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Abstract 
 

During their operational life, structures may be subject to various types of live load caused by 

events such as earthquakes, high speed winds, etc. Given the design life of a structure, the 

probability for a specific live load to cause a failure depends on the magnitude of the load 

structure it is designed to withstand (designed load).   In this article, methods are developed for 

calculation of the failure probability for structures designed to withstand loads comparable to 

historical loads at the site of interest.   

 

Keywords:  Failure Probability, Live Load, Designed Load, Extreme Values, Records, Tail 

Modeling 

 

MSC 2010 No.: 46N30, 97K50  

 

1. Introduction  

In the design of important structures, consideration of the live loads caused by events such as 

earthquakes, winds, etc., is of prime importance.  The probability that a specific live load causes 
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failure during the life of the structure depends on its designed lifetime and the designed load; that 

is, the magnitude of the load structure it is designed to withstand. It also depends on material 

properties as well as the geometry of the structure. See Chowdhury and Rao (2009), Khaleel and 

Simonen (2009), Madsen et al. (2006), Kolen et al. (2013), Gerrard, and Tsanakas (2011), 

Koulouriotis, and  Botsaris (2015), Bracegirdle and Marshall (2012), Nicolas and Bromwich 

(2014), Klemenc (2015) and references therein for details. If the designed load, , is larger than 

, the magnitude of the largest load in the history of the corresponding site, then calculation of 

failure probability is not straight forward.  For this, the usual approach has been to fit one of the 

three limiting extreme value distributions to, for example, the yearly maxima of the load 

considered.  See DeHann and Ferreira (2006), Cole (2001), Ahsanullah and Kirmani (2008), and 

Beirlant et al. (2004) for more recent developments of extreme values and their analysis. Of three 

extreme value distributions, the type I (Gumbel distribution) has often been preferred despite the 

fact that it has no upper bound.  This is because type III distribution with an upper bound usually 

leads to unreliable results and, in some cases, to an estimate for the upper bound that is smaller 

than those that have already occurred. For this case, a method based on modeling the tail of a 

distribution is presented in this article.  

Other problems related to the use of extreme value distribution are: 

 

1. The estimating procedures are complicated and require numerical calculations.  

 

2. Their application requires a moderate or large sample. 

 

3. Since only the largest loads of each period (e.g. a year) are used, information contained, 

for example, in the second largest events of that period is not utilized. This point is 

particularly important when the time span of the available data is short.  

 

4. Missing observations corresponding to the years with no events (e.g. earthquake). To 

overcome this certain arbitrary assumptions are usually made for the periods (years) 

without recorded data. For example, one popular approach has been to extend the 

intervals during which extremes were extracted until the amount of missing data 

became a desired percentage of data. In the case of earthquakes the time intervals were 

found to vary between 1 to 15 years leading to few maxima and hence inaccurate 

results, see e.g. Burton (1979).   

 

Now if M is taken to be smaller than 𝑀1 then, in general, estimation of the failure probability 

could cause similar difficulties.  However, for M = 𝑀1 that is, designs based on the largest event 

of the past, the probability calculations are particularly easy. Here, we will present two different 

methods for this case.  We will also present a method for M = 𝑀2 or, more generally, M = 𝑀𝑚 

where 𝑀𝑚 is the m
th

 largest event of the past. The latter two cases are useful when there is 

enough past data so that designs for the second or third largest event of the past satisfy the 

desired safety requirements. Also, as pointed out earlier, we will also present a method for the 

case M > 𝑀1 utilizing the relevant results of a theory known as threshold theory. 
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2.   M = M1, Method 1 

 

This method uses a relatively new development known as the theory of records. The theory has 

many interesting results. See Ahsanullah (1995), Arnold et al (1998), Glick (1978), and Gulati 

and Padgett (2003) for details.  

 

Briefly, if we register a set of observations in chronological sequence, the observation 𝑋𝑖 will be 

called a record high or an upper record if it exceeds all previous values in the sequence. If we 

assume that ties have zero probability, then in a random sequence, 𝑋𝑖 is a record high if and only 

if 𝑋𝑖 = max(𝑋1, 𝑋2, … 𝑋𝑖).  Noting that all i ranks are equally likely for 𝑋𝑖, the probability for 𝑋𝑖 

to be an upper record is then 
1

𝑖
 . Using this, the theoretical expected number of record highs in a 

chronological sequence of n independent and identically distributed observations is the sum of 

corresponding probabilities; that is,  

 

𝐸{𝑅𝑛} = 1 +
1

2
+ ⋯ +

1

𝑛
= ∑

1

𝑖

𝑛
𝑖=1  . 

 

Here, 𝑅𝑛 denotes the number of the record highs among the n observations.  Note that the above 

also presents the expected number of record lows which can be defined similarly.   

 

The theory of records also has some simple and, in some cases, counter-intuitive results. A 

simple result relevant to the problem considered here is the following. Consider an initial 

sequence of 𝑛1 observations, 𝑋1, 𝑋2, … 𝑋𝑛1
 and a further batch of 𝑛2 observations, 

𝑋𝑛1+1, … 𝑋𝑛1+𝑛2
. The probability that this additional batch contains no new record is   

 

𝑃{𝑅𝑛1
= 𝑅𝑛1+𝑛2

} = 𝑃{max(𝑋1, 𝑋2, … 𝑋𝑛1
) = max(𝑋1, … 𝑋𝑛1+𝑛2

)} =
𝑛1

𝑛1+𝑛2
, 

 

that is, the ratio of the initial sample size divided by the total number of observations. Note that 

the results mentioned above are distribution free.  Another useful result is the following.  As 

(sample size) n  , the frequency of the upper records among observations indexed by  

an < i   bn  tends to a Poisson count with mean ln(b/a).  For example, for a = 1 and b = 2 and 

large n  

 

P(exactly k records among (n + 1)th and (2n)th observations) = 
(ln2)𝑘

2𝑘!
 . 

 

To apply these results suppose that we have data on a particular type of load (e.g. wind) for 𝑛1 

years and the designed load is 𝑀1, the largest event of the past. Then the probability (reliability) 

of having no future load greater than 𝑀1 during the next 𝑛2 years (the designed life of the 

structure) is simply   
𝑛1

𝑛1+𝑛2  
  provided that the rate of occurrences of the event of interest remains 

unchanged. Thus, under this method both the failure probability and reliability depend on the 

amount of past data.  For this case the application of the result involving Poisson count provides 

the same answer. The Poisson count is particularly useful for cases where failure occur as a 

result of accumulation of several occurrences of the load.  
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3. M = M1, Method 2  
 

Consider the probability 

 

𝑃(𝑋 > M1) =  𝑝, 
 

where 𝑀1 is the magnitude of the largest load of the past 𝑛1 loads. Since 𝑀1  is a random 

variable so is 𝑝. Using the properties of the order statistics, it is easy to show that 𝑝 has a Beta 

distribution 

 

𝑓(𝑝) = 𝑛1(1 − 𝑝)𝑛1−1 , 0 ≤ 𝑝 ≤ 1,  
 

with mean 
1

𝑛1+1
  and variance  

𝑛1

(𝑛1+1)2(𝑛1+2)
 . Since for a relatively large 𝑛1 the variance of 𝑝 is 

small (e.g. for 𝑛1= 100,  it is less than 10−4), when applying these results we could replace 𝑝 

either by its mean 
1

𝑛1+1
 or its median 1 − 2

−
1

𝑛1. Proceeding in this way the failure probability 

corresponding to a designed life of 𝑛2 (e.g years) are respectively 1 − (
𝑛1

𝑛1+1
)

𝑛2

≈ 1 − 𝑒
−

𝑛2
𝑛1+1 

and 1 − 2
−

𝑛2
𝑛1.  Note that since 

1

𝑛+1
 ≥ 1 − 2−

1

𝑛 the approximation based on the mean will always 

result in a larger probability. For example, for  𝑛1 = 100  and  𝑛2 = 30 , these probabilities are 

respectively 0.258 and 0.188.  For this example the method based on theory of records 

gives  
30

130
= 0.231. The same is true for other values of 𝑛1 provided that they are greater than 𝑛2. 

This may serve as a reason to recommend the first method. In fact, the main advantage of the 

first method is exactness of the result it is based on. 

 

4. Waiting Time Analysis 
 

In the above analysis we only considered the size of the future events. Considering the designed 

life of a structure we could analyze the failure probability using the waiting time to the next 

record. This can be done by utilizing an interesting and somehow surprising result regarding the 

waiting times between records for independent and identically distributed events. The expected 

value of rW , the waiting time between the (r-1)
th

 and r
th

 records is infinite but its median is finite 

(see e.g. Glick (1978)). Table 1 presents medians together with their ratios for the first few 

records. 

 

Table1. Medium Waiting Times and Their Ratios for the First Few Records 

Record Number r 2 3 4 5 6 7 8 

Median  4 10 26 69 183 490 1316 

Med )( rW /Med )W( r 1   2.50 2.60 2.65 2.65 2.68 2.69 

 

 

 

 

)( rW
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Additionally,                           

e
W

)(W

r

r 

)(Median

Median 1  

and 

                                                                    ln( 1/) rWr .   

 

Also, ln ( rW ) is approximately equivalent to the arrival time sequence of a Poisson process.  

 

To apply this result we could estimate the waiting time as the average of times between the 

observed records. 

  

5. Methods For M = Mm  

 

5.1. Theory of Exceedances 

 

The theory of exceedances deals with the number of times a specified threshold such as designed 

load is exceeded. Assuming independent and identically distributed events (loads) we may wish 

to determine the probability of r exceedances in the next n trials.  This is clearly a Bernoulli 

experiment with two possible outcomes: “exceedance” or “not exceedance.”  Thus, the number 

of exceedances has a binomial distribution with parameters n, p(x), where p(x) is the probability 

of exceedance of the level x.   

 

Note that here 𝑝(𝑥) =  𝑃(𝑋 >  𝑥) =  1 −  𝐹(𝑥), where F(x) is the distribution function of X.  

Using this, the probability of r exceedances of level x in the next n trials is 

 

nrxFxF
r

n
rnr 







  0,)()](1[ . 

 

Moreover, if rather than a fixed level we make the level x dependent on n, xn say, and increase 

that with n in such a way that the following condition is satisfied: 




 0;)](1[lim n
n

xFn , 

 

then the probabilities of r exceedances of level xn can be approximated by a Poisson distribution 

with parameter .   
 

We can also determine the probability distribution of the number of exceedances in the next N 

trials of the m
th

 largest observation in the past n trials.  This is useful when a design load smaller 

than the magnitude of some past events is chosen. Suppose that pm is the probability of 

exceedance of the m
th

 largest observation in the past n trials, then using the properties of the 

order statistics, it can be shown that pm has Beta distribution with density function  

 

    10;
)1,(

)1(
)(

1









m

mn

m

m

m

m p
mnmB

pp
pf .   
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Using this, and the fact that the probability of 𝑟 exceedances in the next N trials is binomial with 

parameters N and pm, it can be shown that the mean and the variance of the number of 

exceedances of the m
th

 largest observation in future N trials are respectively: 

 

1n

Nm
     and      

)2()1(

)1)(1(
2 



nn

nNmnNm
. 

 

To demonstrate, suppose that in the site of interest the yearly maximum wind speed in miles per 

hour during the last 40 years has been 70. Then, the mean and variance of the number of 

exceedances of 70 during the next 30 years would respectively be:   

 

                    30/41 = 0.732       and       (30) (40) (71)/ (41)
2
(42) = 1.207. 

 

If the second largest wind speed was 67, then the mean and variance of the number of 

exceedances of the 67 in the next 30 years would respectively be: 

 

     (30)(2)/41 = 1.464           and                (30) (2) (39) (71)/ (41)
2
(42) = 2.353. 

 

As a different example consider the yearly maximum wind speed during the last 60 years.  

Suppose that as a design load we want to choose a value in order to have an average of 4 

exceedances of that value in the next 20 years. This is useful when the structure of interest fails 

with accumulation of stress due to several loads. 

 

Using the formula for the mean, we get: 20m/61  4  m 12.  This means that the value to be 

chosen is the 12
th

 largest wind speed in past data. 

 

Finally, suppose that K is the number of occurrences up to the first exceedance.  The possible 

values for K are 0, 1, 2, …, and we have 

 

...,2,1,0,)
1

1
1(

1

1
)( 





 k

nn
kKP k . 

 

This is a geometric distribution with expected value and variance equal to, respectively: 

 

n+1,        n(n+1) . 

 

This means that in order to have an exceedance we need an average of n+1 occurrences.   

 

5.2.  Return Periods   

 

Another useful concept regarding the failure probability is return period.  Consider an event 

whose probability of occurrence in a unit period of time (normally one year) is p.  Assume that 

occurrences of such events in different periods are independent.  Then we have a sequence of 

Bernoulli experiments (occurrence or non-occurrence).  Also, the time (measured in unit periods) 

6
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to the first occurrence is a geometric random variable with parameter p and mean of 1/p.  This 

motivates the following definition. 

 

Definition.   

 

Let A be an event, and T the random time between consecutive occurrences of A.  The mean 

value , of the random variable T is called the return period of the event A. 

 

Note that if F(x) is the distribution function of the yearly maximum of a random variable, the 

return period of that random variable to exceed the value x is 1/ [1F(x)] years.  Similarly, if F(x) 

is the distribution function of the yearly maximum of a random variable, the return period of the 

variable to go below the value x is 1/F(x) years. 

 

To demonstrate, suppose that the distribution function of the yearly maximum discharge in cubic 

meters per second of a river at a given location has the following extreme value distribution; 

 

𝐹(𝑥)  =  𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑥  38.5

7.8
)]. 

 

The return periods of yearly maximum discharges of 60 and 70 are then:  

 

60 = 1/ (1  F(60)) = 16.25 years . 

70 = 1/ (1  F(70)) = 57.24 years .  

 

Also to have a return period of 50 years, the design load, s, is 68.94 as it must satisfy the 

equation 1/ (1- F(s)) =50.  

 

6. Methods for M > M1   

 

6.1. Tail Modeling 

 

In this approach the probabilities of future large (small) values are calculated by developing 

models for the upper tail (lower) of the distribution for possible values (loads). Here, one usually 

assumes that the tail of the distribution belongs to a given parametric family and proceeds to do 

inference using excesses; that is, the amount by which large values exceed some predetermined 

value oy . In what follows we will focus on large values.  

  

It has been shown that the natural parametric family of distributions to consider for excesses is 

the generalized Pareto distribution (GPD); 

 
1/

( ) 1 1 ,

k
ky

P Y y


 
    

 
 

 

where Y represents the magnitude of the loads. See for example Pickands (1975) for theoretical 

foundation of this approach. Here  𝜎 > 0 and −∞ < 𝑘 < ∞ are unknown parameters.  The range 
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of Y is 0 < 𝑦 < ∞ for 𝑘 ≤ 0, and 0 < 𝑦 < 𝜎/𝑘 for 𝑘 > 0. The limit k → 0 of the GPD is the 

exponential distribution. The use of this model was motivated by the following considerations.  

 The GPD arises as a class of limit distributions for the excess over a threshold, as the 

threshold is increased.  

 If Y has the distribution H(y; σ, k) and y´ > 0, σ – ky´ > 0, then the conditional 

distribution of Y – y´ given Y > y´ is H(y; σ – ky´, k).  This is a ‘threshold stability’ 

property; if the threshold is increased by an arbitrary amount y´, then the GPD form of 

the distribution remains unchanged.  

 If N is a Poisson random variable with mean λ and 𝑌1, 𝑌2, … , 𝑌𝑁 are independent excesses 

with distribution H(y; σ, k), then the maximum of Yi’s has a generalized extreme value 

distribution given below 

 

}.)/1({exp))...,,,(max( /1

21

k

N kyyYYYP    

Thus, if N denotes the number of excesses in, say, a year and 𝑌1, 𝑌2, … , 𝑌𝑁 denote the excesses, 

then the annual maximum has one of the classical extreme value distributions.  This is in line 

with frequent use of extreme value distributions for modeling large loads. 

The GPD includes three specific forms:  

1. Long tail Pareto distribution. 

2. Medium tail exponential distribution.     

3. Short tail distribution with an endpoint. 

 

Most classical distributions have tails that behave like one of these three forms.   

Turning to application we first note that, like most asymptotic results, application of this 

approach is not free of difficulties. Here, obvious problems are the choice of a parametric family, 

determination of the threshold, and more importantly, difficulties of dealing with intractable 

likelihood equations. For the latter a major problem is the following: The maximum likelihood 

works well if 𝑘 < 1/2 , but goes haywire otherwise, see e.g. Smith (1987). Additionally, like the 

type III extreme value distribution the use of short tail distribution with an endpoint usually leads 

to unreliable results and in some cases to an estimate of the endpoint smaller than some values 

already occurred.  

To remedy these difficulties, some suggestions have been made. For example, it is shown that it 

is possible to obtain a good estimate for the tail using methods that do not appeal to the 

likelihood principle. Hill (1975) and Davis and Resnick (1984) have proposed one such method 

for doing this. Their approach is easy to use and is applicable to a wide class of distribution 

functions possessing medium or long tails. It is also in line with the use of type I extreme value 

distribution mentioned earlier despite the fact that it has no upper bound. These authors assume a 

tail model of the form acyyF )(  , 0yy   and use a random sample 𝑌1, 𝑌2, … , 𝑌𝑛 to estimate the 

parameters based on the upper 𝑚 =  𝑚(𝑛) order statistics (m largest values). Here m is a 
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sequence of integers chosen such that m  and .0/ nm  In this approach c is estimated 

using the empirical 1 − 𝑚/𝑛 quantile, 𝑌(𝑚+1) and 1/𝑎 is estimated by; 

�̂� ∗ (𝑛 𝑚⁄ ) = 𝑚−1 ∑ 𝑙𝑛 𝑌(𝑖) − 𝑙𝑛 𝑌(𝑚+1) .

𝑚

𝑖=1

 

Statistical theory regarding these estimators is well established. The Pareto-tail estimate )(yF , 

representing the upper tail is then: 

)/m(*ˆ/1

)1(

    )(

na

mY

y

n

m
yF

















 , 𝑦 > 𝑌(𝑚+1) . 

 

Here, the only problem that remains is the selection of m(n) as there are infinitely many choices. 

For example, one obvious choice is integer part of n
r
 where 0 < r < 1.  

Although this is a problem, the situation provides us with an opportunity to utilize further 

relevant information contained in data, and improve the estimates. Since in most applications 

data are naturally ordered in time we could, in addition to the original observed values, consider 

information contained in the records values, their times of occurrences, and the inter-record 

times (the time between successive records). The last two sequences are particularly relevant and 

their influence on prediction of future records is clear. In what follows we will present a method 

that utilizes information contained in the most recent records. 

Assume that the data contains r records. Let rT denote the time between the last and penultimate 

record values and rt denote the time the last record has held to date. It can be shown that the 

following choice proposed by Tata (personal communication) involving rT  and rt  satisfies the 

conditions m and 0/ nm   

.718282.2)( rrrr tTteTnm   

Comparison using simulated data on Beta distribution (unfavorable cases) shows that this is 

almost always a better choice compared to choices such as, for example, 2/1[ )( nnm  ]. Further, 

the results very much depend on the last value of rT  as expected.  In fact, the time between the 

two latest records being not inordinately large (or small) is fairly essential for the reasonably 

accurate estimate. This applies to choices such as 2/1[ )( nnm  ] as well, although it does not 

depend on the rT . In what follows we describe application of this method using the flood data for 

Bloomsburg, Pennsylvania. 
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6.2. Application to Bloomsburg Flood Data   
 

Consider the data representing the historical crest for Susquehanna River at Bloomsburg, 

Pennsylvania. Susquehanna River in Bloomsburg begins to flood when water level exceeds 19 feet. 

Since 1850, there have been thirty eight floods exceeding 19 feet. They are listed in table 2 below. 

 

Table 2. Historical crest for Susquehanna River at Bloomsburg, Pennsylvania  

 

32.75 ft on 09/09/2011         

32.70 ft on 03/09/1904 

31.20 ft on 06/25/1972 

28.64 ft on 06/28/2006 

28.20 ft on 03/18/1865 

27.80 ft on 03/19/2004 

27.50 ft on 09/27/1975 

27.12 ft on 09/19/2004 

26.90 ft on 03/03/1902 

26.86 ft on 01/21/1996 

25.70 ft on 04/02/1940 

25.20 ft on 05/29/1946 

25.20 ft on 03/09/1979 

25.09 ft on 04/04/2005 

24.40 ft on 04/06/1984 

24.20 ft on 12/15/1983 

24.00 ft on 03/11/1964 

23.50 ft on 02/14/1984 

23.40 ft on 03/16/1986 

23.40 ft on 01/01/1943 

23.20 ft on 04/03/1993 

22.80 ft on 04/02/1960 

22.67 ft on 03/07/1964 

22.57 ft on 03/12/2011 

22.50 ft on 03/13/1936 

22.30 ft on 03/28/1913 

22.20 ft on 03/24/1948 

22.20 ft on 04/12/1993 

22.00 ft on 12/16/1901 

21.60 ft on 03/09/1956 

21.40 ft on 03/30/2005 

21.20 ft on 10/17/1955 

21.10 ft on 03/03/1950 

20.80 ft on 04/08/1958 

20.60 ft on 04/16/1983 

20.51 ft on 01/15/2005 

20.10 ft on 02/27/1961 

19.80 ft on 03/26/1994 

 

 

 

To apply the above method, we need to choose an integer m(n) depending on n such that 

)(nm  and 0)( nnm  as n .  Using 

 

                                        rrrr tT.teT)n(m  7182822
 

and  rT  = 107 and  rt = 1  we obtain m(n) = 18 since 𝑦1  =  32.75, 𝑦2 =  32.70, 𝑦3  =

 31.2, … , 𝑦18  =  23.5. Using these for 𝑦 >  𝑦18  =  23.5  we get the following tail model: 

  142857.7
2.24/38/18)(


 yyF . 

From this model we can calculate the values of P(Y > 32.75), P(Y > 33) and P(Y > 34) as 0.055, 

0.052 and 0.042 respectively. Also, using this model the probability of a record flood in the next 

100 years is 67.7%. 

 

7. Conclusion 
 

In the design of important structures, consideration of the live loads such as earthquakes, winds, 

etc., is of prime importance.   The probability that a specific live load will exceed the designed 

load some time during the life of the structure depends on its designed lifetime and the designed 

load. If the designed load is  
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1. larger or smaller than the magnitude of the largest load in the history of a site, then 

calculation of failure probability is not straight forward.   

 

2. equal to the magnitude of the largest or more generally the m
th

 largest load in the history 

of a site, then calculation of failure probability is particularly easy.   
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