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Abstract

Let G be a finite graph with p vertices and g edges. A vertex magic total labeling is a bijection

f from V(G)u E(G) to the consecutive integers 1, 2, ..., p+q with the property that for every

u eV Zf uv =k for some constant k. Such a labeling is E-super if
V€N u

f:E(G ) {,2,...,q}. A graph G is called E-super vertex magic if it admits an E-super

vertex magic labeling. In this paper, we solve two open problems given by Marimuthu,

Suganya, Kalaivani and Balakrishnan (Marimuthu et al., 2015).

Keywords: super vertex magic labeling; E-super vertex magic labeling; E-super vertex
magic graph

2010 AMS Subject classification: 05C78

1. Introduction

In this paper, we consider only finite simple undirected graphs with order p and size q. For
graph theoretic notations we follow (Harary, 1969; Marr and Wallis, 2013). A labeling of a
graph G is a mapping that carries a set of graph elements, usually the vertices and edges into a
set of numbers, usually integers. Many kinds of labelings have been studied and an excellent
survey of graph labeling can be found in (Gallian, 2014).

Sedlacek (Sedlacek,1963) introduced the concept of magic labeling. Sedlacek defined a graph
to be magic if it had an edge-labeling, with range the real numbers, such that the sum of the
labels around any vertex equalled constant, independent of the choice of vertex. MacDougall
et al. (MacDougall et al., 2002) introduced the notion of vertex magic total labeling. If Gisa
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finite simple undirected graph with p vertices and g edges, then a vertex magic total labeling of
G is a bijection f from V(G)UE(G) to the integers 1, 2, ..., p+q with the property that for
every u in V(G),

flu)+ > fluv)=k,

VeN(u)

for some constant k, where
N(u)={veV(G):uveE(G)}.

They studied the basic properties of vertex magic total graphs and showed some families of
graphs having vertex magic total labeling.

MacDougall et al. (MacDougall et al., 2004) further introduced the super vertex magic total
labeling. They called a vertex magic total labeling f is super if f:V(G)—{,2,..., p}.
Swaminathan and Jeyanthi (Swaminathan and Jeyanthi, 2003) introduced a concept with the
name super vertex magic total labeling, but with different notion. They called a vertex magic
total labelling f to be super if f:E(G)—{L2,..., q}. To avoid confusion, Marimuthu and
Balakrishnan (Marimuthu and Balakrishnan, 2012) called a total labeling f as an E-super vertex
magic total labeling if f :E(G)—{L2,..., q}. They studied the E-super vertex magicness of

even regular graphs. Most recently Wang and Zhang (Wang and Zhang, 2014) extended the
results found in the article (Marimuthu and Balakrishnan, 2012).

Theorem 1.1. (Swaminathan and Jeyanthi, 2003)
A path P, is E-super vertex magic if and only if nis odd andn > 3.

Theorem 1.2. (Swaminathan and Jeyanthi, 2003)

If a non-trivial graph G of order p and size q is super vertex magic, then the magic constant K is
given by

P+l a(a+1)
2 p

Theorem 1.3. (Marimuthu and Balakrishnan, 2012)

k=g

Every tree T of even order is not E-super vertex magic.

In this article, we partially solve the following open problems given by Marimuthu, Suganya,
Kalaivani and Balakrishnan (Marimuthu et al., 2015).

Open problem 1.4. Discuss the E-super vertex magicness of B whent # 2.

n,n—t !

Open problem 1.5. Find all E-super vertex magic wounded suns, C- —me, m = 3.

https://digitalcommons.pvamu.edu/aam/vol10/iss2/33
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2. Solution to the Problems

Definition 2.1.

A broom B , is defined by attaching n-d pendant edges with any one of the pendant vertices
of the path P,.

Theorem 2.2.
The broom B, , is E-super vertex magic if and only if nis odd and n>3.
Proof:
As the broom B, is isomorphic to a path P, the results follow immediately from Theorem
11 .
Theorem 2.3.
The broom B, is not E-super vertex magic for n—-t>2,t>3.
Proof:
Let
V(B ot )=V Vs, Vi, Uy, Uy, Uy

and let

E(B, )= vig l<i<n—t-1uiy, u;,1<j<t).
Then, B, , has p=nvertices and q=n-1edges.
As B, , isatree, according to Theorem 1.3, n can’t be even.

Assume that n is odd.

Suppose B
of B

is E-super vertex magic. Then, there exists a E-super vertex magic total labeling

n,n-t
nnt» SaY, f. According to Theorem 1.2 the magic constant k is given by
P+l q(q+1)

2 p

:n—1+ﬂi}-+(n_1)n
n

k=q

:n—1+n7+1+n—1

_on_24 Mt
2

5n-3
5,
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Now, we determine the smallest possible value of the sum

t

f (Vn—t )+ Z f (Vn—tu) = f (Vn—t )+ Z f (Vn—tuj )+ f (Vn—t—lvn—t )

ueN (v ) =

The smallest possible value of the set {f (vn_tuj ):1§ J st} is
k—(p+aq)+j-1=k-2n+j:1<j<t}.

Also, the smallest possible values of f(v, v, ) and f(v,,) are 1 and n, respectively.

n-t-1"n-t

Therefore, the smallest possible value of the above sum is:

t

n+> (k=2n+j)+l=n+1+tk —2nt+(1+2+..+t)

j=1

:n+1+tk—2nt+t(tT+l)

5n—3 t? +t

= n+1+t(—j—2nt+
2

2
:(t+2)n+2(t—1) 1 og

5n-3
>
2
=k

t

Therefore, the value of the sum at v, is at least n+Z(k—2n+j)+1 exceeds k, a
j=

contradiction. Hence, the result follows.

Note that O

exceeds k by

Definition 2.4.

The sun graph C, is defined as follows:

V(C)={vi, vz, Vop )
E(C,)={vv,,, 1<i<n-TFu{v,v,}u{vy, ., 1<i<n}.

n+i'=——

The graph C, —me, m<n is obtained by removing {v,,,V,, 1,---,V,, m.1} @nd the edges adjacent
to them from C, . This is referred as a wounded sun.

https://digitalcommons.pvamu.edu/aam/vol10/iss2/33
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Theorem 2.5.
A wounded sun C; —me, 3= m<n, is E-super vertex magic if and only if m is odd and
m=1.
Proof:

Let C,” —me be a wounded sun, where m is a positive integer such that 3= m<n. Then,
V(Cr:r _me) :{V1’V2’""Vn}u{vn+1’vn+2’""V2n—m}

and
E (C. —me)={v.v,

Lo 1<i<n-Touiv v fufvy,, 1<i<n-m}.

n+i?
Thus, C. —me has p=2n-m vertices and q=2n—-m edges.

Assume that C, —me, m= 3 is E-super vertex magic. Then, by Theorem 1.3, the magic
constant K is given by
L P+l q(a+1)

2 p

= p+p7+1+ p+1

k=q

:2p+1+pTJrl

=2(2n —m)+1+2n_—erl

:4n—2m+1+n—(m7_1j

=5n +1_[5m_—1j1
2

which is an integer only when m is odd.
Suppose m = 1. Then.

\Y (Cn+ _e) :{Vv Vs Vn}u{vml’ V1o V2n—1}
and
E(C, —e)={vv

L 1<isn-Buivy fofuy, L, 1<i<n 13,

n+i?

Thus, C, —e has p=2n—1vertices and q=2n-1edges. Since C, —e is E-super vertex magic,
it has a E-super vertex magic labeling. Therefore, for each vertex VeV(Crf —e), the total

weight Wt(V), (the sum of the labels of the vertex v and that of the edges incident to v) is a
constant kK =5n—1. Since there are n-1 pendent vertices and n-1 pendent edges, the only

Published by Digital Commons @PVAMU, 2015
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possible set of the labels of the pendent vertices is {3n, 3n+1...,4n-2= p+q} and the only
possible set of the labels of the pendent edges is {n +1,Nn+2,...,2n—-1= q}. Therefore, at

the vertex V, , the largest possible label of the vertex V,, is 3n-1 and the largest possible labels
of the two edges incident to this vertex are n-1 and n. Thus, the largest possible value Wt(vn)is

(3n-1)+(n-1)+(n)=5n-2<5n-1=Kk.

That is, the largest possible value of WE(V,) is less than k. Therefore, wt(v,)<k , a

contradiction. Hence, m is odd and M # 1. Conversely, assume that m <nis odd, m = land
m = 3.Then, m>5.

If M =N, then the wounded sun C. —meis the cycle C,. By Theorem 1.2, C' —meis E-super
vertex magic.

Now let 5<m<n-1. Define a total labeling

f:VUE —{2,..,4n—2m}
as follows:

f(Vl) =2n-1,

f(v,) =3n—m,
f(v,;)=2n—-m+i,1<i<m-2,
f(V,)=3n—-m—i,1<i<n-m,
f(V,.;)=3n-m+i,1<i<n-m,
f(vv,,)=i,1<i<n-m,

ivi+l

f (v ) n—-m+1,
f(vv,.)=2n-i-3 (mT_lj,lﬁiSn—m,
f(V, Vo g )=2n—-m+1-i,1<i< mT—l
m-—

m-3) . 1
FV, gV oin)=N—| — |-, 1<i<——.
( n-2i+1 n—2|+2) ( 2 j 2

From the above labeling, we have,

V(C,T—me)z{vl}u{vn}u{ vV, 1<i<m-2}u{v 1<i<n-mlulv ,, 1<i<n-m}.
Now,
+ z - f Vl + f(VlV2)+ f(Van)-l- f(vlvn+1)
ueN(v)
= (2n—1)+ Q)+ (n—m+1)+ (Zn 1o 3(”"2 1})
=5n_2M, 3 gy 325M
2 2 2

https://digitalcommons.pvamu.edu/aam/vol10/iss2/33
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)+ fv,u)=f(v,)+ f(v,v)+ f(vv, )
ueN(v,)
=(3n—m)+(n—m+1)+(n—(m7_3j—1j
=5n+3_5m

Vo)t DTV u)= T (v )+ F v+ (Vv i)

UEN(ani)
) i+1 m-3
:(2n—m+|)+ 2n-m+1—| — [ [+ n—
2 2

3—5m

=5n+ ,I<i<m-—2.

f (Vi+1)+ UE% f)(Vi+1U) =f (Vi+l)+ f (Vi+lvi )"‘ f ( |+1V|+2)+ f (Vi+1vn+i+1)
_(@n—m—i)+ (i) (i +1)+ (2n—m—(i+1)—( .

3-5m

=5n+ J1<i<n-m.

(e 3 )= 1)+ 1)
=(3n-m+ i)+(2n—i —B(mT_ljj

=5n+3_ m,lgién—m.

Therefore,
3-5m

for every veV(C; —me), f(v)+ > f(uv)=5n+

ueN(v)
Hence, fisan E-super vertex magic labeling of V(Cn+ —me) with magic constant

k:5n+3_5m

where mis odd, M#=land M= 3.

An illustration for Theorem 2.5 is given in Figure 1.
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37
®)
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O M 1
21 "0 2

Figure 1. An E-super vertex magic labeling of C;; —9e

3. Conclusion and Scope

In this article, we have solved two open problems given by Marimuthu, Suganya, Kalaivani
and Balakrishnan (Marimuthu et al., 2015). There is another open problem for further
investigation in the same paper which is given as follows:

Open problem 1. Characterize all E-super vertex magic trees of odd order.
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