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Abstract 

In this paper, we give some criteria to ensure the global existence and boundedness of 

solutions to a kind of third order nonlinear vector differential equations.  By using the 

Lyapunov's direct method, we obtain a new result on the topic and give an example for the 

illustrations. Our result includes, completes and improves some earlier results in the 

literature. 

Keywords:  Vector differential equation; third order; global existence; boundedness; the 

Lyapunov's direct method 
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1.   Introduction 

This paper studies the global existence and boundedness of solutions to the third order 

nonlinear vector differential equations of the form 

     ( ( )( ( ) ) ) ( , ) ( ) ( )q t r t X F X X X G X X cX P t                                        (1) 

in which ,  [0, ),  ;nt R R X R      c  is a positive constant, r  and q  are positive and 

continuously differentiable functions on ;R  F  and G are n n -symmetric continuous and 

differentiable matrix functions; : nP R R   is a continuous function with respect to .t        
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We can write Equation (1) in the differential system form as 

 

,
( )

Y
X

r t
   

,
( )

Z
Y

q t
   

                                ( ) ( ) ( ),Z A t Z B t Y cX P t                                                 (2) 

where 

 

1
( ) ( , )

( ) ( ) ( )

Y
A t F X

r t q t r t
  

and 

  

1 ( )
( ) ( ( ) ( , ))

( ) ( ) ( ) ( )

Y r t Y
B t G F X

r t r t r t r t


   

 

are n n -symmetric continuous and differentiable matrix functions.  

 

Let  

( ) ( ( )),  ( , 1,2,..., ),ij

d
B t b t i j n

dt
    

where ( )ijb t  are the components of ( ).B t  On the other hand ( ),  ( )X t Y t  and ( )Z t  are, 

respectively, abbreviated as ,  X Y  and Z  throughout the paper. Additionally, throughout this 

paper, the symbol ,X Y   corresponding to any pair X  and Y  in nR  stands for the usual 

scalar product 
1

,
n

i i

i

x y


  that is,  

1

, .
n

i i

i

X Y x y


    

 

Thus, 
2

, ,X X X    and also ( ),  ( 1,2,..., ),i D i n  are the eigenvalues of the n n  -matrix 

.D  

To the best of our knowledge, from the literature the qualitative behaviors of solutions, 

boundedness of solutions, stability of solutions, existence of periodic solutions, except the 

global existence of solutions, to  certain third order nonlinear scalar and vector differential 

equations have been discussed by many authors;  see, for example, the book of Reissig et al. 

(1974) as a survey and  the papers of Abou-El-Ela (1985), Afuwape (1985), Afuwape and 

Ukpera (2001), Afuwape and Omeike (2004), Ezeilo and Tejumola (1966), Ezeilo and 

Tejumola (1975), Feng (1995), Meng (1993), Omeike (2014), Tiryaki (1999), Tunc (1999), 

Tunc (2006), Tunc (2009), Tunc and Tunc (2006), Tunc and Ates (2006), Tunc and Ates 

(2006) and the references therein.  However, the global existence and boundedness of 

solutions to Equation (1) have not been discussed in the literature yet. The basic reason may 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 1, Art. 8

https://digitalcommons.pvamu.edu/aam/vol11/iss1/8



154                                                                                                                              Timur Ayhan and Cemil Tunç 

 

be the difficulty of finding a suitable Lyapunov function for differential systems of higher 

order. 

It is now worth mentioning some related papers on the subject. Abou-El-Ela (1985) 

established sufficient conditions which guarantee that all solutions of vector differential 

equation  

( , ) ( ) ( ) ( , , , )X F X X X G X H X P t X X X          

are ultimately bounded.  

Later, Tunc and Tunc (2006) obtained some sufficient conditions under which all solutions of 

the third order vector differential equation 
  

( , , ) ( ) ( ) ( , , , )X F X X X X G X H X P t X X X           

are ultimately bounded,  and the authors  also established some sufficient conditions which 

ensure that there exists at least one periodic solution of that  equation.  

Further, Tunc (2009) proved two results, for the cases 0P   and 0P  , respectively, on the 

stability and boundedness of solutions to the vector differential equation of third order 

 

( ) ( ).X X X BX cX P t        

For the same cases, Omeike (2014) discussed the global asymptotic stability and 

boundedness of solutions to nonlinear vector differential equation of third order 

  

( ) ( ) ( ).X X X X X cX P t         

In addition to  the mentioned papers, the motivation of this paper comes from the books or 

the papers of Ahmad and Rama Mohana Rao (1999), Baxley (1997), Burton (1985), 

Changian et al. (2012), Constantin (1995), Fujimoto and Yamaoka (2014), Graef and Tunç 

(2015), Mustafa and  Rogovchenko (2003), Napoles Valdes (2001), Oudjedi et al. (2014), 

Tidke and Dhakne (2010), Tidke (2010), Tiryaki and Zafer (2013), Wu et al. (2012) and Yin 

(2004).  Through all the mentioned papers and the book of Reissig et al. (1974), the 

Lyapunov's direct method, Lyapunov (1966), is used as a basic tool to prove the results in 

there. The aim of this paper is to extend and improve the results obtained on the global 

existence and boundedness of solutions to scalar differential equations of second order, (see 

Fujimoto and Yamaoka (2014), Mustafa and Rogovchenko (2003), Tidke (2010), Tiryaki and 

Zafer (2013), Wu et al. (2012) and Yin (2004)), to the same topics for a certain  third order 

non-linear vector differential equation, Equation (1). This is the novelty and originality of this 

paper. 

We suppose that there exist positive constants , , , , ,a b c m L  and M  such that the following 

assumptions hold 

2( 1) 0,A b c   

( 2) 0 ( ) ( ) ,  ( ) ( ) 0,  ( ) 0,A m q t r t M r t q t r t          

3
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( 3)A  the matrices A  and B  are symmetric, ( ( )) ,  ( ( ))i iA t a B t b    and  

            max ( ( )) ,  ( 1,2,..., ),i B t i n     

( 4) ( ) ( )A P t t  for all 0,t   max ( )t   and 1( ) (0, ),t L    where 1(0, )L  is   

the space of the Lebesque-integrable functions. 

 

2.   Main result 

Before stating our main result, we give two well known algebraic results which will be 

needed in the proof. 

Lemma 1. [Bellman (1997)] 

Let A  be a real symmetric n n  -matrix and 

( ) 0 ( 1,2,..., ),ia A a i n     

where a  and a  are constants. Then 

, , ,a X X AX X a X X         

and 

2 2, , , .a X X AX AX a X X         

Lemma 2. [Afuwape (1983)] 

Let ,  Q D  be any two real n n  commuting symmetric matrices. Then, 

( )i  The eigenvalues ( ) ( 1,2,..., )i QD i   of the product matrix QD  are real and satisfy 

1 ,1 ,
max ( ) ( ) ( ) min ( ) ( ).j k i j k

j k nj k n
Q D QD Q D    

  
   

( )ii  The eigenvalues ( ) ( 1,2,..., )i Q D i    of the sum matrices Q  and D are real and satisfy 

   
1 11 1

max ( ) max ( ) ( ) min ( ) min ( ) ,j k i j k
j n k nj n k n

Q D Q D Q D    
      

      

where ( )j Q  and ( )k D  are, respectively, the eigenvalues Q  and .D   

Theorem  

Suppose that assumptions ( 1) ( 4)A A  hold. Then all solutions of system (2) are continuable 

and bounded. 

Proof:  

4
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The proof of this theorem depends on a scalar differentiable function ( ) ( , , , ).V t V t X Y Z  We 

impose some conditions on the function V(t) and its time derivative,  both of which  imply the 

global existence and boundedness of solutions of Equation (1). We define the function ( )V t  

by  

 

   
( ) ( ) 1

( ) , ( ) , ( ) , , .
2 2 2

r t q t
V t X X cq t X Y B t Y Y Z Z                                  (3) 

 

It is clear from Equation (3) that ( ,0,0,0) 0.V t   From the definition of ( )V t  in Equation (3), 

we observe that  

( ) ( ) 1
( ) ( , 2 , ( ) , ) , .

2 ( ) 2

q t r t
V t X X c X Y B t Y Y Z Z

q t
           

 

In view of the assumptions of Theorem and Lemma 1, respectively, it follows that 

               
2( ) 1

( ) ( , 2 , , )
2 2

q t
V t X X c X Y b Y Y Z           

                 
2 2 22 1

( ( ) ) .
2 2

m
X cY b c Y Z                                                         (4) 

Thus, it is evident from the terms contained in Equation (4) that there exists a sufficiently 

small positive constant k such that  

                    
2 2 2

( ) ( ).V t k X Y Z                                                                          (5) 

Calculating the time derivative of the function ( )V t  along any solution ( ( ), ( ), ( ))X t Y t Z t  of 

system (2), we have  

( ) ( ) ( )
( ) ( , 2 , ( ) , ) , ,

2 ( ) ( )

q t r t q t
V t X X c X Y B t Y Y X Y c Y Y

q t r t

 
               


 

                         
( )

( ) , , ( ) , ( ) .
2

q t
B t Y Y Z A t Z Z P t          

From the benefits of assumptions ( 1) ( 4)A A , Lemma 1 and the inequalities: 

, ,U V UV U V     
2 2

2 ,UV U V   

the following estimates can be derived: 

( ) ( )
( , 2 , ( ) , )

2 ( )

q t r t
X X c X Y B t Y Y

q t

 
       


        

                       
( )

( , 2 , , )
2

q t
X X c X Y b Y Y


                     

                      
2 22( )

( ( ) ) 0,
2

q t
X cY b c Y


    
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2( )
, ,

( )

q t
c Y Y c Y

r t
    

2( )
( ) , ,

2 2

q t M
B t Y Y Y


    

2
, ( )Z A t Z a Z    

and 

2
, ( ) ( ) (1 ) ( ).Z P t Z t Z t       

From these estimates and (5), we have 

                                   
2 2 2 2

( ) ( ) (1 ) ( )
2

M
V t c Y X Y Z t


        

                                        
1

( ) (1 ( )) ( ).
2

M
t c t V t

k


                                                   (6) 

Integrating both sides of inequality (6), from 0  to  ( 0),t t   we get 

0 0

1
( ) (0) ( ) ((1 ( )) ( ) .

2

t t
M

V t V s ds c s V s ds
k


         

Taking  

0

(0) ( )

t

V s ds N   and 1 ,
2

M
c


    

 
it follows that 

0

1
( ) ( ( )) ( ) .

t

V t N s V s ds
k

     

By using Gronwall-Bellman inequality [see Ahmad and Rama Mohana Rao (1999)], we 

conclude that  

0

1
( ) exp( ( ( )) ).

t

V t N s ds
k

                                                      (7) 

Since all the functions appearing in Equation (1) are continuous, then there exists a solution 

defined on ),[ 00 tt  for some 0  . We now need to show that the solution can be 

extended to the entire interval ).,[ 0 t Suppose on the contrary that there is a first time T  

such that the solution exists on ),[ 0 Tt  and 
 

lim ( ) .
t T

X Y Z
  
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Let ( ( ), ( ), ( ))X t Y t Z t  be such a solution of system (2) with initial condition 
0 0 0( , , ).X Y Z  In 

view of inequalities (5) and (7), we get  

                              
2 2 2

0

1
( ) ( ) ( ) exp( ( ( )) ) .

T
N

X T Y T Z T s ds K
k k

       

This inequality implies that ( ) ,  ( )X t Y t  and ( )Z t  are bounded as .Tt  Hence, we 

conclude that T   is not possible. Therefore, we must have .T   This completes the 

proof of Theorem.  

 

Example  

Let  2n    in Equation (1) and choose the functions , , ,F G P q  and r as the following: 

1 1
( ) 1 ,  ( ) 1 ,

1 2
r t q t

t t
   

 
 

2 2

2 2

1
1 0

1
( , ) ,

1
0 1

1

x y
F X X

x y

 
  

  
 

   

 

2

2

1
4 0

1
 ( ) ,

1
0 4

1

y
G X

y

 
 

  
 

  

 

 

1c    

and 

 
2

2

sin

1
( ) .

cos

1

t

t
P t

t

t

 
 

  
 
  

 

It is obvious that F  and G are symmetric matrices and 

 

1 ( ) ( ) 2 ,m q t r t M      1 ( ) ( ) 0,r t q t      ( ) 0.r t   

We obtain eigenvalues of the matrices F and G  as   

1 2 2 2

1
( ) ( ) 1 ,

1
F F

x y
   

 
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1 2 2

1
(G) (G) 4 .

1 y
   


 

Next, it is also clear that  

1 ( ) 2i F   and 4 (G) 5,i   

1 5
( ( )) ,  ( ( )) 2 ,  max ( ( )) ,  (1,2),

3 4
i i iA t a B t b B t i           

2

2
( ) ( ),  max ( ) 2

1
P t t t

t
     


 

and 

2

0 0

2
(t)dt dt ,

1 t
 

 

 
   that is, 1(t) (0, ).L    

 

Thus, all the assumptions of the Theorem hold. Hence, we can conclude that all solutions are 

continuable and bounded for the special case chosen. 

 

3.   Conclusion 
 

A kind of vector differential equations of the third order was considered. The global existence 

and boundedness of solutions of this equation were discussed by using the Lyapunov’s 

second method. The obtained result includes, completes, and improves some earlier results in 

the literature and makes a contribution to the subject. 
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