3.2. In other 

words, if ( )Z V  is convex, it is also unimodal. We propose an algorithm by combining the 

Interval Halving Algorithm and Dynamic Network Flow to find the minimum of problem (20). 

We can search the minimum ( )Z V  in 0 1[ 0, ]V V  such that 1
,( , )

: max ( ) ( )ij ij
t T i j A

V U t C t
 

 , by using the 

Interval Halving Algorithm. In this method, exactly one-half of the existing interval is discarded 

in every phase. Finally, interval halving method gives * [ , ]V a b  as minimum such that 

b a   , where   is given. 

 

This algorithm is described by the following steps: 

 

1. Let ( , )G N A  be a given dynamic network flow with uncertain costs belonging to 

interval.  

 

2. Consider [0, ]A T  and   given as robustness parameter and stopping criterion, 

respectively. 

 

3.  Let 0L  be length of interval 
0 1[ , ]V V , where 

0 : 0V  and 1
,( , )

: max ( ) ( )ij ij
t T i j A

V U t C t
 

 . Divide 

the 0L  into four equal parts. Then label the middle point as 0V , the quarter-points as 1V  

and  2V , respectively. 

 

4. Evaluate 0( )Z V , 1( )Z V  and 2( )Z V  for problem (18) using convexity Z , Theorem 3.2. 

and dynamic network solving algorithm. Then let 0 0( )Z Z V , 1 1( )Z Z V  and 2 2( )Z Z V

. 
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5.  (a) If 2 0 1Z Z Z   (Figure 3), discard the subinterval 
0 1( , )V V  and let 

1 0:V V , 0 1:V V  

and go to step 6.  

 

                         2Z  

                                              1Z   

                                                                

                                                              0Z                                                                             

                                                            

                                                               0V
      1V

        0V
       2V

        1V
 

                                                        Figure 3. The step 5, (a) 

 

(b)  If 1 0 2Z Z Z   as shown in Figure 4, remove the subinterval 
0 0( , )V V  and let 

0 0:V V , 

0 2:V V  and go to step 6.   

 

                                                             1Z  

                                                                        0Z     

 

                                                                                     2Z                                                                                                                  

 

 

                                                                                                 

                                                  
0V       1V         0V        2V         

1V  

                                                                         

Figure 4. The step 5, (b) 

 

(c) If 1 0Z Z  , 2 0Z Z  (Figure 5) , discard both the subintervals 0 1( , )V V  and 2 1( , )V V , let 

0 1:V V  and 1 2:V V , and go to step 6. 

 

                                                            1Z                   2Z  

 

                                                                      0Z  

 

                                                                                                    

                                                              
0V       1V         0V        2V         

1V  

             Figure 5. The step 5, (c) 
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6. Let 
1 0:L V V  . Test whether the  new L satisfies the stopping criterion L  . If the 

stopping criterion is satisfied set *

0:V V  as the optimum solution with objective function 

value *Z , where  * *

0( ) : ( )Z V Z V . Otherwise, let the new 0 :L L  and go to step 3. 

 

5.  Example 
 

Assume that there is a network G  as shown in Figure 6, where the required information is given, 

as follows: 

For arc 13 13(1,3) , {0,1,2,3} : ( ( ), ( )) (3,3)t C t U t   , 

For arc 24 24(2,4) , {0,1,2,3} : ( ( ), ( )) (2,4)t C t U t   . 

 

 

 

 

 

 

Figure 6. A numerical example 

Moreover, 3T   and {0,1,2,3}, ( . ) : ( ) 1,ijt i j A t      and more information is given in 

Table 1. 

Table 1. Information about example 

Arc (1,2)  (2,3)  (3,4)  

                           

    ,C U              

t  

 

 [ ( ), ( ) ( )]ij ij ijC t C t C t          ( )ijU t      

 

 ( )ijC t           ( )ijU t      

 

    [ ( ), ( ) ( )]ij ij ijC t C t C t         ( )ijU t      

0 

1  

2 

3 

                  [2,4]                          3 

                  [1,3]                          2 

                  [2,4]                          3 

                  [3,5]                          4 

     2                    4 

     3                    3 

     2                    2 

     3                    3 

                   [2,3]                           3 

                   [3,4]                           2 

                   [2,3]                           4 

                   [4,5]                           3 

 

1
 

'

' 
 

 

2
 

'

' 
 

 

4
 

'

' 
 

 

3
 

'

' 
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Improved network for Figure 6 is shown in Figure 7. Moreover, information about improved 

network is given, as follows: 

 

For arc 13 13(1,3) , {0,1,2,3} : ( ( ), ( )) (3,3)t C t U t   , 

For arc 24 24(2,4) , {0,1,2,3} : ( ( ), ( )) (2,4)t C t U t   . 

 

Moreover, 
1 2 1 2 2 2 3 4 3 4 4 4

{0,1,2,3}: ( ) ( ) ( ) ( ) ( ) ( ) 0t t t t t t t     
       

         and another 

( )ij t  is equal to 1. 

                                                                                                                     

 

                                                           

 

 

                   

 

Figure 7. An improved network for G 

 

With changes shown in Fig 1, we have Table 2, as follows: 

Table 2. Information of improved network 

arc (1,1 )  (1 ,2)  (1 ,2 )   (2 ,2)  (3,3 )  (3 ,4)  (3 ,4 )   (4 ,4)  

     C,U              ( )ijC t     ( )ijU t   ( )ijC t    ( )ijU t   ( )ijC t    ( )ijU t  ( )ijC t    ( )ijU t  ( )ijC t    ( )ijU t  ( )ijC t    ( )ijU t  ( )ijC t    ( )ijU t  ( )ijC t    ( )ijU t  

t = 0 

t = 1  

t = 2 

t = 3 

  2        3 

  1        2 

  2        3 

  3        4 

 0    / 2V        

0     / 2V        

0     / 2V        

0     / 2V        

   2               

   2               

   2               

   2               

   0               

   0               

   0               

   0               

   2          3 

   3          2 

   2          4 

   4          3 

    0       V  

    0       V  

    0       V  

    0       V  

    1         

    1         

    1         

    1         

   0               

   0               

   0               

   0               

 

An improved dynamic network flow G , was solved by expanded network for 0,1   and 2 . 

We considered  (1) 2b   , (4) 2b    and (2) (3) 0b b   and minimum cost in dynamic network 

flow with uncertain cost belonging to interval in Figure 2, for 0,1   and 2  were obtained for 

formulations 14, 18 and 20, respectively by the described algorithm in the previous section. 

1

'
 

'

' 
 

 

1
 

'

' 
 

 

2
 

'

' 
 

 

2

'
 

'

' 
 

 

4

'
 

'

' 
 

 

4
 

'

' 
 

 
3

'
 

'

' 
 

 

3
 

'

' 
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6.  Conclusion 
 

In this paper, we considered minimum cost flow problem in dynamic network. We surveyed 

dynamic minimum cost flow in discrete and continuous networks. We focused on the problem 

with uncertain arc costs. Moreover, a short introduction into the problem formulation and 

objectives were given. A robust formulation was presented to take care of uncertainty and an 

algorithm was proposed to find the solution. In this algorithm, the concept of unimodal function 

and interval halving algorithm were applied.  
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