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Abstract 
 

The problem of incomplete data is a common phenomenon in research that involves the 

longitudinal design approach. We investigate and develop a likelihood-based approach for 

incomplete longitudinal binary data using the disposition model when the missing value 

mechanism is non-ignorable. We combined Markov’s transition and a logistic regression model 

to build the dropout process and model the response using conditional logistic regression model. 

By holding the missingness parameter that is weakly identified constant, we analyzed their 

effects through a sensitivity analysis as the estimation of parameters in MLE for non-ignorable 

missing data is not generally plausible. An application of our approach to Schizophrenia clinical 

trial is presented. 
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1.      Introduction 

 
Correlated data are very common in clinical and social science research and include nested and 

clustered data.  Data are correlated because of common attributes that are shared among the 

members of the group, or among several measures of a member over time. Longitudinal and 

repeated data are specific cases of correlated data. Longitudinal data refer to data that are 

collected by repeatedly observing the same subject over a period of time. 

 

Incomplete or missing data are common occurrences in longitudinal studies because many 

subjects are not available to be measured at all points. A subject may miss an appointment for a 

measurement and is never measured again resulting in a monotone missing data pattern. Further, 

a subject can be missing at one follow-up time and be available to be measured at one of the next, 

resulting in non-monotone missing data pattern. These kind of missing data, if not handled or 

accounted for properly could lead to a bias when inferences on one or more covariates on a 

response variable of interest are made. 

 

Missing data could be related to, or unrelated to the outcome of interest. When it is unrelated to 

the outcome of interest, the effect is weak and analyses of the parameters of interest are less 

complicated. However, when it is related to the outcome of interest, the impact of the missing 

data is great, and the analyses, which are complicated, should be carried out with care to avoid a 

potential bias of inference on the parameters of interest. This in particular is the case when 

individuals with missing data differ significantly in important ways from those with complete 

data structure (Molenberghs et al., 2015). 

 

When a missing data is related to the history of the observed response, it is known as missing 

at random (MAR), when it is related to the current unobserved response, it is known as missing 

not at random (MNAR) (Little and Rubin, 2002). When the missingness is MAR, estimates will 

be valid and fully efficient when the likelihood and missing data model are correctly specified 

(Yi et al., 2005, Diggle and Kenward, 1994). However, when the missingness is MNAR, 

statisticians are faced with difficulties when the parameters of interest are to be estimated.  

 

The attractive feature of reproducibility of the disposition model (Bonney, 1998, 2003) makes it 

desirable to naturally extend it to capture the type of correlation or dependence that arises in 

longitudinal data. The original development of the disposition model starts with random effects 

formulation and then introduces a theory for constructing likelihoods utilizing moment series 

representations. Kwagyan (2001) further investigated the disposition model through an alternative 

formulation from a finite mixture modeling perspective. Erebholo (2015) and Erebholo et al. 

(2016) adopt the disposition model, and extend it to the analysis of longitudinal binary 

outcomes in the presence of monotone incomplete data under the dropout at random mechanism.  

 

The paper is organized as follows. In Section 2, we introduce the joint distribution of the 

incomplete data by combining the model of disposition and the dropout model and present the 

corresponding likelihood function. In Section 3, we present and discuss the result of the 

application of our approach to the PANSS Schizophrenia data.  Section 4 is focused on the 
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sensitivity analysis of the dropout not at random model. We end with concluding remarks in 

Section 5. 

 

2.     The Joint Distribution for Incomplete Data  
 

In this section, we introduce the disposition model and adopt it to develop a model in the 

presence of incomplete data. We will construct a joint distribution for the incomplete data and 

develop models for different dropout mechanism. 

 

2.1.    The Models of Disposition 

 

Consider a sample of N clusters, each of size 𝑛𝑖 , 𝑖 = 1,… ,𝑁 and  𝒀𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖)
𝑇 denote the 

vector of binary outcomes for the 𝑖𝑡ℎ cluster with size 𝑛𝑖 × 1. Let 𝛿𝑖𝑘 denote the conditional 

probability of  𝑌𝑖𝑘 = 1 given that 𝑌𝑖𝑘′ = 1. That is, 

 

                     𝛿𝑖𝑘 = Pr(𝑌𝑖𝑘 = 1| 𝑌𝑖𝑘′ = 1),   𝑘 ≠ 𝑘′;  𝑘, 𝑘′ = 1,2, … , 𝑛𝑖. 
 

Let us further assume that a pair of observed response within the same group satisfies the 

following relation: 

 

         
Pr(𝑌𝑖𝑘=1|𝑌𝑖𝑘′=1)

Pr (𝑌𝑖𝑘=1)Pr (𝑌𝑖𝑘′=1)
=

1

𝛼𝑖
, 𝛼𝑖 > 0, 𝑘 ≠ 𝑘′;  𝑘, 𝑘′ = 1,2, … , 𝑛𝑖, 

 

where 𝛼𝑖, called the relative disposition, is common for all pairs of observation and it measures 

the within-group aggregation (correlation): 𝛼𝑖 = 1  implies independence or no aggregation, 

0 < 𝛼𝑖 < 1 implies positive aggregation,   and 𝛼𝑖 > 1 implies negative aggregation. With this, 

Bonney (1998, 2003) has shown that the joint distribution of the 𝑖𝑡ℎ cluster is given as 

 

       𝑃(𝑌𝑖1, … , 𝑌𝑖𝑛𝑖) = (1 − 𝛼𝑖)∏ (1 −
𝑛𝑖
𝑘=1 𝑦𝑖𝑘) + 𝛼𝑖∏ 𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)

(1−𝑦𝑖𝑘)𝑛𝑖
𝑘=1 .                           (1) 

 

In general, 𝛼𝑖 and 𝛿𝑖𝑘 are modeled as 

 

                                      𝛿𝑖(𝚲, 𝚪, 𝛃) =  
1

1+𝑒−(𝑀(𝒁𝑖)+𝐷(𝒁𝑖)+𝑊(𝑿𝑖𝑘))
, 

 

                                               𝛼𝑖(𝚲, 𝚪) =  
1+𝑒−(𝑀(𝒁𝑖)+𝐷(𝒁𝑖))

1+𝑒−𝑀(𝒁𝑖)
, 

 

where 𝑀(𝒁𝑖) represents the mean effect, 𝐷(𝒁𝑖) represents the within group dependence, and 

𝑊(𝑿𝑖𝑘) is the adjustment due to individual-specific covariates and are parameterized as 

 

𝑀(𝒁𝑖) = 𝜆0 + 𝜆1𝑍𝑖1 +⋯+ 𝜆𝑞𝑍𝑖𝑞 , 

                                                   𝐷(𝒁𝑖) =  𝛾0 + 𝛾1𝑍𝑖1 +⋯+ 𝛾𝑞𝑍𝑖𝑞 , 

                                                𝑊(𝑿𝑖𝑘) = 𝛽1𝑋𝑖𝑘1 +⋯+ 𝛽𝑝𝑋𝑖𝑘𝑝, 

and 

(𝚲, 𝚪, 𝛃) = { 𝛾0, 𝛾1, … 𝛾𝑞 , 𝜆0, 𝜆1, … 𝜆𝑞 , 𝛽1, … , 𝛽𝑝} 

3
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are the unknown parameters. 

 

2.2.    Modeling the Incomplete Data 

 
Let 𝒀∗ = (𝑌1

∗, … , 𝑌𝑛
∗) denote the complete vector of intended sequence of measurement on an 

experimental unit, and 𝒕𝒊 = (𝑡𝑖1, … , 𝑡𝑖𝑛𝑖) the set of times that corresponds to the intended 

measurement. Then the joint probability distribution of 𝒀∗ is 

 

                 𝑃(𝒀∗ 𝒊; α, δ) = (1 − 𝛼𝑖)∏ (1 −
𝑛𝑖
𝑘=1 𝑦𝑖𝑘

∗ ) + 𝛼𝑖∏ 𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)
(1−𝑦𝑖𝑘

∗ )𝑛𝑖
𝑘=1 .    

   

Let 𝒀𝒊 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖)
𝑇denote the vector of complete observed sequences of binary observation 

for the 𝑖𝑡ℎ unit. The assumption for the dropout process is that if an experimental unit is still in 

the study at time 𝑡𝑘 (2 ≤ 𝑘 ≤ 𝑛), the sequence of measurement (𝑌𝑖𝑗: 𝑗 = 1,2, … , 𝑘) associated 

with it follows the same joint distribution as that of the  corresponding intended sequence 

(𝑌𝑖𝑗
∗ : 𝑗 = 1,2, … , 𝑘). 

 

We define the preceding outcome 𝑌𝑗 as: 

 

                       𝑌𝑖𝑗 = {
2𝑌𝑖𝑗

∗ − 1;     𝑓𝑜𝑟 𝑗 = 1, … , (𝐷𝑖 − 1)(𝑌𝑖𝑗
∗  𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑),

0,                                   𝑓𝑜𝑟 𝑗 ≥ 𝐷𝑖, (𝑌𝑖𝑗
∗  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔),

   

where 𝐷𝑖 is a random variable. 

 

For each 𝑘, let 𝑯𝑖𝑘 = (𝑌𝑖1, … , 𝑌𝑖𝑘−1) denote the observed history up to time 𝑡𝑖𝑘−1, and 𝑦𝑖𝑘
∗ , the 

value that would have been observed at time 𝑡𝑖𝑘, if there was no dropout in the unit. Analogous 

to Diggle and Kenward (1994) selection model with non-ignorable dropout, we assume that the 

probability of dropout at time 𝑑𝑖 is assumed to depends on the history of the measurement 

process up to, and including the time of dropout 𝑡𝑑𝑖. That is, 

 

                               Pr(𝐷𝑖 = 𝑑𝑖|𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑝𝑑(𝑯𝑑𝑖
, 𝑦𝑑𝑖

∗ ; 𝝓), 

where 𝝓 = (𝜙0, … , 𝜙2+𝑝)  is a vector of unknown parameters. With this, we identify the 

following patterns of dropout process: 

 

Dropout Completely At Random (DCAR). Dropout is completely at random when the dropout 

process is independent of 𝑯𝑑𝑖
, 𝑎𝑛𝑑 𝑦𝑑𝑖

∗ . That is,  

 

                                Pr(𝐷𝑖 = 𝑑𝑖|𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑝𝑑(𝑑𝑖; 𝝓). 

 

Dropout At Random (DAR). Dropout is at random if the dropout process depends on 𝑯𝑑𝑖
, and not 

𝑦𝑑𝑖
∗ . That is, 

                                Pr(𝐷𝑖 = 𝑑𝑖|𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑝𝑑(𝑯𝑑𝑖
 ; 𝝓). 

  

4
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Dropout Not At Random (DNAR). This is when the dropout process depends on 𝑦𝑑𝑖
∗ . That is, 

 

                                Pr(𝐷𝑖 = 𝑑𝑖|𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑝𝑑(𝑯𝑑𝑖
, 𝑦𝑑𝑖

∗ ; 𝝓). 

 

We adopt the regressive logistic models of Bonney (1986, 1987, 1998) to model the dropout 

process 𝑝𝑘(𝑯𝑖𝑘, 𝑦𝑖;  𝝓) and define the logit as 

 

                                   𝜃𝑖𝑘 = 𝑙𝑜𝑔𝑖𝑡[𝑝𝑘(𝑯𝑖𝑘, 𝑦𝑖; 𝝓)], 
                                               = 𝜙0 + 𝜙1𝑦𝑑𝑖 + ∑ 𝜙𝑗𝑦𝑖𝑘+1−𝑗

𝑘
𝑗=2 + 𝜙𝑘+1𝑋𝑖𝑘1 +⋯+𝜙𝑘+𝑝𝑋𝑖𝑘𝑝,        (2)  

 

where 𝑿𝒊𝒌 = (𝑋𝑖𝑘1, … , 𝑋𝑖𝑘𝑝)
𝑇is the 𝑝 individual-specific covariates. 

 

The reason for this choice is that the probability of dropout at time 𝑡𝑑𝑖 is a direct consequence of 

the past outcomes, the present outcome, and possible set of covariates.  

 

Following Diggle and Kenward (1994), the joint distribution for an incomplete sequence with 

dropout at the 𝑡𝑑𝑖
𝑡ℎ time point is: 

 

       𝑃(𝒀𝒊) = 𝑃∗(𝑦𝑖1, … , 𝑦𝑑𝑖−1)[∏ 1 −
𝑑𝑖−1
𝑘=2 𝑝𝑘(𝑯𝑖𝑘, 𝑦𝑖𝑘)] Pr(𝑌𝑑𝑖 = 0|𝑯𝑑𝑖

, 𝑌𝑑𝑖−1 ≠ 0).                (3) 

 

Hence, the full log-likelihood for the 𝑖𝑡ℎ  cluster for 𝚯 based on the data (𝒚𝑖: 𝑖 = 1,… ,𝑁) is 

given as 

 

ℓ(𝚯) =∑log

{
 
 

 
 

𝑃∗(𝑦𝑖1, … , 𝑦𝑑𝑖−1; 𝛼, 𝛿) [∏1−

𝑑𝑖−1

𝑘=2

𝑝𝑘(𝑯𝑖𝑘, 𝑦𝑖𝑘; 𝝓)]

                                   ×  Pr (𝑌𝑑𝑖 = 0|𝑯𝑑𝑖
, 𝑌𝑑𝑖−1 ≠ 0; 𝛼, 𝛿, 𝝓)  }

 
 

 
 

,

𝑁

𝐼=1

 

 

and is partitioned as: 

 

                                       ℓ(𝚯) = ℓ1(𝛼, 𝛿) + ℓ2(𝝓) + ℓ3(𝛼, 𝛿, 𝝓),                                              (4) 

where 

 

ℓ1(𝛼, 𝛿) =∑log {(1 − 𝛼𝑖)∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘) + 𝛼∏𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)
(1−𝑦𝑖𝑘)

𝑑𝑖−1

𝑘=1

  }

𝑁

𝐼=1

 

 

is the log-likelihood for the observed response, 

 

ℓ2(𝝓) =∑∑ log[1 − 𝑝𝑘(𝑯𝑖𝑘, 𝑦𝑖𝑘; 𝝓)]

𝑑𝑖−1

𝑘=1

𝑁

𝑖=1

 

and 
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ℓ3(𝛼, 𝛿, 𝝓) = ∑ log{Pr (𝐷𝑖 = 𝑑𝑖|𝒚𝑖)}

𝑖≤𝑁;𝑑𝑖≤𝑛𝑖

 

 

together, corresponds to the log-likelihood function for the dropout process. 

 

                 Pr(𝐷𝑖 = 𝑑𝑖|𝒚𝑖) = {
∑ 𝑝𝑑(𝑯𝑑𝑖

, 𝑦𝑖; 𝝓)P𝒅𝒊
∗ (𝑦𝑖|𝑯𝑑𝑖

, 𝛼, 𝛿𝑦 ) 𝑓𝑜𝑟 𝑑𝑖 < 𝑛𝑖 ,

1                                                    𝑓𝑜𝑟 𝑑𝑖 = 𝑛𝑖 + 1,
                          (5) 

 

and  P𝑘
∗(𝑦𝑖|𝑯𝑖𝑘; 𝛼, 𝛿) denote the conditional probability distribution function of 𝒀𝑖𝑘

∗  given 𝑯𝑖𝑘. 
 

Let us temporarily drop the subscript i for ease of notation and without the loss of generality. 

Following from Equation (2), 

 

                                  𝜃𝑘 = 𝜙0 + 𝜙1𝑦𝑘 + 𝜙2𝑦𝑘−1 + 𝜙3𝑋𝑘1 +⋯+ 𝜙2+𝑝𝑋𝑘𝑝, 

𝜃𝑑
∗ = 𝜙0 + 𝜙1𝑦𝑑 + 𝜙2𝑦𝑑−1 + 𝜙3𝑋𝑘1 +⋯+ 𝜙2+𝑝𝑋𝑘𝑝. 

 

Using Equation (5), Equation (3) becomes 

 

𝑃(𝒚) = 𝑃∗(𝑦1, … , 𝑦𝑑−1) [∏1 −

𝑑−1

𝑘=2

𝑝𝑘(𝑯𝑘, 𝑦𝑘)] 

                                                                                  ×  ∑ 𝑝𝑑(𝑯𝑑, 𝑦𝑑; 𝝓)P𝑑
∗(𝑦(𝑚)|𝑯𝑑; 𝛼, 𝛿).𝑦(𝑚)           (6)           

  

We adopt the Markov transition model-to-model 𝑃∗(𝑌𝑑 = 𝑦𝑑|𝑯𝑑; 𝛼, 𝛿). 
 

Let 

𝜋𝑘 = Pr(𝑌𝑘 = 1|𝐻𝑘) 
 

and 

 

𝜉𝑘 = 𝜂𝑌𝑘−1 
 

be the first order Markov chain, where 𝜂 is the dependence parameter; that is, the odds that 

compare the participants who did not drop out of the study at the current measure with the 

participants who dropped out of the study at the previous measure keeping all other covariates 

constant. 

 

We now use the logit and model the function as 

 

𝜉𝑘 = 𝑙𝑜𝑔 {
Pr(𝑌𝑘 = 1|𝐻𝑘)

1 − Pr(𝑌𝑘 = 1|𝐻𝑘)
}. 

So that  

 

                                                                         𝜋𝑘 =
𝑒𝜉𝑘

1−𝑒𝜉𝑘
 . 
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Hence, the conditional distribution of the current observation given the history is given by 

 

𝑃∗(𝑦𝑘|𝑯𝑘; 𝜂) =
𝑒𝜉𝑘𝑦𝑘

1 − 𝑒𝜉𝑘
. 

 

So Equation (6) becomes  

 

      𝑃(𝒚) = 𝑃∗(𝑦1, … , 𝑦𝑑−1)[∏ 1 −𝑑−1
𝑘=2 𝑝𝑘(𝑯𝑘, 𝑦𝑘; 𝝓)]∑ 𝑝𝑑(𝑯𝑑, 𝑦𝑑; 𝝓)P𝑑

∗(𝑦(𝑚)|𝑯𝑑; 𝜂).𝑦(𝑚)     (7)   

         

By the definition of non-ignorable dropout, we can see that Pr(𝐷 = 𝑑|𝑯𝑑) = 𝑝𝑑(𝑯𝑑, 𝑦𝑑; 𝝓) 
solely depends on 𝑦(𝑚) = 𝑦𝑘

∗-the current unobserved response through 𝑦𝑑. 

 

Also, the factor ∑ 𝑝𝑑(𝑯𝑑, 𝑦𝑑;  𝝓)P𝑑
∗(𝑦(𝑚)|𝑯𝑑;  𝜂) 𝑦(𝑚)  in Equation (7) represents the conditional 

expectation of 𝑝𝑑(𝑯𝑑, 𝑦; 𝝓)  under the distribution of P𝑑
∗(𝑦(𝑚)|𝑯𝑑; 𝜂) = P𝑑

∗(𝑦𝑑|𝑯𝑑; 𝜂) and is 

evaluated as 

 

𝐸[𝑝𝑑(𝑯𝑑, 𝑦𝑑; 𝝓)] = ∑ 𝑝𝑑(𝑯𝑑, 𝑦𝑑; 𝝓)

𝑦𝑑=0,1

P𝑑
∗(𝑌𝑑|𝑯𝑑; 𝜂), 

 

                                  𝐸[𝑝𝑑(𝑯𝑑, 𝑦𝑑; 𝝓)] = 𝜋𝑑𝑞𝑑1 + (1 − 𝜋𝑑)𝑞𝑑0,                                               (8) 

 

where 

 

                                  𝑞𝑑1 = 𝑝𝑑(𝑯𝑑, 𝑦𝑑 = 1;𝝓) =
𝑒𝜃

∗|𝑦𝑑=1

1−𝑒𝜃
∗|𝑦𝑑=1

, 

 

                                  𝑞𝑑0 = 1 − 𝑞𝑑1, 

 

                                  𝜋𝑑 =
𝑒𝜉𝑑

1−𝑒𝜉𝑑
, 

 

                         𝜃∗|𝑦𝑑=1 = 𝜃𝑑
∗ = 𝜙0 +𝜙1 + 𝜙2𝑦𝑑−1 + 𝜙3𝑋𝑘1 +⋯+𝜙2+𝑝𝑋𝑘𝑝. 

 

A compact form of the distribution of the incomplete data is obtained by substituting Equation 

(8) into Equation (7) as  

 

𝑃(𝒚) = 𝑃∗(𝑦1, … , 𝑦𝑑−1) {∏1 −

𝑑−1

𝑘=2

𝑝𝑘(𝑯𝑘, 𝑦𝑘)} {𝜋𝑑𝑞𝑑1 + (1 − 𝜋𝑑)𝑞𝑑0} . 

 

Thus, the full log-likelihood for the 𝑖𝑡ℎ unit with an incomplete measurement sequence is  

 

                                     ℓ(𝚯) = ℓ1(𝛼, 𝛿) + ℓ2(𝝓) + ℓ3(𝝓, 𝜂),                                                    (9)       

 

7

Erebholo et al.: Incomplete Longitudinal Binary Data-A Combined Markov’s

Published by Digital Commons @PVAMU, 2016



 

 

90                                                                   Frances Erebholo et al. 

where 

                      ℓ1(𝛼, 𝛿) = ∑ log{(1 − 𝛼𝑖)∏ (1 −
𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘) + 𝛼𝑖∏ 𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)

(1−𝑦𝑖𝑘)𝑑𝑖−1
𝑘=1   },𝑁

𝐼=1      

                         ℓ2(𝝓) = −∑ ∑ log[1 + 𝑒𝜽𝒊𝒌]
𝑑𝑖−1
𝑘=2

𝑁
𝑖=1 , 

                     ℓ3(𝝓, 𝜼) = ∑ log{𝜋𝑑𝑖𝑞𝑑1 + (1 − 𝜋𝑑𝑖)𝑞𝑑0} 𝑖≤𝑁;𝑑𝑖≤𝑛𝑖
. 

 

Since closed form solution of the score function does not exist, numerical techniques will be 

used to obtain the estimates of the parameters of interest. 

 

3.    Application to PANSS Clinical Study 

 
In this section we use data from the PANSS Schizophrenia data to illustrate different ways we 

can fit the disposition model when the data is incomplete. Estimation of the parameters will be 

done using MULTIMAX (Kwagyan, 2001, Bonney, 2003, Kwagyan et al. 2003) for 

maximization likelihood estimation. 

 

These data were analyzed by Kurland (2002), Kurland and Heagerty (2004) using marginalized 

transition model. The Positive and Negative Syndrome Scale (PANSS) schizophrenia study 

(Chouinard et al., 1993; Marder and Meibach, 1994; Kurland, 2002) is a longitudinal clinical 

trial with monotone pattern of missingness (or dropout). Data consisted of 519 participants that 

were randomly placed into six different treatment groups: Placebo, Haloperidol 20mg/day, 

Risperidone at 2mg, 6mg, 10mg and 16mg/day over a period of 8 weeks. 

The treatment covariates are: PLAC (1=placebo, 0 otherwise), RISP[2mg] (1 = risp (2), 0 

otherwise), RISP[6mg] (1 = risp (6), 0 otherwise), RISP[10mg] (1 = risp (10), 0 otherwise), 

RISP[16mg] (1 = risp. (16), 0 otherwise) and HALO (1=haloperidol, 0 otherwise). In our study, 

we considered placebo, haloperidol, low dose of risperidone (2mg & 6mg), and high dose of 

risperidone (10 mg & 16 mg) over the 5 post-baseline scores. The treatment covariates used 

were: PLAC (1 = placebo, 0 otherwise), RISP[Low] (1= risp (2, 6), 0 other- wise), RISP[High] 

(1=risp (10, 16), 0 otherwise), and HALO (1=haloperidol, 0 otherwise). 

Following Chouinard et al. (1993) and Marder and Meibach (1994), we used binary outcome, 

which was dichotomized as clinically significant improvement in symptoms of subject at time k, 

at a 20% reduction compared to baseline according to PANSS. Of 519 patients, 275 (53%) had 

some of their responses missing. We deleted and excluded 13 observations from the data because 

they did not have any measurement at the baseline and post baseline time, while the entries of 

two of the participants with non-monotone data structure were deleted to make their data 

monotone. In so doing, we had a total of 506 participants with 2531 measured response.    

The primary research question is to know how patients respond to haloperidone, and risperidone 

in the treatment of schizophrenia. In addition, we seek to understand the effects of the dropout 

process in the treatment of schizophrenia. In the analysis, we considered the case when the 

regression parameters in the response and dropout models are the same and when they are 

different. 
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The dropout probability is modeled as 

         𝜃 = 𝑙𝑜𝑔𝑖𝑡[𝑝𝑘] = 𝜙0 + 𝜙1𝑦𝑘−1 + 𝜙2𝑦𝑘 + 𝜙3𝐻𝐴𝐿𝑂 + 𝜙4𝑅𝐼𝑆𝑃(𝐿) + 𝜙5𝑅𝐼𝑆𝑃(𝐻).        (10) 

The logit of the individual disposition and the relative disposition are modeled as 

                         {
𝑙𝑜𝑔𝑖𝑡[𝛿𝑘] = 𝛾0 + 𝜆0 + 𝛽1𝐻𝐴𝐿𝑂 + 𝛽2𝑅𝐼𝑆𝑃(𝐿) + 𝛽3𝑅𝐼𝑆𝑃(𝐻),

𝛼 =
1+𝑒−(𝛾0+𝜆0)

1+𝑒−𝛾0
,

                      (11) 

where 𝛾0 is the parameter measuring the within cluster or group dependence and 𝜆0 is the 

intercept or the mean effect.   

 

3.1.      Results of Analysis 

Four different analyses are carried out to investigate the impact of the dropout process in the 

estimation of the response variables. 

Complete Case: In this analysis, we delete all the subjects with missing values from the data set, 

and then estimate the parameters using only the data set from those subjects without missing 

values using the disposition model given by Equation (11). 

Incomplete DAR I Model: For this analysis, the parameter for the current response 𝜙2  is 

constrained (i.e., 𝜙2 = 0), while assuming the covariate parameters for the dropout model and 

the model of disposition are the same. This is done because of the need to ascertain the 

significance or non-significance of the missingness. 

𝑙𝑜𝑔𝑖𝑡[𝛿𝑘] = 𝛾0 + 𝜆0 + 𝛽1𝐻𝐴𝐿𝑂 + 𝛽2𝑅𝐼𝑆𝑃(𝐿) + 𝛽3𝑅𝐼𝑆𝑃(𝐻), 

                              𝑙𝑜𝑔𝑖𝑡[𝑝𝑘] = 𝜙1𝑦𝑘−1 + 𝛽1𝐻𝐴𝐿𝑂 + 𝛽2𝑅𝐼𝑆𝑃(𝐿) + 𝛽3𝑅𝐼𝑆𝑃(𝐻), 

                                            𝛼 =
1+𝑒−(𝛾0+𝜆0)

1+𝑒−𝛾0
  . 

Incomplete DAR II Model: This analysis seeks to answer the question of the significance effect 

of the covariates on the dropout process. To do this, we work with the same DAR assumption 

and choose different parameters for the covariates in the dropout and the model of disposition 

respectively. 

𝑙𝑜𝑔𝑖𝑡[𝛿𝑘] = 𝛾0 + 𝜆0 + 𝛽1𝐻𝐴𝐿𝑂 + 𝛽2𝑅𝐼𝑆𝑃(𝐿) + 𝛽3𝑅𝐼𝑆𝑃(𝐻), 

                              𝑙𝑜𝑔𝑖𝑡[𝑝𝑘] = 𝜙1𝑦𝑘−1 +𝜙3𝐻𝐴𝐿𝑂 + 𝜙4𝑅𝐼𝑆𝑃(𝐿) + 𝜙5𝑅𝐼𝑆𝑃(𝐻), 

                                            𝛼 =
1+𝑒−(𝛾0+𝜆0)

1+𝑒−𝛾0
. 

Incomplete DNAR Model: In this analysis, the current response parameter is not constrained i.e., 

𝜙2 ≠ 0, although 𝜙0 and 𝜙1 may be constrained. 
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𝑙𝑜𝑔𝑖𝑡[𝛿𝑘] = 𝛾0 + 𝜆0 + 𝛽1𝐻𝐴𝐿𝑂 + 𝛽2𝑅𝐼𝑆𝑃(𝐿) + 𝛽3𝑅𝐼𝑆𝑃(𝐻), 

                              𝑙𝑜𝑔𝑖𝑡[𝑝𝑘] = 𝜙1𝑦𝑘−1 +𝜙2𝑦𝑘 + 𝛽1𝐻𝐴𝐿𝑂 + 𝛽2𝑅𝐼𝑆𝑃(𝐿) + 𝛽3𝑅𝐼𝑆𝑃(𝐻), 

                              𝑙𝑜𝑔𝑖𝑡[𝜉𝑘] = 𝜂𝑦𝑑−1, 

                                            𝛼 =
1+𝑒−(𝛾0+𝜆0)

1+𝑒−𝛾0
  . 

Table 1 shows results of the fitted models.  

Complete Case: When fitted, we observed that the parameter 𝛾0, measuring the within cluster 

dependence was statistically significant. In addition, there was no haloperidone treatment effect 

since it was not statistically significant. However, the low and high doses of risperidone were 

statistically significant in the treatment of schizophrenia. It is estimated that the patients taking 

the high and low doses of risperidone have 𝑒0.7255 ≈ 2.066 and 𝑒0.7706 ≈ 2.161 times higher 

odds to improve in the treatment of schizophrenia. In other words, treatment with both low and 

high doses of risperidone tends to increase the odds of a schizophrenia treatment. 

Incomplete DAR I and DAR II Models: The parameter 𝛾0,  measuring the dependence within the 

cluster was statistically significant. This implies there is a strong correlation within the clusters. 

This was expected since the observation is repeated in each experiment with only one subject in 

each cluster. The parameter 𝛽1 for the treatment of haloperidone was not statistically significant. 

Table 1: ”Parameter estimates and standard error for CC and DAR models” 
 

 
 

Parameters 

 

Complete Case 

Est. (Std. error) 

 

DAR I 

Est.(Std. error) 

 

DAR II 

Est. (Std. error) 

Disposition parameters    
 

λ0 

 

-1.3422 (0.1475)* 
 

-1.4636 (0.1482)* 
 

-1.3863 (0.1494)* 

γ0 0.5413 (0.1011)* 0.8349 (0.0861)* 0.7346 (0.0663)* 

HALO (β1 ) 0.3849 (0.1945) 0.4041 (0.2938) 0.4290 (0.2360) 

RISP(L) (β2 0.7255 (0.1680)* 0.7956 (0.1688)* 0.8386 (0.1709)* 

RISP(H) (β3 ) 0.7706 (0.1685)* 0.8058 (0.1700)* 0.8326 (0.1718)* 

Dropout parameters    

yk−1 (φ1) 

HALO (φ3 ) 

- 

- 

1.2811(0.1995)* 

- 

2.944 (0.4588)* 

- 

RISP(L) (φ4) - - -18.98 (826.30) 

RISP(H) (φ5) - - -18.91 (772.39) 

loglik. Value -1193.4 -1184.1 -1147.4 

-2 loglik. 2386.8 2368.2 2294 

AIC 2396.8 2380.2 2310 

Note: * means significant and yk−1 is schi. status at previous time point 
 

 

However, the parameters 𝛽2   and 𝛽3  measuring the low and high doses of risperidone were 

statistically significant for both DAR models. This suggests that patients taking both the low and 

high doses of risperidone have 𝑒0.7956 ≈ 2.216 and 𝑒0.8058 ≈ 2.239 times higher odds to show 

clinical improvement in the treatment of schizophrenia for DAR I, and 𝑒0.8386 ≈ 2.313  and 

𝑒0.8326 ≈ 2.3 times higher odds to show clinical improvement in the treatment of schizophrenia 
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for DAR II model. 

The dropout parameter 𝜙1  measuring the previous response in both models was statistically 

significant. Positive estimate of the dropout parameter indicates that patients who showed 

positive clinical improvement in the treatment of schizophrenia are more likely to continue the 

study. This suggests that patients who showed clinical improvement in the previous response 

measurement have 𝑒1.2811 ≈ 3.6 and 𝑒2.944 ≈ 18.99 times higher odds of continuing the study 

for models DAR I and DAR II respectively. The covariate parameters 𝜙’s in DAR II model were 

not statistically significant. 

Although it seems both DAR models are good fits for the data, we cannot conclude just yet that 

the dropout mechanism is random without investigating the effect of the current response to the 

dropout process. To do this, we will investigate the DNAR model by incorporating the parameter 

𝜙1, measuring the effect of the response at the previous visit into the model. 

  Incomplete DNAR Model: An initial analysis of the DNAR model (results not published) 

revealed that the parameter for the current response 𝜙2 is weakly identified and as such, it was 

not significant even though the parameter 𝜙1 measuring the previous response was. This is not 

surprising as most DNAR parameters are not only weakly identified, but also their estimation 

will become sensitive to the assumptions of the distribution. In situations like this, a sensitivity 

analysis on the DNAR model will be performed. 

4.     Sensitivity Analysis for DNAR 

In the spirit of Kurland (2002), we fix the parameter for the current response for values between 

[−1.5, 1.5] and conduct a sensitivity analysis using DNAR to know the effect of the dropout 

process in the treatment of schizophrenia. For example, fixing 𝜙2 = 0.5, the odds of a patient to 

remain in the study when he or she experiences a significant clinical improvement is 𝑒0.5 ≈ 1.65 

times the odds when the patient did not experience a significant clinical improvement. 

In the same way, if 𝜙2 = −0.5, the odds of a patient to remain in the study when he or she did 

not experience a significant clinical improvement is 𝑒−0.5 ≈ 0.61  times the odds when the 

patient experiences a significant clinical improvement. For the DNAR model, a bound was found 

for the current response parameter 𝜙2while estimation was carried out at selected points. 

Parameter estimates and model-based standard errors for the sensitivity analysis are presented. 

Two different analyses are fitted (the independence and dependence) based on the output of 

some preliminary analyses. 

Table 2 and Table 3 below show the parameter estimates and standard error of the independence 

case (𝛾0 = 0) and dependence case (𝛾0 ≠ 0). 

Independence Case (𝛾0 = 0): The optimal solution for the analysis was obtained when 𝜙2 =
1.0 in Table 2. Both low and high doses of risperidone were statistically significant. This 

suggests that treatment with both low and high doses of risperidone tends to increase the odds of 

a schizophrenia treatment by 𝑒1.1193 ≈ 3.06  and 𝑒1.0733 ≈ 2.92  respectively. In addition, the 

parameter 𝛾0 , which measures the correlation within the groups was statistically significant, 

while the Markov parameter 𝜂 , was not. Now,  𝜙2 = 1.0 and 𝜙1  statistically significant with 
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positive estimates suggests that patients who demonstrate a positive clinical improvement at the 

previous visit are estimated to have 𝑒1.0 ≈ 2.71 times higher odds of remaining in the study. 

Dependence Case (𝛾0 ≠ 0): From Table 3, the optimal solution for this analysis was obtained 

when 𝜙2 = 0.8 . The parameter 𝛾0  measuring correlation within the groups (cluster) was 

statistically significant while 𝜂  was not. The low dose and high dose of risperidone were 

statistically significant. With this, it is estimated that patients taking the low dose of haloperidone 

have a 𝑒1.2525 ≈ 3.5 higher odds to experience significant improvement in their treatment of 

schizophrenia while those taking a higher dose of risperidone have 𝑒1.0605 ≈ 2.9 higher odds to 

experience significant improvement in treatment of schizophrenia. In other words, treatment with 

both low and high doses of risperidone tends to increase the odds of a schizophrenia treatment by 

𝑒1.2525 ≈ 3.5 and 𝑒1.0605 ≈ 2.9 respectively. 

Now, 𝜙2 = 0.8, and 𝜙1 statistically significant with positive estimates imply that patients who 

demonstrate a positive clinical improvement at the previous visit are estimated to have 𝑒0.8 ≈
2.23 times higher odds of remaining in the study than their counterparts who did not show any 

significant improvement. Finally, a comparison of DNAR with the complete case according to 

Akaike’s Information Criteria (AIC) showed that the DNAR model is a better fit. 

 

5.    Conclusion 

To study a procedure for fitting, and analyzing the model of disposition in the presence of 

incomplete or missing data, we adopted the selection model of Diggle and Kenward (1994) for 

binary response and extended it to model the joint distribution of the incomplete data reported in 

Erebholo et al. (2016) under the ignorable dropout condition. For the non-ignorable mechanism, 

we developed a combined Markov’s transition and a logistic regression model to build the 

dropout process while modeling the response using conditional logistic regression. 

In discussing an example to illustrate this application, we considered the case when the 

regression parameters in the response model and dropout model are the same and when they are 

different. The ignorable and non-ignorable models are fitted. When the dropout mechanism is 

not ignorable, we hold the dropout parameters that are weakly identified constant and analyzed 

their effects through a sensitivity analysis. 

The choice for a model, for any given data sets, should be guided by the purpose of the analysis 

and assumptions of the dropout process. For example, it is not uncommon for the dropout 

process to only depend on the observed history. If this is the case, then incomplete DAR I model 

should be adopted. However, it is possible that the reason for the dropout is related to the 

observed history of the patient and other covariates. To analyze data that fall within this 

framework, the incomplete DAR II model should be used. To analyze data for non-ignorable 

dropout analysis, when the DNAR parameter is weakly identified (as was in our example) a 

sensitivity analysis is recommended to know the effect of the current response to the dropout 

process. 

Finally, for this example, both DAR and DNAR models are good fits and as such, choosing a 

specific model to adopt for an analysis could be very difficult to justify. Because of this, there is 
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a need to be very careful in deciding on a model to adopt. 
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Table 2: Parameter estimates and standard error of the sensitivity analysis I for DNAR model with γ0 fixed. 
 

 
Parameters 

φ2 =-1.5 

Est. (Std. error) 

φ2 =-1.2 

Est. (Std. error) 

φ2 =-1.0 

Est. (Std. error) 

φ2 =-0.5 

Est. (Std. error) 

φ2 =0 

Est. (Std. error) 

φ2 =0.5 

Est. (Std. error) 

φ2 =0.8 

Est. (Std. error) 

φ2 =1.0 

Est. (Std. error) 

φ2 =1.5 

Est. (Std. error) 

λ0 -0.9583 (0.1324)* -1.3367(0.1025)∗ -1.4694(0.1496)∗ -1.5465(0.1194)∗ -1.5482 (0.1093)∗ -1.5359(0.1031)∗ -1.4721(0.1065)∗ -1.5212(0.1006)∗ -19.83(352.05) 

HALO (β1 ) 0.1245 (0.1102) 0.5924 (0.3621) 0.2107 (0.2016) 0.1229 (0.2024) 0.4439 (0.3428) 0.1792 (0.1419) 0.7819 (0.5210) 0.7479 (0.8156) 0.7829 (0.6419) 

RISP(L) (β2 ) 0.3194 (0.1915)∗ 0.8331(0.2636)∗ 1.0448(0.1970)∗ 1.1485(0.1516)∗ -1.1519 (0.1369)∗ 1.1451 (0.1281)∗ 1.0513(0.1571)∗ 1.1193(0.1247)∗ 0.7622(0.1209)∗ 

RISP(H) (β3 ) 0.3517 (0.1833)∗ 0.8429(0.2502)∗ 1.0118(0.1925)∗ 1.1081(0.1520)∗ 1.1091 (0.1387)∗ 1.0973 (0.1307)∗ 1.0163 (0.1371)∗ 1.0733(0.1272)∗ 0.7349(0.1232)∗ 

yk−1 (𝜙1 )     -0.2675 
(0.1278)∗ 

-0.1514(0.0413)∗ -0.0766(0.0297)∗ 0.05115(0.0163)∗ 0.1678 (-) 0.2196 (-) 1.1550 (-) 0.4585 (0.2147)∗ 0.2493 
(0.0231)∗ 

 
η 

 
0.0748 (0.0386) 

 
0.1481(0.0443)∗ 

 
0.1696(0.0304)∗ 

 
0.1736(0.0066)∗ 

 
0.1678 (-) 

 
0.1120 (-) 

 
0.4944 (-) 

 
0.1686 (0.1014) 

 
2.3357 (39.117) 

log likelihood -1212.14 -1208 -1203.3 -1191.5 -1182.4 -1275.2 -1274.6 -1171.5 -1178.4 

-2 loglkd 2424.3 2416 2406.6 2383 2364.8 2550.4 2549.2 2343 2348.8 

AIC 2444.3 2436 2426.4 2403 2384.8 2570.4 2569.2 2363 2368.8 

Note: * means significant and 𝑦𝑘−1 is schizophrenia status at previous time point 

 

Table 3: Parameter estimates and standard error of the sensitivity analysis II for DNAR model with γ0 
 

 
 

Parameters 

 

φ2 =-1.0 

Est. (Std. error) 

 

φ2 =-0.5 

Est. (Std. error) 

 

φ2 =0.5 

Est. (Std. error) 

 

φ2 =0.8 

Est. (Std. error) 

 

φ2 =1.0 

Est. (Std. error) 

 

φ2 =1.5 

Est. (Std. error) 

 

λ0 -1.4463 (0.2669)*
 -1.5188 (0.1319)*

 -1.4801 (0.1183)* -1.4661(0.1135)*
 -2.7455 (0.1400)*

 -1.3590 (0.0509)*
 

γ0 0.6934 (0.1121)* 0.6681 (0.0715)* 0.6811 (0.07015)* 0.0696 (0.0145)* -0.2615 (0.0014)* -0.9417 (0.0897)* 

HALO (β1 ) 0.1831 (0.1324) 1.0017(0.8025) 1.4463(0.8669) 0.5188(0.3319) 0.5482 (0.3109) 0.4801(0.2818) 

RISP(L) (β2 ) 1.2403 (0.4528)* 1.3500 (0.1965)* 1.2776 (0.1733)* 1.2525 (0.1643)* 0.8325 (0.1191)* 0.9043 (0.0.0547)* 

RISP(H) (β3 ) 1.0067 (0.4528)* 0.1139 (0.2050) 1.0823 (0.1784)* 1.0605 (0.1689)* 0.7959 (0.1216)* 0.8618 (0.0623)* 

yk−1 (𝜙1) -0.0658 (0.0659) 0.0628 (0.0201)* 0.5136 (0.2025)* 0.4883 (0.2301)* 0.2090 (0.0662)* -2.3966 (-) 

Markov dependence (η) 0.1792 (0.0616)* 0.1846 (0.0111)* 0.3103 (0.1201)* 0.2270 (0.1204) 4.7514 (238.6) -0.7300 (-) 

log likelihood. value -1176.2 -1164.2 -1148.2 -1145.9 -1198.2 -1213.7 

-2log likelihood. 2352.4 2328.4 2296.4 2291.8 2396.4 2427.4 

AIC 2374.4 2350.4 2318.4 2313.8 2418.4 2449.4 

Note: * means significant and 𝑦𝑘−1 is schizophrenia status at previous time point. 
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