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 Abstract:   

The flow problem presented in the paper is boundary-layer flow of nanofluids over a moving surface in 

the presence of thermal radiation, viscous dissipation and chemical reaction. The plate is assumed to 

move in the same or opposite direction to the free stream which depends on the sign of the velocity 

parameter. The partial differential equations appearing in the governing equations are transformed into a 

couple of nonlinear ordinary differential equations using similarity transformations. The transformed 

equations in turn are solved numerically by the shooting method along with the fourth order Runge-

Kutta integration technique. Influences of the pertinent parameters in the flow field are exhaustively 

studied and sequentially explained graphically and in tabular form. For selected values of the parameters 

involved in the governing equations like Lewis number, the velocity parameter, magnetic parameter, 

Eckert number Brownian motion parameter, thermophoresis parameter, thermal radiation parameter, 

Prandtl number, Reynolds number and chemical reaction parameter, numerical results for the velocity 

field, temperature distribution, concentration, skin friction coefficient, Nusselt number  and Sherwood 

number are obtained. The results are analyzed and compared with previously published works; they are 

found in excellent agreement. 

 

Keywords: Boundary-layer flow, Heat transfer, Mass transfer, Stretching sheet, Nanofluids, 

Viscous dissipation, Chemical reaction    

  MSC 2010:  76M20, 76N20, 76W05, 80A20, 35Q35  

 

1. Introduction 
 

Presently, nanofluids are thought to have a wide range benefits in medical application, 

biomedical industry, detergency, power generation in nuclear reactors and more specifically in 

any heat removal involved industrial applications. The ongoing research will focus on the 
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utilization of nanofluids in microelectronics, fuel cells, pharmaceutical processes, hybrid-

powered engines, engine cooling, vehicle thermal management, domestic refrigerator, chillers, 

heat exchanger, nuclear reactor coolant, grinding, machining, space technology, defense and 

ships, and boiler flue gas temperature reduction as noted by Ahmadreza (2013). It is well known 

that conventional heat transfer fluids like oil, water and ethylene glycol mixture are poor heat 

transfer fluids since the thermal conductivity of such fluids play vital roles on the heat transfer 

coefficient between the heat transfer medium and the heat transfer surface. An innovative 

technique, which uses a mixture of nanoparticles and the base fluid, was first introduced by Choi 

(1995) in order to develop advanced heat transfer fluids with substantially higher conductivities. 

The resulting mixture of the base fluid and nanoparticles having unique physical and chemical 

properties is referred to as a nanofluid. It is expected that the presence of the nanoparticles in the 

nanofluid increases the thermal conductivity and therefore substantially enhances the heat 

transfer characteristics of the nanofluid as explained by Olanrewaju et al. (2012).        
 

Hamad et al. (2011) examined magnetic field effects on free convection flow of a nanofluid past 

a vertical semi-infinite flat plate. A  study  on  boundary  layer  flow  of  a  nanofluid  past  a 

stretching  sheet  with  a  convective  boundary  condition  was conducted by Makinde and Aziz 

(2011). Olanrewaju et al. (2012) investigated boundary layer flow of nanofluids over a moving 

surface in a flowing fluid in the presence of radiation. Ahmad et al. (2011) presented a numerical 

study on the Blasius and Sakiadis problems in nanofluids under isothermal condition. Khan et al. 

(2012) studied the unsteady free convection boundary layer flow of a nanofluid along a 

stretching sheet with thermal radiation and viscous dissipation effects in the presence of a 

magnetic field. Convective flow in porous media has been  widely  studied  in  the  recent  years  

due  to  its  wide range applications in engineering as investigated in Nield and Bejan (2006), 

Ingham and Pop (2005) and Vadasz (2008). Bachok et al. (2010) studied on boundary-layer flow 

of nanofluids over a moving surface in a flowing fluid. Recently, Yohannes and Shanker (2014) 

investigated melting heat transfer in MHD flow of nanofluids over a permeable exponentially 

stretching sheet.  
           

         Recent developments in hypersonic flights, missile re-entry, rocket combustion chambers, power 

plants for inter planetary flight and gas cooled nuclear reactors, have focused attention on 

thermal radiation as a mode of energy transfer, and emphasizes the need for improved 

understanding of radiative transfer in these processes. When the difference between the surface 

and the ambient temperature is large, the radiation effect becomes important. Hady et al (2012) 

studied the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly 

stretching sheet in the presence of thermal radiation. Effects of a thin gray fluid on MHD free 

convective flow near a vertical plate with ramped wall temperature under small magnetic 

Reynolds number, Rajesh (2010) and free convective oscillatory flow and mass transfer past a 

porous plate in the presence of radiation of an optically thin fluid, Raptis (2011) have been 

studied. The presence of thermal radiation for MHD flow, free convection flow, flow through a 

porous medium and effects on viscoelastic flow have been studied by Rami et al. (2001), Raptis 

(1998), Chamkha (1997), Khan et al. (2014) and Mohammadein and Amin (2000).  

 

Many applications of MHD boundary layers flow of heat and mass transfer over flat surfaces are 

found in many engineering and geophysical applications such as geothermal reservoirs, thermal 

insulation, enhanced oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors. 

2
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Bachok et al. (2010) studied boundary layer flow of nanofluids over a moving surface in a 

flowing fluid. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-

infinite flat plate was briefly explained by Hamad et al. (2011). Moreover, MHD flow and heat 

transfer over stretching/shrinking sheets with external magnetic field, viscous dissipation and 

joule effects was studied by Jafar et al. (2001). Applications of magnetic field to blood 

circulation in the human artery systems and its application for the treatment of certain 

cardiovascular disorders were studied by Gurju et al. (2014). Viscous dissipation changes the 

temperature distributions by playing a role like energy source, which leads to affect heat transfer 

rates. The merit of the effect of viscous dissipation depends on whether the sheet is being cooled 

or heated. Kairi (2011) investigated the effect of viscous dissipation on natural convection in a 

non-Darcy porous medium saturated with non-Newtonian fluid of variable viscosity; influence of 

thermal radiation, viscous dissipation and Hall current on MHD convection flow over a stretched 

vertical flat plate was studied by Redy (2014).  

 

Hadjinicolaou (1993) studied heat transfer in a viscous fluid over a stretching sheet with viscous 

dissipation and internal heat generation. Steady two dimensional flow of an incompressible 

viscous and electrically conducting nanofluid caused by a stretching sheet in the vertical 

direction in the presence of viscous dissipation, which is placed in a saturated porous media has 

been investigated by Ferdows et al. (2012). On the other hand, transient mixed convective 

laminar boundary layer flow of an incompressible, viscous dissipative, electrically conducting 

nanofluid from a continuously stretching permeable surface in the presence of magnetic field and 

thermal radiation flux has been studied by Ferdows et al. (2013). Recently, many scholars have 

studied the roles of viscous dissipation and magnetic field in time dependant flows of nanofluids 

along stretching sheets. Khan et al. (2013) have studied unsteady laminar boundary layer flows 

of a nanofluid past a stretching sheet with thermal radiation in the presence of magnetic field 

numerically. Time dependent two dimensional flow of an incompressible viscous and electrically 

conducting nanofluid induced by a stretching sheet in the vertical direction in a porous medium 

saturated with quiescent ambient nanofluid has been studied by Beg et al. (2014). They 

investigated that velocity and momentum boundary layer thickness are enhanced with increasing 

thermal Grashof number, species Grashof number, Brownian motion parameter and 

thermophoresis parameter. 

 

In many chemical engineering processes, a chemical reaction between a foreign mass and the 

fluid does occur. These processes take place in numerous industrial applications, such as the 

polymer production, the manufacturing of ceramics or glassware, food processing, etc. Khan et 

al. (2014) studied possessions of chemical reaction on MHD heat and mass transfer nanofluid 

flow on a continuously moving surface. The role of chemical reaction on heat and mass transfer 

was studied by Prakash et al. (2014). Kandasamy and Palanimani (2007) studied on effects of 

chemical reactions, heat and mass transfer on nonlinear magnetohydrodynamic boundary layer 

flow over a wedge with a porous medium in the presence of ohmic heating and viscous 

dissipation. Postelnicu (2007) studied the influence of chemical reaction on heat and mass 

transfer by natural convection from vertical surfaces in porous media considering Soret and 

Dufour effects.                                                                                                                             

 

Since the increasing demand of nanofluids and its applications in science and technology is 

growing rapidly, a lot has to be done on convective transport of nanofluids. However, boundary-

3
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layer flow of nanofluids over a moving surface in the presence of thermal radiation, viscous 

dissipation and chemical reaction are not widely studied in a comprehensive way. Yet, as per my 

understanding, the simultaneous effects of these parameters together with the boundary 

conditions on heat and mass transfer flow of nanofluids over a moving flat plate has not been 

reported. Accordingly, the models and new improvements are presented in this work by 

extending the works of Olanrewaju et al. (2012) and Motsumi et al. (2012) to include uniform 

magnetic field, viscous dissipation and chemical reaction in the momentum, energy and 

concentration equations respectively for more physical implications. The governing boundary 

layer equations are reduced to a system of highly nonlinear ordinary differential equations using 

similarity transformations and the resulting equations are solved numerically by using the 

shooting technique. Influences of various governing parameters on the velocity, temperature and 

concentration profiles and skin-friction coefficient, Nusselt number and Sherwood number are 

discussed in detail. 

Nomenclature 

       𝐵     Magnetic field strength                                

𝐶      Nanoparticles concentration                                

𝐶𝑓    Skin friction coefficient                                   

Cw   Nanoparticles concentration at the plate    

𝐶∞   Ambient nanoparticles concentration                                                     

𝐷𝐵   Brownian motion diffusion coefficient                 

𝐷𝑇   Thermophoretic diffusion coefficient        

𝐸𝑐    Eckert number                                               

𝑓      Dimensionless stream function                   

𝑔     Dimensionless temperature                           

ℎ     Dimensionless nanoparticle conc.         

𝐻𝑎  Magnetic parameter                                     

𝑘     Thermal conductivity of the nanofluid              

𝑘∗    Rosseland mean absorption coefficient                     

𝑘𝑓   Thermal conductivity of the base fluid        

𝐾𝑟   Chemical reaction parameter                     

𝐿𝑒    Lewis number                                            

𝑁𝑏   Brownian motion parameter                     

𝑁𝑡    Thermophoretic parameter                    

𝑁𝑢𝑥  Local Nusselt number                                                                

𝑃𝑟    Prandtl number                                           

𝑅      Radiation parameter                                

𝑅𝑒𝑥  Reynolds’s number                                                                                                                                      

𝑆ℎ𝑥  Local Sherwood number                                        

𝑇      Fluid temperature                                                                

𝑇𝑤    Temperature at the surface                                                 

𝑇∞    Ambient temperature                                 

𝑈      Uniform free stream velocity                              

𝑢, 𝑣   Velocity comp. in the x-and y-   axes                                           

      x; y   Cartesian coordinates measured along 

and normal to the stretching sheet                                                                                                                                                               

     Greek Symbols  

      𝛼     Thermal diffusivity of the fluid                    

𝜆     velocity parameter                                                       

𝜎     Electrical conductivity of the base fluid                              

𝜎∗   Stefan-Boltzmann constant                          

𝜓    Stream function                                                                                         

𝜂     Dimensionless similarity variable                 

𝛾     Scaled chemical reaction parameter                         

𝜇     Dynamic viscosity of the nanofluid             

𝜐     Kinematic viscosity of the fluid                      

𝜌𝑓   Density of the base fluid                            

𝜌𝑝   Density of the nanoparticle                           

𝜏      A parameter defined by  
 (𝜌𝐶𝑝)𝑝

 (𝜌𝐶𝑝)𝑓
               

(𝜌𝐶𝑝)𝑓  Heat capacity of the base fluid               

(𝜌𝐶𝑝)𝑝  Heat capacity of the  nanoparticle  
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2. Formulation of the Problem 
 

We consider a steady two dimensional MHD boundary layer flow of a nanofluid past a moving 

semi- infinite flat plate in a uniform free stream in the presence of thermal radiation, chemical 

reaction and viscous dissipation. We assume that the velocity of the uniform free stream is 𝑼 and 

that of the plate is 𝑈𝑤 = 𝜆𝐔, where 𝜆 is the velocity parameter. The flow is assumed to take place 

at 𝑦 ≥ 0 , with 𝑦  being the coordinate measured normal to the moving surface. A variable 

magnetic field 𝑩 is applied in the 𝑦 direction. It is assumed that the induced magnetic field, the 

external electric field and the electric field due to the polarization of charges are negligible in 

comparison to the applied magnetic field. At the moving surface, the temperature and 

concentration of the nanoparticles take constant values 𝑇𝑤 and 𝐶𝑤, respectively. Following these 

conditions, the governing boundary layer equations of continuity, momentum, energy and 

diffusion with thermal radiation, viscous dissipation and chemical reaction effects of the 

nanofluids can be written in Cartesian coordinates 𝑥 and 𝑦 in dimensional form as (Olanrewaju et 

al. (2012) , Bachok et al. (2010), Khan et al. (2014), Stanford and Jagdish (2014)): 

 

  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                           (1) 

  𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈

𝑑𝑈

𝑑𝑥
+

𝜇

𝜌

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵2

𝜌
(𝑢 − 𝑈),                                                                         (2)  

  𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝜇

𝜌𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2

−
1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
+ 𝜏 [𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2

],                                   (3) 

   𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2 − 𝐾𝑟(𝐶 − 𝐶∞),                                                                           (4) 

 

where (𝑢, 𝑣) are the 𝑥 and 𝑦 velocity components, 𝑇 is temperature,  𝑇∞  and 𝐶∞ are temperature 

and nanoparticle concentration far from the sheet, respectively; 𝐵 = 𝐵0/√𝑥, 𝐵0 is a constant, 𝜎 is 

the electrical conductivity of the base fluid, 𝜌𝑓  is density of the base fluid, 𝑘𝑓  thermal 

conductivity of the base fluid and 𝜌 , 𝜇 , 𝑘  and 𝐶  are the density, dynamic viscosity, thermal 

conductivity and nanoparticle concentration, 𝜌𝑠 is the density of the particles,  (𝜌𝐶𝑝)𝑓 is the heat 

capacity of the fluid and  (𝜌𝐶𝑝)𝑠 is the effective heat capacity of the nanoparticle material, 𝜈 is the 

kinematic viscosity coefficient,  𝛼 =
𝑘

(𝜌𝐶𝑝)𝑓
 is the thermal diffusivity of the fluid, 𝑞𝑟  is the 

radiative heat flux, 𝐷𝐵  is Brownian diffusion coefficient, 𝐷𝑇  is thermophoresis diffusion 

coefficient, 𝐾𝑟 is the chemical reaction parameter and 𝜏 =
 (𝜌𝐶𝑝)𝑝

 (𝜌𝐶𝑝)𝑓
 .                                               

The boundary conditions associated to the differential equations are: 

      𝑢 = 𝑈𝑤 = 𝜆U, 𝑣 = 0, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤   at  𝑦 = 0, 

      𝑢 → 𝑈, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞  as  𝑦 → ∞.                                               (5)  
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The surface moving parameter 𝜆 > 0 corresponds to the downstream movement of the plate 

from the origin, while 𝜆 < 0 corresponds to the upstream movement of the plate. 

According to the Rosseland diffusion approximation Hossain and Takhar (1996) and following 

Raptis (1998), the radiative heat flux 𝑞𝑟 is given by 

 

      𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
 ,                                                                                                                        (6) 

 

where 𝜎∗  and 𝑘∗  are the Stefan-Boltzmann constant and the Rosseland mean absorption 

coefficient, respectively. We assume that the temperature differences within the flow are 

sufficiently small so that 𝑇4 may be expressed as a linear function of temperature 

 

      𝑇4 ≈ 4𝑇∞
3𝑇 − 3𝑇∞ 

4 .                                                                                                                  (7) 

 

Using (6) and (7) in Equation (3), we obtain 

  

     
𝜕𝑞𝑟

𝜕𝑦
= −

16𝜎∗𝑇∞
3

3𝑘∗

𝜕2𝑇

𝜕𝑦2 .                                                                                   (8) 

 

In order to reduce the governing equations into a system of ordinary differential equations, we 

introduce the following local similarity variables: 

 

     𝜂 = (
𝑈

2𝜐𝑥
)

1

2
𝑦,  𝑇 = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝑔(𝜂),  𝐶 = 𝐶∞ + (𝐶𝑤 − 𝐶∞)ℎ(𝜂),   

     𝜓 = (2𝑈𝜐𝑥)
1

2𝑓(𝜂).                                                                                                                   (9) 
 

Here, we introduce the stream function 𝜓 defined as 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
, which identically 

satisfies Equation (1). Substitution of the similarity variables into Equations (2)-(4) gives: 

 

       𝑓 ′′′ + 𝑓 𝑓 ′′ − 𝐻𝑎(𝑓 ′ − 1) = 0,                                                                    (10) 

      (
3+4𝑅

3
) 𝑔′′ + 𝑃𝑟(𝑓𝑔′ + 𝐸𝑐𝑓′′2 + 𝑁𝑏𝑔′ℎ′ + 𝑁𝑡𝑔′2) = 0,                                                      (11) 

       ℎ′′ + 𝐿𝑒𝑓ℎ′ +
𝑁𝑡

𝑁𝑏
𝑔′′ − 𝐿𝑒. 𝛾. 𝑅𝑒𝑥ℎ = 0,                                                        (12)     

where 𝜂  is the similarity variable, 𝑓  is the dimensionless stream function, 𝑔 is dimensionless 

temperature and ℎ is dimensionless nanoparticles concentration. The corresponding boundary 

conditions become: 

  

      𝑓(0) = 0, 𝑓′(0) = 𝜆, 𝑔(0) = 1, ℎ(0) = 1,                                                                        (13)                                                           

      𝑓 ′(𝜂) → 1, 𝑔(𝜂) → 0, ℎ(𝜂) → 0,  as  𝜂 → ∞.                                                        
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Primes denote differentiation with respect to 𝜂, 𝛾 =
2𝜐𝐾𝑟

𝑈2  (Scaled chemical reaction parameter), 

𝑃𝑟 =
𝜐

𝛼
 (Prandtl number), 𝑁𝑡 =

(𝜌𝐶𝑝)
𝑠

𝐷𝑇 (𝑇𝑤−𝑇∞)

𝜐(𝜌𝐶𝑝)
𝑓

𝑇∞
 (Thermophoresis parameter), 𝐿𝑒 =

𝜐

𝐷𝑩
 (Lewis 

number), 𝑁𝑏 =
(𝜌𝐶𝑝)

𝑠
𝐷𝐵(𝐶𝑤−𝐶∞)

𝜐(𝜌𝐶𝑝)
𝑓

 (Brownian motion parameter), 𝑅 =
4𝜎∗𝑇∞

3

𝑘∗𝑘
 ( Radiation parameter),  

 𝐸𝑐 =
𝑈2

(𝐶𝑝)𝑓(𝑇𝑤−𝑇∞)
 (Eckert number) and 𝐻𝑎 =

2

𝑈

𝜎𝐵0
2

𝜌𝑓
 (Magnetic parameter).     

 

 

The quantities we interested in studying are the skin-friction coefficient 𝐶𝑓, the local Nusselt 

number 𝑁𝑢𝑥  and the local Sherwood number 𝑆ℎ𝑥 . These parameters respectively characterize 

the surface drag, wall heat, and mass transfer rates. The quantities are defined as: 

 

        𝐶𝑓 =
𝜏𝑤

𝜌𝑈2 ,             𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤−𝑇∞)
 ,              𝑆ℎ𝑥 =

𝑥𝐽𝑤

𝐷𝐵(𝐶𝑤−𝐶∞)
                                          (14)          

where 𝜏𝑤, 𝑞𝑤 and 𝐽𝑤 are the shear stress, heat flux and mass flux at the surface, respectively and 

are defined by                          

        𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)

𝑦=0
,  𝑞𝑤 = − (𝑘 +

16𝜎∗𝑇∞
3

3𝑘∗ ) (
𝜕𝑇

𝜕𝑦
)

𝑦=0
,    𝐽𝑤 = −𝐷𝐵 (

𝜕𝐶

𝜕𝑦
)

𝑦=0
.                           (15)                      

 Using (14) and (15), the dimensionless skin friction coefficient (surface drag), wall heat and 

mass transfer rates become: 

       √2𝑅𝑒𝑥𝐶𝑓 = 𝑓′′(0),   √
2

𝑅𝑒𝑥
𝑁𝑢𝑥

𝑘𝑓

𝑘
= − (

3+4𝑅

3
) 𝑔′(0)   and    √

2

𝑅𝑒𝑥
𝑆ℎ𝑥 = −ℎ′(0),             (16)         

where  𝑅𝑒𝑥 =  
𝑥𝑈

𝜐𝑓
 is the local Reynolds number. According to Bachok et al. (2010), 

𝑁𝑢𝑥

√𝑅𝑒𝑥
  and 

𝑆ℎ𝑥

√𝑅𝑒𝑥
  are referred to as the reduced Nusselt number and reduced Sherwood numbers which are 

represented by −𝑔′(0) and −ℎ′(0), respectively.  

 

3. Numerical solution 
 

Since Equations (10)-(12) are non-linear ODEs, it is impossible to find the closed form solutions. 

Thus, these equations with the boundary conditions (13) are solved numerically using the 

shooting technique along with the fourth order Runge-Kutta integration scheme. 

 

The boundary value problem is converted to an initial value problem as shown below:   

 

      Let 𝑓 = 𝑓1,  𝑓1
′ = 𝑓2, 𝑓′2 = 𝑓3, then  𝑓′′′ = 𝑓′3 = −𝑓1𝑓3 + 𝐻𝑎(𝑓2 − 1);                           (17)                                                       

      𝑔 = 𝑓4,  𝑔′ = 𝑓5, then 𝑓′5 = 𝑔′′ =
−3𝑃𝑟

3+4𝑅
(𝑓1𝑓5 + 𝐸𝑐(𝑓3)2 + 𝑁𝑏𝑓5𝑓7 + 𝑁𝑡(𝑓5)2),                (18) 

and 
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       ℎ = 𝑓6, ℎ′ = 𝑓7,  

which results in 

       ℎ′′ = −𝐿𝑒. 𝑓1𝑓7 +
3𝑃𝑟𝑁𝑡

𝑁𝑏(3+4𝑅)
(𝑓1𝑓5 + 𝐸𝑐(𝑓3)2 + 𝑁𝑏. 𝑓5𝑓7 + 𝑁𝑡(𝑓5)2) + 𝐿𝑒. 𝛾. 𝑅𝑒𝑥. 𝑓6,        (19)                       

with the boundary conditions 

 

       𝑓1(0) = 0, 𝑓2(0) = 𝜆, 𝑓4(0) = 1, 𝑓6(0) = 1,  𝑓2(∞) = 1, 𝑓4(∞) = 0, 𝑓6(∞) = 0.       (20)  

 

 

   

 

Table1: Comparison of 𝑓′′(0) , −𝑔′(0) and −ℎ′(0) for various values of  Pr , 𝑁𝑏 , 𝑁𝑡, 𝐿𝑒, 𝑅 and 

𝜆 when 𝐸𝑐 = 𝐻𝑎 = 𝛾 = 0. 

 

 

In order to integrate (17), (18) and (19) as an initial value problem, we require values for 

𝑓3(0): = 𝑝, 𝑓5(0): = 𝑞 and 𝑓7(0): = 𝑟 that is 𝑓′′(0), 𝑔′(0) and ℎ′(0), respectively. Such values 

are not given in the boundary conditions (20). These values are what we are striving to find in 

our paper for various values of the physical parameters.  

 

The most important task of shooting method is to choose the appropriate finite values of 𝜂∞. In 

order to determine 𝜂∞for the boundary value problem stated by Equations (17)-(20), we start 

with some initial guess values for some particular set of physical parameters to obtain 𝑓′′(0),
𝑔′(0) and ℎ′(0) differ by pre-assigned significant digit. The last value of 𝜂∞is finally chosen to 

be the most appropriate value of the limit 𝜂∞for that particular set of parameters. The value of 

𝜂∞ may change for another set of physical parameters. Once the finite value of 𝜂∞is determined, 

then the integration is carried out as stated by Mandal and Mukhopadhyay (1996). Accordingly, 

the initial condition vector for the boundary value problem is given by  [𝑓(0), 𝑓′(0), 𝑓′′(0),
𝑔(0), 𝑔′(0), ℎ(0), ℎ′(0)] that is 𝑌0 = [0, 𝜆, 𝑝, 1, 𝑞, 1, 𝑟]. 

Parameters f ′′(0) −g′(0) −h′(0) 

Pr 𝑁𝑏 𝑁𝑡 Le R λ Olanrewa

ju (2012) 

Present 

Work 

Olanrewa

ju (2012) 

Present 

Work 

Olanrewa

ju (2012) 

Present 

Work 

0.71 0.1 0.1 2 2 0.1 0.462512 0.462512 0.263891 0.263891 0.630473 0.630473 

0.71 0.1 0.1 2 4 0.1 0.462512 0.462512 0.213218 0.213218 0.644033 0.644033 

0.71 0.1 0.1 2 1 2 -1.01906 -1.019061 0.509487 0.509487 1.325517 1.325517 

1 0.1 0.1 2 1 0.1 0.462512 0.462512 0.353009 0.353010 0.600376 0.600376 

2 0.5 0.5 2 1 0.1 ---------- 0.462512 0.308307 0.308307 0.662384 0.662384 

2 0.5 0.5 2 1 1.5 ---------- -0.45778 0.536323 0.536323 1.196426 1.196426 

2 0.5 0.5 6 1 1 ---------- 0.000000 ---------- 0.434794 1.955457 1.955457 

2 0.5 0.5 10 1 0.1 ---------- 0.462512 ---------- 0.282348 1.295602 1.295602 
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We took the series of values for 𝑓′′(0), 𝑔′(0) and ℎ′(0) and applied the fourth order Runge – 

Kutta integration scheme with step size ℎ = 0.01.  The above procedure was repeatedly 

performed till we obtained the desired degree of accuracy, 10−6. With the help of the Matlab 

software, the desired results are generated, the graphs are sketched and their interpretations are 

given as shown in the coming section. 

 

4. Results and Discussion                                                                                                               
 

In the numerical solutions, effects of magnetic field, viscous dissipation, thermal radiation and 

chemical reaction on heat and mass transfer characteristics of a moving plate of nanofluids were 

considered.  The transformed nonlinear ordinary differential equations (10)–(12) subject to the 

boundary conditions (13) were solved numerically using the shooting technique followed by the 

classical fourth order Runge–Kutta method. 

         

 

 

 

 

 

 

 

Figure 1. Effects of Ha on velocity profile               Figure 2. Effects of Pr on temp. profile 

 

Velocity, temperature and concentration profiles were obtained and we applied the results to 

compute the skin friction coefficient, the local Nusselt and local Sherwood numbers. The 

numerical results were discussed for the various values of the embedded parameters graphically 

and in table form. To validate the accuracy of the numerical results, comparisons were made  

 

 

 

 

 

 

Figure 3. Effects of R on temp. profile                    Figure 4. Effects of Nb on temp. profile 
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with Olanrewaju et al. (2012) in the absence of viscous dissipation, magnetic field and chemical 

reaction; as shown in Table1, the results are in good agreement and so the validity of our method 

is ensured.  

  

 

 

  

 

 

 

 

         Figure 5. Effects of Nt on temp. profile                    Figure 6. Effects of Le on conc. profile 

 

The skin friction coefficient, wall heat and mass transfer rates for different values of 𝑃𝑟, 𝑁𝑏, 𝑁𝑡,
𝜆, 𝑅 and 𝐿𝑒 are given in Table1 when 𝐸𝑐 = 𝐻𝑎 = 𝛾 = 0. For some prescribed values of 𝐸𝑐, 𝐻𝑎,
𝛾  and 𝑅𝑒𝑥  together with the other embedded parameters and numbers, some fluid dynamic 

quantities were presented. For clarity, let us see the effects of parameters like Brownian motion, 

thermophoresis, viscous dissipation, thermal radiation, scaled chemical reaction and Lewis 

number, magnetic parameter, Prandtl number and Eckert number on various fluid dynamic 

quantities as presented graphically and in tabular form.       

 

 

 

 

 

 

 

 

       Figure 7. Effects of R on conc. profile                          Figure 8. Effects of Nb on conc. profile 
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   Figure 9. Effects of Nt on conc. profile                      Figure10. Effects of λ on velocity profile 

 

The effect of magnetic field parameter 𝐻𝑎 on velocity profile 𝑓 ′(𝜂) is pictured in Figure1. The  

essence of the magnetic parameter has been explained from the sign of the term 
𝜎𝐵2

𝜌
(𝑢 − 𝑈) in  

Equation (2). This term is composed of the imposed pressure force 
𝜎𝐵2

𝜌
𝑈 and the Lorentz force  

𝜎𝐵2

𝜌
𝑢, which slows down the fluid motion in the boundary layer region. When the imposed 

pressure force overcomes the Lorentz force ( 𝑈 > 𝑢 ), the effect of the magnetic parameter 

increases the velocity. Similarly, when the Lorentz force dominates the imposed pressure force 

(𝑢 > 𝑈), the effect of the magnetic parameter decreases velocity flow and hence it decreases 

momentum boundary layer thickness (Rana and Anwar (2014)). 

 

Figure 2 shows the effect of Prandtl number 𝑃𝑟 on temperature profile. As 𝑃𝑟 increases, the 

temperature profile decreases. Figure 3 shows the effect of thermal radiation parameter 𝑅 on 

temperature profile. As 𝑅 increases, the temperature profile also increases.  

 

 

 

 

 

 

 

   Figure 11. Effects of λ on temp. profile                           Figure 12. Effects of γ on conc. profile 
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Figure 4 shows the effect of Brownian motion parameter 𝑁𝑏 on temperature profile. As shown in 

the figure, the Brownian motion parameter enhances the temperature profile. 

 

 

 

 

 

 

 

 

       Figure 13. Effects of 𝑅𝑒𝑥 on conc. profile                 Figure 14. Effects of Ec on temp. profile      

 

Figure 5 and Figure 9 show the effect of thermophoresis parameter 𝑁𝑡  on temperature and 

concentration profiles. As the thermophoresis parameter increases, both the temperature and 

concentration profiles also increase. Figure 6 illustrates the effect of Lewis number on 

concentration. It is clearly shown in the figure that as the Lewis number increases, the 

concentration profile decreases significantly. This is because the increment of Lewis number 

reduces Brownian diffusion coefficient 𝐷𝑩 and this leads the flow to decline the concentration 

profile. This is obvious from the very definition of the parameter. 

Figure 7 shows the effect of thermal radiation parameter 𝑅  on concentration profile. As 𝑅 

increases, the concentration profile decreases. Figure 8 illustrates the effect of Brownian motion 

parameter 𝑁𝑏  on concentration profile. It is clearly illustrated that as 𝑁𝑏  increases, the 

concentration profile decreases.  

 

 

 

 

 

 

 

 

      Figure 15. Effects of λ on conc. profile                       Figure 16. Effects of Pr on conc. profile 
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Figures.10, 11 and 15 show effects of the velocity parameter 𝜆 on velocity, temperature and 

concentration profiles. For a fixed value of 𝜂, as the parameter 𝜆 increases, the velocity profile 

also increases and finally it is getting constant as 𝜆  is closer to 1. On the other hand, the 

parameter reduces both the temperature and concentration profiles considerably. 

     Table 2: Comparison of  𝑓′′(0) , −𝑔′(0) and −ℎ′(0) on themselves for various values of Le and 𝑅𝑒𝑥 

 

Figure 12 shows the effect of chemical reaction parameter 𝛾 on concentration profile. Chemical 

reaction parameter reduces the concentration profile. This is true because as chemical reaction 

takes place, the amount of nanoparticles within the fluid is getting smaller and smaller. Figure13 

also shows the effect of local Reynolds number 𝑅𝑒𝑥 on concentration profile. As the Reynolds 

number increases, the concentration profile decreases.  

 

Figure14 shows the effect of viscous dissipation parameter 𝐸𝑐 on temperature profile. As  shown 

in the figure, temperature profile increases with increasing values of viscous dissipation 

parameter 𝐸𝑐 . Figure16 shows the effect of Prandtl number on concentration profile. As the 

parameter increases near the boundary layer, the concentration profile also increases. But as 𝜂 

gets larger, the opposite happens with slower rate. 

 

Table 2 shows the effect of Lewis number and Reynolds number on skin friction coefficient 

𝑓′′(0) , wall heat transfer rate – 𝑔′(0)  and wall mass transfer rate – ℎ′(0) . As it is clearly 

described, none of these numbers has effects on skin friction coefficient. However, as the Lewis 

number increases, heat transfer rate decreases while mass transfer rate increases continuously. 

On the other hand, as the Reynolds number increase, mass transfer rate also increases but heat 

transfer rate decreases.  

 

Table 3 shows the effect of magnetic parameter and Eckert number on skin friction coefficient, 

wall heat transfer and wall mass transfer rates. We obtained that viscous dissipation parameter 

𝐸𝑐   has no effect on the skin friction coefficient 𝑓′′(0) whereas the magnetic parameter 𝐻𝑎 

enhances the skin friction coefficient, heat and mass transfer rates. It is clearly described that as 

the Eckert number increases, heat transfer rate −𝑔′(0) decreases while the opposite is true for 

mass transfer rate−ℎ′(0). This is true because as the values of both magnetic parameter and 

viscous dissipation parameters increase, the thermal boundary layer thickness increases. This 

results in a decline of the wall heat transfer rate.   

 

For   𝑁𝑡 = 0.3, 𝑃𝑟 = 6, 𝐿𝑒 = 2, 𝑁𝑏 = 0.3, 𝐸𝑐 = 0.1,  𝛾 = 0.3,  𝐻𝑎 = 0.1,  𝑅 = 2,  𝑅𝑒𝑥 = 1, 𝜆 = 0.1 

Le 𝑓″(0) −𝑔′(0) −ℎ′(0) 𝑅𝑒𝑥 𝑓″(0) −𝑔′(0) −ℎ′(0) 

2 0.537052 0.355109 1.023657 0.5 0.537052 0.361494 0.859500 

6 0.537052 0.326789 1.716981 1 0.537052 0.355109 1.023657 

10 0.537052 0.317791 2.162991 1.3 0.537052 0.351883 1.112757 

20 0.537052 0.308813 2.960850 1.5 0.537052 0.349936 1.168915 

50 0.537052 0.301027 4.517598 1.6 0.537052 0.349016 1.196119 
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         Table 3: Comparison of  f ′′(0) , −g′(0) and −h′(0) on themselves for various values of Ha and Ec 

 

Figure 17(a) and Figure 17(b) show the wall heat transfer rate, – 𝑔′(0) and the wall mass transfer 

rate, – ℎ′(0) respectively, as functions of the velocity parameter 𝜆 for different values of the 

radiation parameter 𝑅 . It is observed that – 𝑔′(0)   is a decreasing function of the radiation 

parameter 𝑅 but it increases with 𝜆 while – ℎ′(0) is an increasing function of both the velocity 

parameter 𝜆 and the thermal radiation parameter  𝑅.  

  

 

 

 

 

 

 

 

            (a) Heat Transfer Rate                                         (b) Mass Transfer Rate                                        

Figure 17. Effects of R  and λ  on (a) and (b) when  Pr = 6, Nb = 0.3, Nt = 0.3, Ec = 0.1,
Le = 2,  Ha = 0.1, γ = 0.3, 𝑅𝑒𝑥 = 1 

 

Effects of Prandtl number 𝑃𝑟  and chemical reaction parameter 𝛾  on the wall heat and mass 

transfer rates are shown in Figures 18 (a) and (b). Smaller values of Prandtl number enhances the 

wall heat transfer rate; the parameter also assists in maximizing the wall mass transfer rate. As   

expected, the chemical reaction parameter strongly enhances the wall mass transfer rate but its 

effect to heat transfer rate is minimal for smaller values of Prandtl number. We noticed some 

irregularities near the boundary layer when the Prandtl number gets larger. It is observed that 

when the Prandtl number becomes larger, the rate of heat transfer increases near the boundary 

layer and declines very fast far away from the boundary.    

For   𝑁𝑡 = 0.3, 𝑃𝑟 = 6, 𝐿𝑒 = 2, 𝑁𝑏 = 0.3, 𝐸𝑐 = 0.1,  𝛾 = 0.3,  𝐻𝑎 = 0.1,  𝑅 = 2,  𝑅𝑒𝑥 = 1 

𝐻𝑎 𝑓″(0) −𝑔′(0) −ℎ′(0) 𝐸𝑐 𝑓″(0) −𝑔′(0) −ℎ′(0) 

0.0 0.462512 0.349121 1.012449 0 0.537052 0.383582 1.003374 

0.05 0.500954 0.352333 1.018275 0.1 0.537052 0.355109 1.023657 

0.1 0.537052 0.355109 1.023657 0.2 0.537052 0.326555 1.044005 

0.15 0.571181 0.357535 1.028671 0.3 0.537052 0.297917 1.064419 

0.2 0.603626 0.359672 1.033373 0.5 0.537052 0.240393 1.105446 
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          (a) Heat Transfer Rate                                    (b) Mass Transfer Rate                                         

Figure18: Effects of Pr and γ on (a) and (b) when  R = 2, Nb = 0.3, Nt = 0.3, Ec = 0.1,
𝑅𝑒𝑥 = 1,  Le = 2,  Ha = 0.1, λ = 0.1 

 

Effects of Brownian motion and thermophoresis parameters on the skin friction coefficient, wall 

heat and mass transfer rates are shown in Table 4. The table depicts that neither the Brownian 

nor the thermophoresis parameter has effect on the skin friction coefficient. Nevertheless, as 

these parameters increase the heat transfer rate reduces significantly; on the other hand, the 

Brownian motion parameter brings no significant change on the mass transfer rate. 

Thermophoresis parameter enhances the mass transfer rate.  

       Table 4: Comparison of  f′′(0) , −g′(0) and −h′(0) on themselves for various values of Nb and Nt 

 

5. Conclusions  
 

The problem of heat and mass transfer of MHD flow of nanofluids in the presence of viscous 

dissipation, thermal radiation and chemical reaction effects has been analyzed. The non-linear 

governing equations associated with the boundary conditions were transformed into a two-point 

non-linear coupled ODEs with the help of similarity transformation equations. The solutions of 

these problems were numerically solved with the help of the shooting technique followed by the 

For   𝑁𝑡 = 0.3, 𝑃𝑟 = 6, 𝐿𝑒 = 2, 𝑁𝑏 = 0.3, 𝐸𝑐 = 0.1,  𝛾 = 0.3,  𝐻𝑎 = 0.1,  𝑅 = 2,  𝑅𝑒𝑥 = 1,  𝜆 = 0.1 

𝑁𝑏 𝑓″(0) −𝑔′(0) −ℎ′(0) 𝑁𝑡 𝑓″(0) −𝑔′(0) −ℎ′(0) 

0.5 0.537052 0.283771 1.039093 0.2 0.537052 0.381194 1.000813 

1 0.537052 0.154922 1.037616 0.5 0.537052 0.308652 1.093274 

2 0.537052 0.036563 1.019768 0.75 0.537052 0.259896 1.211334 

2.5 0.537052 0.014261 1.013037 1 0.537052 0.219754 1.348803 

3.5 0.537052 0.002137 1.004158 1.5 0.537052 0.159288 1.639565 
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classical fourth order Runge-Kutta method. Among the many significant results, some of them 

are listed below: 

 The velocity profile increases with increasing values of both magnetic and velocity 

parameters. 

 Viscous dissipation, thermal radiation, Brownian motion and thermophoresis parameters 

enhance the temperature profile whereas Prandtl number and the velocity parameter 𝜆 

reduce it significantly. 

 Thermophoresis parameter enhances the concentration profile; on the other hand, Reynolds 

number, Lewis number, radiation parameter, Brownian motion parameter, chemical 

reaction parameter and velocity parameter reduce the concentration profile.  

 Magnetic parameter enhances skin friction coefficient, heat and mass transfer rates at the 

plate surface. 

 The presence of Lewis number, Reynolds number, thermal radiation, thermophoresis, 

velocity, Brownian motion and viscous dissipation parameters in the flow field reduces the 

rate of thermal boundary layer thickness whereas Prandtl number maximizes the rate of 

thermal boundary layer thickness. 

 The wall mass transfer rate is an increasing function of Lewis number, Prandtl number, 

Reynolds number, thermophoresis, chemical reaction, radiation, velocity and viscous 

dissipation parameters whereas Brownian motion parameter reduces mass transfer rate at 

the plate surface.  
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