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Abstract  
 

Magnetohydrodynamics (MHD) is generally concerned with the study of the magnetic properties 

(behaviour) of electrically conducting fluids (plasmas, liquid metals etc.) moving in an 

electromagnetic field. The importance of the concept of MHD in various fields such as astrophysics, 

bio-medical research, missile technology and geophysics motivates the modelling and investigation of 

MHD flow and transport problems. The role of fluid suction is paramount in laminar flow control and 

has wide applications in fields such as aeronautical engineering, automobile engineering and rocket 

science. This fact inspires the study of the effects of fluid suction in flow and transport models. Time 

dependent flows are widely encountered in engineering applications such as turbines and in 

physiological studies such as flow of bio-fluid (blood etc.). In the present paper, an attempt has been 

made to investigate analytically the problem of a time dependent channel flow with heat transfer, 

where the channel is bounded by two infinite parallel porous walls. The pressure gradient is assumed 

to be oscillatory in nature. A magnetic field of uniform strength is assumed to be applied normal to 

the walls. After necessary idealization of the momentum and energy equations, the governing 

equations of our problem are solved by adopting the regular perturbation technique. The effects of 

magnetic field, suction velocity, viscous dissipation, Reynolds number, Prandtl number etc. on the 

flow and heat transfer are studied and demonstrated graphically. It is seen that magnetic field, fluid 

suction, viscous dissipation, Reynolds number, Prandtl number have a significant effect on the flow 

and heat transfer characteristic. For instance, the imposition of the magnetic field enhances the rates 

of heat transfer at the walls and the fluid suction decreases the temperature and aids in laminar flow 

control. 

 

Keywords: MHD, Magnetohydrodynamics; Injection/suction; Ohmic dissipation; Induced 

magnetic field 
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Nomenclature 

pC
      

Specific heat at constant pressure, 
Kkg

Joule


 

Ec       Eckert number  

0H       Applied magnetic field, 
m

Ampere
 

xH       Induced magnetic field 

h          Non-dimensional induced magnetic field 

xJ        Current density 

J         Magnitude of current density, Ampere/m
2
 

k          Thermal conductivity 

L          Wave length of the periodic suction 

M        Hartmann number 

p         Dimensional pressure gradient, Pascal/m  

p         Non-dimensional pressure 

Pr       Prandtl number  

Re       Reynolds number 

Rm       Magnetic Reynolds number 

t          Dimensional time, s  

T         Temperature of the fluid 

1T         Fluid temperature at the lower plate, K  

2T        Fluid temperature at the upper plate, K  

T       Temperature difference between two plates, K  

 vu ,    Components of the fluid velocity, m  

 vu,     Non-dimensional components of the fluid velocity 

 YX ,   Coordinate system, m  

 YX ,   Non-dimensional coordinate system 

0V         Suction velocity, m/s  

 

Greek symbols 

         Coefficient of viscosity, 
ms

kg
 

e        Magnetic permeability, henry/m  

         Electrical conductivity,   1
/


mOhm  

         Fluid density, 
3m

kg
 

         Frequency parameter 

        Dimensional frequency parameter 

          Kinematic viscosity, 
12 sm  

          Non-dimensional temperature 

          Magnetic diffusivity, 
12 sm  

          Small reference parameter 

The other symbols have their usual meanings. 
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1. Introduction 
 

MHD (Magnetohydrodynamics) is generally regarded as the science of motion of electrically 

conducting fluids, such as plasmas and liquid metals, in electromagnetic fields. In such 

situations, the currents generated in the fluid due to induction alter the field, thereby resulting 

in the coupling of the field and dynamics equations. MHD treats, especially, conductive 

fluids, whether liquid or gaseous, in which certain idealizations (simplifying assumptions) 

are accepted. Studies in MHD channel flows are of wide interest among many workers due to 

their great importance in the field of industrial applications such as MHD generator, MHD 

pump, Nuclear reactors, etc. Significant works on various topics concerning MHD situations 

abound in the works of Chang and Yen (1965), Cowling (1957), Hughes and Young (1960), 

Sutton and Sherman (1965), Sengupta (2015), Oahimire and Olajuwon (2014) to cite a few. 

 

Fluid suction plays a paramount role in laminar flow control and finds many applications in 

areas such as aeronautical engineering, automobile engineering and rocket science. The 

importance of laminar flow control using fluid suction was pointed out by several research 

workers like Muhuri (1963), Ramamoorty (1962), Rathy (1963), Verma and Bansal (1966), 

Govindarajulu (1976), and Shukla (1963), Dessie and Kishan (2014), Masthanrao et al. 

(2013) through their works. 

 

Time dependent (unsteady or transient) flows are of great importance in engineering 

applications such as turbines and in physiological investigations such as flow of bio-fluid 

(blood, blood plasma, etc.). 

 

Channel flows are encountered in several situations such as natural drainage of water through 

river systems, flow in canals and sewers, flow in pipes, etc. Modelling of channel flows 

through porous media are of great significance in the investigation of underground water 

resources, oil and natural gas reservoirs, flow of fluid in geothermal regions, chemical 

purification techniques, cooling techniques in electronic devices, etc. Clearly, channel flows 

are of considerable interest in engineering geophysics, chemical engineering, electronics, etc. 

The works by Jain and Gupta (2006) and Ahmed and Barua (2008) may be cited in this 

regard. The analysis of MHD channel flow problems become meaningful when the combined 

influence of magnetic field and viscous thermal energy dissipation are taken into account for 

investigating high speed flows, and such attempts were made by researchers like Hitesh 

Kumar (2009), Soundalgekar and Bhatt (1976), Cookey Israel (2003), Ahmed and Kalita 

(2010) and Manjulatha et al. (2014) to mention a few. 

 

The main objective of our present study is to extend the work done by Soundalgekar and 

Bhatt (1976), by considering the effect of suction/injection on the flow and transport 

characteristics. In the current work an attempt has been made to study analytically the 

problem of a transient channel flow with heat transfer, where the channel is bounded by two 

infinite parallel porous walls. We assume an oscillatory pressure gradient for this pressure 

driven flow. A uniform magnetic field is imposed on the flow, normal to the walls. After 

necessary idealization of the momentum and energy equations, the equations governing our 

flow and transport model are solved by employing the regular perturbation technique. The 

influence of magnetic field, suction velocity, viscous dissipation, Reynolds number, Prandtl 

number etc. on the flow and heat transfer are analysed and demonstrated graphically. 
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2. Mathematical Analysis 
 

Consider a fully developed flow of an electrically conducting viscous incompressible fluid 

between two infinite parallel plates. The origin is taken along the centre line of the channel 

with X axis taken along the direction of the flow and Y axis taken normal to the plate which 

is also the direction of the applied uniform magnetic field. The plates are assumed to be 

electrically non-conducting. We consider an oscillatory pressure gradient in the form  

 

 

  1,1
1





 


 tieA
x

p
, where A is constant. 

 

Then, the fully developed unsteady flow is governed by the following equations:   

 

Equation of continuity: 

 

0









y

v

x

u
                                                                                                 

 0





y

v
  (since u is free of x ) 

 => v = a constant 0V , the suction velocity.                                                                (1) 

 

Momentum equation: 

 

y

HH

y

u

x

p

y

u
V

t

u xe






























 4

1 0

2

2

0  .                                                                    (2) 

 

Magnetic diffusion equation:     

                                                           

 
2

2

0
y

H

y

u
H

t

H xx














 .                                                                                               (3) 

 

Energy equation:   

 




22

2

2

0
x

p

J

y

u

y

T
k

y

T
V

t

T
c 



































 .                                                                 (4)   

                                                                                 

The last two terms on the right hand side of the Equation (4) represent the viscous and Joule 

dissipations. 

 

The relevant boundary conditions are:  

 

,0)( Lu  ,0)( LH x  ,)( 2TLT   1)( TLT   .                                                        (5) 

 

In order to make the mathematical model normalized, we introduce the following non-

dimensional quantities:  
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.,,,,,

,,4,,,,

12

1

00

2

0

2

0

0

22

0

2

2

0

2

00

TT

TT

VH

J
J

Tc

V
Ec

k

c
Pr

AL
V

LV
Re

LH
MLVRm

L

V

u
u

RmH

H
h

L

y
y

e

x

p

p

e

e

x




























        

(6) 

 

 All the physical quantities are defined in the Nomenclature.      

                                                                              

The non-dimensional governing equations are: 

 
2

2

2
1 i tu u u h

Re e M
t y y y


   

    
     ,                                                                   (7) 

2

2

h Re u h

t Rm y y





  
 

  
 ,                                                                                                 (8) 

22
2 2

2

1 u
Re Ec M J Ec

t y Pr y y

       
    

    
.                                                     (9) 

 
The relevant boundary conditions in non-dimensional forms are: 

 









.0,0,0:1

,0,0,0:1





huy

huy
                                                                                           (10) 

 

To solve the Equations (7), (8) and (9), we take Re Rm and 

 

0 1

0 1

0 1

0 1

( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ),

i t

i t

i t

i t

u u y e u y

h h y e h y

y e y

J J y e J y













   



 


  


  
  

                                                                                    (11) 

where  

., 1
1

0
0

y

h
J

y

h
J











 

 
Substituting the transformation (11) in (7), (8) and (9), we derive the following set of 

differential equations: 

 
2

20 0 0

2
1

d u dh du
M Re

dy dy dy
     ,                                                                              (12) 

2
21 1 1

12
1

d u dh du
M i u Re

dy dy dy
     ,                                                                       (13) 
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0
2

0

2

0 
dy

hd

dy

du
,                                               (14)                                      

12

1

2

1 Nhi
dy

hd

dy

du
 , where

Re

Rm
N  ,                                                                            (15) 

22
2 20 0 0

02

d d du
Pr Re Pr Ec M J Pr Ec

dy dy dy

   
    

 
 ,                                          (16) 

10

210

1
1

2

1

2

22 JPrEcJM
dy

du

dy

du
PrEciPr

dy

d
PrRe

dy

d

















 


 ,                          (17) 

 

with the boundary conditions: 

 

 

0 1

0 1

0 1

( 1) 0, ( 1) 0,

( 1) 0, ( 1) 0,

( 1) 0, ( 1) 0.

u u

h h

 

    


    
    

                                                                                                (18) 

 

Equations (12) to (15) are solved subject to the boundary conditions (18) and the solutions 

are as follows: 

 

433220
32)( cemcemcyu
ymym
  ,                                                                                (19) 

23210
32)(

M

y
ececcyh

ymym
  ,                                                                                (20) 

i
ececececyu

ymymymym 1
)( 8765

87651   ,                                                               (21) 

ymymymym
ec

M

a
ec

M

a
ec

M

b
ec

M

b
yh 8765

827262521 )(   .                                          (22) 

 

The expression for the velocity field is given by 

 

)()()( 10 yueyuyu ti  

                










 

i
ecececececemcemc

ymymymymtiymym 1
876532

876543322
 ,    (23) 

                                                                                                                                                                                 

where 87653287654321 ,,,,,,,,,,,,, mmmmmmcccccccc  are defined in the Appendix. 

 

The solutions of the Equations (16) and (17) under (18) are:  

 

 yPePePePePPrEceccy
ymymymymPrRey

151413

2

12

2

111090
3232)(    .               (24)                                                                                                                      

 
       ymmymmymmymmymym

ePePePePPrEcececy 827262521211

1918171612111 2)(


  

                             ymymymymymmymm
ePePePePePeP 87656353

252423222120 
 .     (25)                                                                                                             

                          

 

                                                                                                                    

The expression for the temperature field is given by: 
 

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 1, Art. 17

https://digitalcommons.pvamu.edu/aam/vol11/iss1/17



272   N. Ahmed et al. 

 

)()()( 10 yeyy ti    

                 yPePePePePPrEcecc
ymymymymPrRey

151413

2

12

2

11109
3232          

                  
      

      ymymymymymmymmymm

ymmymmymmymymti

ePePePePePePeP

ePePePPrEcecece

8765635382

7262521211

25242322212019

1817161211 (2









,   

                                                                          
                                                                     (26)                                                      

where  

,,,,,,,,,,,,,,,,,,,, 181716151413121112118765321211109 PPPPPPPPmmmmmmmmcccc
 

25242322212019 ,,,,,, PPPPPPP  are defined in the Appendix.
 

 

 

3. Skin frictions 
 

 The skin frictions 1 and 2  at the plates 1y and 1y  respectively are as follows: 

 

)cos(0

11   tB  ,                                                                                              (27) 

 where  

1

00

1













y
dy
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 ,  22
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


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


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r
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B
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rB Real part of 
1

1












y
dy

du
,  iB Imaginary part of 

1

1












y
dy

du
, 

and 

)cos(0

22   tC
 
,                                                                                           (28)                                                                                                              

where 

1

00

2
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








y
dy
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


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


 
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i
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        rC Real part of 
1

1











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,  iC Imaginary part of 

1

1












y
dy

du
. 

 

4. Nusselt number 
 

The coefficient of the rates of the heat transfer at the plates 1y  and 1y  in terms of the 

Nusselt number are as follows: 

 

)cos(0

11   tDNuNu ,                                                                                        (29) 

where  
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, 
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5. Results and discussion 
 

In order to get the physical insight into this problem, data tabulation was carried out and the 

subsequent figures for the velocity and temperature fields, skin-friction and Nusselt number 

are presented. The influence of the magnetic field, the viscous dissipation and the suction on 

the flow and heat transfer have been depicted graphically and discussed through the study of 

the effect of non-dimensional parameters viz. Hartmann number (M), Prandtl number (Pr), 

Eckert number (Ec) and Reynolds number (Re) on the dimensionless velocity u and 

temperature Q, non-dimensional skin frictions 21,  and the dimensionless rates of heat 

transfer Nu1 and Nu2 at the walls y = 1 and y = - 1.  

 

Figures 1 and 2 depict how the magnetic field and the suction affect the flow. It is seen that a 

growth in the magnetic field strength accelerates the flow whereas the suction retards the 

fluid flow. This is obvious from the fact that the velocity u increases as M rises and u 

decreases as Re rises. Hence, the magnetic field and the fluid suction helps in controlling the 

flow field. It is a well-known fact that electric currents are induced whenever a moving 

electrically conducting fluid is subjected to the presence of a magnetic field. When these 

electric currents interact with the applied magnetic field, an electromagnetic force known as 

the Lorentz force is generated. Generally, the Lorentz force slows down the motion of the 

fluid, particularly in the core (middle part) of the flow. This impediment to the flow field in 

the core region is quite evident from the Figures 1 and 2. It can be seen from Figures 1 and 2 

that the velocity profiles are slightly flattened in the middle when compared to the edges. The 

edges seem to bulge out slightly. Thus, the magnetic field as well as the fluid suction helps in 

decelerating the flow in the core region of the flow and hence the magnetic field and fluid 

suction can control the core velocity. Consequently, the flow velocities are comparatively 

higher at the edges of the flow profiles.   

 

The effects of the magnetic field, viscous dissipation, and fluid suction on the fluid 

temperature have been portrayed in Figures 3, 4, 5 and 6, respectively. It is inferred that the 

fluid temperature Q rises with the increase in each of magnetic parameter / Hartmann number 

(M), Prandtl number (Pr) and the Eckert number (Ec). Clearly, an increase in each of 

magnetic field strength, electrical conductivity, and viscous dissipative energy leads to a 

growth in the fluid temperature. The thermal energy dissipated on account of fluid viscosity 

(internal fluid friction) causes the temperature to rise. But the influence of viscous energy 

dissipation is significant at the edges of the flow region and trivial in the middle of the flow 

region. This is obvious from the somewhat flattened temperature profiles at the core region, 

as can be seen from the Figures 3 to 6. Subsequently, the temperature is slightly higher at the 
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edges of the profiles. However, the temperature drops as the suction Reynolds number (Re) 

rises i.e. as the fluid suction increases. Again, as in the case of velocity profiles, we also 

observe from the Figures 3 to 6 that the magnetic field (through M) and the fluid suction 

(through Re) help in reducing the temperature in the core region of flow. This is apparent 

from the slightly flattened temperature profiles at the middle region, as can be seen from the 

Figures 3 to 6. Consequently, the temperature is slightly higher at the edges of the profiles. 

Thus, the magnetic field and the fluid suction aid in regulating the temperature field. Figures 

1 to 6 show that the flow and temperature profiles and hence the velocity and thermal 

boundary layers are analogous. 

 

Figures 7 and 8 portray the influence of fluid suction (through the Reynolds number Re) and 

the magnetic field (through the Hartmann number M) on the skin frictions 21,  at the walls 

y = 1 and y = -1, respectively. We note that 01   and 02  . Thus, for our model, the upper 

wall (y = 1) exerts drag on the moving fluid whereas the moving fluid exerts drag on the 

lower wall (y = - 1). It is observed that a growth in fluid suction (i.e. suction Reynolds 

number Re) causes the magnitude of skin friction 1  to decrease and the magnitude of skin 

friction 2  to increase. Further, the same figures also depict that the imposition of the 

magnetic field (i.e. increase in M) augments the magnitudes of the skin frictions at the walls. 

Clearly, the suction and the magnetic field act as regulatory mechanisms for controlling the 

skin-frictions at the walls.  

 

Figures 9, 10, 11, 12, 13, and 14 illustrate the behaviours of the rates of heat transfer at the 

walls under the effects of fluid suction, and viscous energy dissipation. It may also be noted 

from Figures 9 to 14 that Nu1 is negative whereas Nu2 is positive. Thus, in our model, heat 

flows from the upper wall towards the fluid and the lower wall receives heat from the fluid. It 

follows from Figures 9 and 10 that an augmentation in the suction Reynolds number (Re) 

leads to a fall in the magnitude of Nu1 at the wall y = 1 and a growth in the magnitude of Nu2 

at the wall y = -1. Clearly, Figures 9 and 10 illustrate that as Re increases i.e. as the suction 

0V  increases, the magnitude of heat transfer at the upper wall (y = 1) falls and that at the 

lower wall (y = -1) rises. Subsequently, the heat transfer from the upper wall to the fluid 

tends to fall and that from the fluid to the lower wall tends to rise, on account of increasing 

suction.  

 

Thus, suction plays a vital role in regulating heat transfer at the walls. The same Figures 9 

and 10 indicate that the magnitudes of Nu1 and Nu2 increase as M increases i.e. as the applied 

magnetic field strength )( 0H  or the electrical conductivity ( ) of the fluid increases. 

Recalling that Nu1 is negative whereas Nu2 is positive, it may be inferred that the heat transfer 

from the upper wall (y = 1) to the fluid increases as the applied magnetic field strength 

increases. Similarly, a rise in the magnetic field strength leads to enhanced heat transfer from 

the fluid to the lower wall (y = -1). Hence, the imposition of the magnetic field enhances the 

magnitudes of heat flux at the walls. Evidently, the imposition of a magnetic field is 

beneficial for effective heat transfer at the walls. Hence, the application of the magnetic field 

and the fluid suction facilitates an efficient control of the heat flux at the walls. From Figures 

11 to 14, it is apparent that an increase in the Prandtl number (Pr) and the Eckert number 

(Ec) enhance the magnitudes of the rates of heat transfer at the walls. It may be noted that a 

rise in Eckert number Ec indicates a growth in the viscous dissipative energy and this 

consequently leads to greater heat transfer at the walls.  
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6. Conclusions 
 

In view of the facts presented in the preceding ‘Results and discussion’ section, the following 

conclusions are drawn:         

 

 An increase in the magnetic field strength accelerates the flow whereas a growth in 

suction impedes the flow. Also, the imposition of the magnetic field as well as the 

fluid suction assists in reducing the core velocity i.e. the flow velocity in the core 

region of flow. This is of practical importance concerning flows such as those of 

liquid metals through rectangular channels in fusion power reactors, and flows of 

coolant fluids through channels in micro fluidic devices etc.  

 

 Growth in fluid suction reduces the temperature field. An increase in the magnetic 

field increases the fluid temperature due to greater amount of Joule heating. 

However, the fluid suction and the magnetic field have a damping effect on the 

temperature in the core region of flow.  

 

 The viscous energy dissipation raises the fluid temperature i.e. high speed flows or 

highly viscous fluid flows will lead to a growth in fluid temperature. In many 

engineering flow and transport situations, high temperature is undesirable because it 

causes wear and tear to material surfaces.   

 

 An increase in the strength of the magnetic field leads to a corresponding growth in 

the magnitudes of the skin frictions at the walls. Consequently, the application of 

strong magnetic field is undesirable. Growth in fluid suction causes the magnitude 

of skin friction at the upper wall to decrease and that at the lower wall to increase. 

Clearly large suction may be avoided in order to minimize the adverse effects of 

skin friction at the lower wall. The influence of suction on the wall-skin frictions is 

marked in presence of relatively strong magnetic fields. 

 

 The heat transfer from the upper wall to the fluid exhibits a drop and that from the 

fluid to the lower wall exhibits a growth due to a rise in fluid suction. Moreover, a 

growth in specific heat of the fluid (through Prandtl number) leads to a growth in 

channel fluid temperature as well as increased heat transfer at the walls.  

 

 The thermal energy dissipation due to viscosity increases the magnitudes of the 

rates of heat transfer at the walls. Since viscous thermal energy dissipation unduly 

raises the fluid temperature, it is necessary to maintain low flow speeds in order to 

achieve laminar flow control.      

   

 The imposition of the magnetic field boosts the rates of heat transfer at the walls by 

facilitating increased heat transfer from the upper wall to the fluid and from the 

fluid to the lower wall.  
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GRAPHS 

 

 

 

Figure 1. Velocity u against y, under M for Re=1, t=1, Pr=7, Ec=0.1, 0.5, 0.1    

 

 

Figure 2. Velocity u against y, under Re for Pr=7, Ec=0.1, M=1, t=1, 0.5, 0.1    

 

 

 

 y 
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Figure 3. Temperature Q against y, under M for Re=1, t=1, Pr=7, Ec=0.1, 0.5, 0.1    

 

Figure 4. Temperature Q against y, under Pr for Re=1, t=1, M=1, Ec=0.1, 0.5, 0.1    

 

 

 

 

 

 

 

 

 

 

 Figure 5. Temperature Q against y, under Ec for Re=1, t=1, M=1, Pr=7, 0.5, 0.1    
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Figure 6. Temperature Q against y, under Re for Pr = 7, t=1, M=1, Ec=0.1, 0.5, 0.1    
  

 

Figure 7. Skin-friction 1  against M, under Re for t=1, Ec=0.1, Pr=7, 0.5, 0.1    

 

Figure 8. Skin-friction 2  against M, under Re for t=1, Ec=0.1, Pr=7, 0.5, 0.1    

y 
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Figure 9. Nusselt number Nu1 against M, under Re for   t=1, Pr =7, Ec=0.1, 0.5, 0.1    

 

 

Figure 10. Nusselt number Nu2 against M, under Re for   t=1, Pr =7, Ec=0.1, 0.5, 0.1    
  

 

Figure 11. Nusselt number Nu1 against M, under Pr for   t=1, Re=1, Ec=0.1, 0.5, 0.1    
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Figure 12. Nusselt number Nu2 against M, under Pr for t=1,     Re =1, Ec=0.1, 0.5, 0.1    

 

 

Figure 13. Nusselt number Nu1 against M, under Ec for   t=1, Re=1, Pr=7, 0.5, 0.1    
 

 

Figure 14. Nusselt number Nu2 against M, under Ec for   t=1, Re =1, Pr =7, 0.5, 0.1    
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