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Abstract 

 
Computer viruses are an extremely important aspect of computer security, and understanding 

their spread and extent is an important component of any defensive strategy. Epidemiological 

models have been proposed to deal with this issue, and we present one such here. We consider the 

modified epidemiological model for computer viruses (SAIR) proposed by J. R. C. Piqueira and 

V. O. Araujo. This model includes an antidotal population compartment (A) representing nodes 

of the network equipped with fully effective anti-virus programs. The multi-step generalized 

differential transform method (MSGDTM) is employed to compute an approximation to the 

solution of the model of fractional order. The fractional derivatives are described in the Caputo 

sense. Figurative comparisons between the MSGDTM and the classical fourth-order Runge-Kutta 

method (RK4) reveal that this method is very effective. Mathematica 9 is used to carry out the 

computations. Graphical results are presented and discussed quantitatively to illustrate the 

solution. 

 

Keywords: Fractional differential equations, Caputo fractional derivative, multi-step 

generalized differential transform, Epidemiological model, computer viruses 
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1. Introduction 

 
Computer virus is a kind of computer program that can replicate itself and spread from one 

computer to others. Viruses mainly attack the file system and worms use system vulnerability to 

search and attack computers. As hardware and software technology develop and computer 

networks become an essential tool for daily life, the computer virus starts to be a major threat. 

Consequently, the trial on better understanding of the computer virus propagation dynamics is an 

important matter for improving the safety and reliability in computer systems and networks. 

Similar to the biological virus, there are two ways to study this problem: microscopic and 

macroscopic models. Following a macroscopic approach, since [Kephart and White (1993), 

Kephart et al. (1993)] took the first step towards modeling the spread behavior of computer virus, 

much work has been done in the area of developing a mathematical model for the computer virus 

propagation [Billings et al. (2002), Han and Tan (2010), Piqueira and Araujo (2009), Ren et al. 

(2012), Wierman and Marchette (2004)].  

 

Epidemic models for computer virus spread have been investigated since at least 1988. Murray 

(1988) appears to be the first to suggest the relationship between epidemiology and computer 

viruses. Although he did not propose any specific models, he pointed out analogies to some 

public health epidemiological defense strategies. Gleissner (1989) examined a model of computer 

virus spread on a multi-user system, but no allowance was made for the detection and removal of 

viruses or alerting other users of the presence of viruses. More recently, a group at IBM Watson 

Research Center [Kephart et al. (1997), Kephart and White (1991), Kephart et al. (1993), Kephart 

and White (1993)] has investigated susceptible infected- susceptible (SIS) models for computer 

virus spread.  

 

Kephart and White (1991), formulated a directed random graph model and studied its behavior 

via deterministic approximation, stochastic approximation, and simulation. In [Kephart et al. 

(1993), Kephart and White (1993)], a combination of theory and observation led to a conclusion 

that computer viruses were much less prevalent than many have claimed, estimating that the 

number of infected machines is perhaps 3 or 4 per thousand PC's. They also claim that computer 

viruses are gradually becoming more prevalent, not because of any single viral strain, but because 

the number of viruses is growing with time. The classical SIR (Susceptible-Infected- Recovered) 

computer virus propagation model was proposed Piqueira and Araujo (2009), Wierman and 

Marchette (2004) which is formulated as the following system of differential equations: 

 

( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ).

dS
b S t I t dS t

dt

dI
S t I t I t dI t

dt

dR
I t dR t

dt



 



  

   

 

                                       (1.1) 

 

Here, it is assumed that all the computers connected to the network in question are classified into 

three categories: susceptible, infected, and recovered computers. Let   , ( )S t I t  and  R t  denote 
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their corresponding numbers at time ,t  respectively. This model involves four positive 

parameters: b  denotes the rate at which external computers are connected to the network,   
denotes the recovery rate of infected computers due to the anti-virus ability of the network, d  
denotes the rate at which one computer is removed from the network,  denotes the rate at which, 

when having a connection to one infected computer, one susceptible computer can become 

infected. Recently, Jianguo Ren et. all in (Ren et al. 2012) introduced a new recovery function 

 

0

0

, 0 I I
( ) ,

, I I

I
T I

m

    
  

   
                                              (1.2) 

 

where   is the recovery rate when the anti-virus ability is not fully utilized, 
0m I  to 

characterize the saturation phenomenon of the limited anti-virus ability of a network, and they 

carefully investigated the dynamics of the following computer virus propagation model 

 

1 ,

( ) ,

( ) .

dS S
rS SI dS

dt k

dI
SI T I dI

dt

dR
T I dR

dt





 
    

 

  

 

                                           (1.3) 

 

Nowadays several researchers work on the fractional order differential equations because of best 

presentation of many phenomena. Fractional calculus has been used to model physical and 

engineering processes, which are found to be best described by fractional differential equations. It 

is worth nothing that the standard mathematical models of integer-order derivatives, including 

nonlinear models, do not work adequately in many cases. In recent years, fractional calculus has 

played a very important role in various fields such as mechanics, electricity, chemistry, biology, 

economics, notably control theory, and signal and image processing; see for example [Ertürk, et 

al. (2011), Lin (2007), Miller and Ross (1993)]. 

 

In this paper, we intend to obtain the approximate solution of the fractional-order Model for 

computer viruses via the multi-step generalized differential transform method (MSGDTM). This 

method is only a simple modification of the generalized differential transform method (GDTM), 

in which it is treated as an algorithm in a sequence of small intervals (i.e., time step) for finding 

accurate approximate solutions to the corresponding systems. The approximate solutions obtained 

by using GDTM are valid only for a short time. The ones obtained by using the MSGDTM are 

more valid and accurate during a long time, and are in good agreement with the classical Runge-

Kutta method of numerical solution when the order of the derivative is one. 

 

2. Model description 

 
Here, we consider the model taking by J. R. C. Piqueira and V. O. Araujo. (Piqueira and Araujo, 

2009). In this model, they considered that the total population ,T is divided into four groups: S, of 

3
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non-infected computers subjected to possible infection; ,A of noninfected computers equipped 

with anti-virus; ,I of infected computers; and ,R  of removed ones due to infection or not. The 

influx and mortality parameters of the model are defined as: 

 
:N  influx rate, representing the incorporation of new computers to the network; 
:  proportion coefficient for the mortality rate, not due to the virus. 

 

The susceptible population S  is infected with a rate that is related to the probability of 

susceptible computers to establish effective communications with infected ones. Therefore, this 

rate is proportional to the product ,SI  with proportion factor represented by .  Conversion of 

susceptible into antidotal is proportional to the product SA  and is controlled by ,SA  that is an 

operational parameter defined by the anti-virus distribution strategy of the network 

administration. 

 

Infected computers can be fixed by using anti-virus programs being converted into antidotal ones 

with a rate proportional to ,AI  with a proportion factor given by ,IA or become useless and 

removed with a rate controlled by .  Removed computers can be restored and converted into 

susceptible ones with a proportion factor .  This model represents the dynamics of the 

propagation of the infection of a known virus and, consequently, the conversion of antidotal into 

infected is not considered. Therefore, by using this model, a vaccination strategy can be defined, 

providing an economical use of the anti-virus programs. 

 
Considering these facts, the model can be described by: 

 

,

,

,

.

SA

IA

SA IA

dS
N SA SI S R

dt

dI
SI AI I I

dt

dR
I R R

dt

dA
SA AI A

dt

   

   

  

  

    

   

  

  

                                       (2.1) 

 

Here, the influx rate is considered to be 0,N   representing that there is no incorporation of new 

computers in the network during the propagation of the considered virus, because its action is 

faster than the network expansion. The same reason justifies the choice of 0,   considering 

that the machines obsolescence time is larger than the time of the virus action. 
 

Consequently, the Equation system (2.1) is simplified to: 
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,

,

,

.

SA

IA

SA IA

dS
SA SI R

dt

dI
SI AI I

dt

dR
I R

dt

dA
SA AI

dt

  

  

 

 

   

  

 

 

                                            (2.2) 

 

Here, the total population of the network T S I R A     remains constant. 
 

3. Fractional calculus 
 

There are several approaches to define fractional calculus, e.g. Riemann-Liouville, Grünwald-

Letnikov, Caputo, and Generalized Functions approach. Riemann-Liouville fractional derivative 

is mostly used by mathematicians but this approach is not suitable for real world physical 

problems since it requires the definition of fractional order initial conditions, which have no 

physically meaningful explanation yet. Caputo introduces an alternative definition, which has the 

advantage of defining integer order initial conditions for fractional order differential equations. 

 
Definition 3.1. 

 
A function  ( ) ( > 0 )f x x  is said to be in the space C  ( )R  if it can be written as 

1( ) = ( )pf x x f x  for some >p   where 1( )f x  is continuous in [0, ) , and it is said to be in the 

space mC  if ( ) , .mf C m R   

 
Definition 3.2. 

 
The Riemann–Liouville integral operator of order   with 0a  is defined as  
 

11
( )( ) = ( ) ( ) , > ,

( )

x

a

a

J f x x t f t dt x a 




                             (3.1) 

 
0( )( ) = ( ).aJ f x f x                                             (3.2) 

  
Properties of the operator can be found in (Caputo, 1967), (Miller and Ross, 1993), (Podlubny, 

1999). Here, we only need the following: For ,f C  , > 0,   0,a   ,c R  > 1  , we have 

 

( )( ) = ( )( ) = ( )( ),a a a a aJ J f x J J f x J f x                                 (3.3) 
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= ( , 1),
( )

a x a

x

x
J x B

 
   





 


                                     (3.4) 

 
where ( , 1)B     is the incomplete beta function which is defined as 

 
1

0
( , 1) = (1 ) ,B t t dt


 

                                         (3.5) 

 

= 0

[ ( )]
= ( ) .

( 1)

k
cx ac

a

k

c x a
J e e x a

k

 



 


  
                                (3.6) 

 

The Riemann–Liouville derivative has certain disadvantages when trying to model real-world 

phenomena with fractional differential equations. Therefore, we shall introduce a modified 

fractional differential operator 
aD  proposed by Caputo in his work on the theory of 

viscoelasticity. 
 
Definition 3.3. 

 
The Caputo fractional derivative of ( )f x  of order > 0  with 0a   is defined as 

 
( )

( )

1

1 ( )
( )( ) = ( )( ) = ,

( ) ( )

m
x

m m

a a ma

f t
D f x J f x dt

m x t

 





                     (3.7) 

                                                       for 1< ,m m   ,m R  ,x a  1.
mf C  

 
The Caputo fractional derivative was investigated by many authors, for 1< ,m m   

( ) mf x C  and 1,    we have 
1

( )

= 0

( )
( )( ) = ( ) = ( ) ( ) .

!

km
m m k

a a

k

x a
J D f x J D f x f x f a

k

 
 

             (3.8) 

 

For mathematical properties of fractional derivatives and integrals one can consult the mentioned 

references. 

 

4. Multi-step generalized differential transform method (MSGDTM) 
 

To describe the multi-step generalized differential transform method (MSGDTM) [Abuteen et al. 

(2014), Arshad et al. (2015), Ertürk et al. (2008), Freihat and Momani (2012), Freihat and 

Momani (2012), Momani and Odibat (2008), Odibat et al. (2008), Odibat and Momani (2008)].  

 

We consider the following initial value problem for systems of fractional differential equations 
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1
1 1 1 2

2
2 1 1 2

1 1 2

( ) = ( , , , , ),

( ) = ( , , , , ),

( ) = ( , , , , ),

n

n

n
n n

D y t f t y y y

D y t f t y y y

D y t f t y y y













                                                (4.1) 

 
subject to the initial conditions 

0( ) = , =1,2, , ,i iy t c i n                                         (4.2) 

 

where iD


  is the Caputo fractional derivative of order ,i  where 0 < 1,i   for =1,2, , .i n   

 
Let 0[ , ]t T  be an interval over which we wish to determine the solution of the initial value 

problem (4.1)-(4.2). In actual applications of GDTM, the thK -order approximate solution of the 

initial value problem (4.1)-(4.2) can be expressed by the finite series 

 

0 0

= 0

( ) = ( )( ) , [ , ],
K

k
i

i i

i

y t Y k t t t t T


                                  (4.3) 

 

where ( )iY k  satisfies the recurrence relation 

 

1 2

(( 1) 1)
( 1) = ( , , , , ),

( 1)

i
i i n

i

k
Y k F k Y Y Y

k





  


 
                              (4.4) 

                        

(0) =i iY c  and 1 2( , , , , )i nF k Y Y Y  are the differential transforms of functions 1 2( , , , , )i nf t y y y  

for =1,2, , .i n  The basics steps of the GDTM can be found in ( Chongxin and Junjie, 2010), 

(Momani and Odibat, 2008), (Odibat et al. 2008). 

 

Assume that the interval 0[ , ]t T  is divided into M  subintervals 1[ , ],m mt t  1,2, ,m M  of equal 

step size 0( ) /h T t M   by using the nodes 0 .mt t mh   The main ideas of the MSGDTM are 

as follows: 

 

Firstly, we apply the GDTM to the initial value problem (4.1)-(4.2) over the interval 0 1[ , ],t t  we 

will obtain the approximate solution 
,1( ),iy t  0 1[ , ],t t t  using the initial condition 0( ) = ,i iy t c  for 

=1,2, , .i n  For 2m   and at each subinterval 1[ , ],m mt t  we will use the initial condition 

, 1 , 1 1( ) = ( )i m m i m my t y t  
 and apply the GDTM to the initial value problem (4.1)-(4.2) over the 

interval 1[ , ].m mt t  The process is repeated and generates a sequence of approximate solutions 

, ( ),i my t  =1,2, , ,m M  for =1,2, , .i n  Finally, the MSGDTM assumes the following solution 
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,1 0 1

,2 1 2

, 1

( ), , ,

( ), , ,
( )

( ), , .

i

i

i

i M M M

y t t t t

y t t t t
y t

y t t t t

 



 

 

                                   (4.5) 

 

The new algorithm, MSGDTM, is simple for computational performance for all values of h . As 

we will see in the next section, the main advantage of the new algorithm is that the obtained 

solution converges for wide time regions. 

 

 

5.  Solving the fractional-order modified epidemiological model for computer 

viruses using the MSGDTM 
 

In order to demonstrate the performance and efficiency of the multi-step generalized differential 

transform method for solving linear and nonlinear fractional-order equations, we have applied the 

method to the fractional-order modified epidemiological model for computer viruses. 

 

Consider a fractional-order SAIR model of epidemics system (Piqueira and Araujo, 2009). In this 

system, the integer-order derivatives are replaced by the fractional-order derivatives, as follows: 

 
1 ( ) ,q

SAD S t SA SI R                                              (5.1) 
2 ( ) ,q

IAD I t S I                                                     (5.2) 
3 ( ) ,

q
D R t R                                                           5.3) 

4 ( ) ,q

SA IAD A t SA AI                                                  (5.4) 

 

where  , , ,S I R A  are the state variables, , , ,SA     and 
IA are constants, ,iq 1,2,3,4,i   are 

parameters describing the order of the fractional time-derivatives in the Caputo sense. 
 

Applying the MSGDTM Algorithm to Equations (5.1)-(5.4) gives 

 

01

1

0

( ) ( )
(q k 1)

( 1) ,
( ( 1) 1)

( ) ( )

k

SA

l

k

l

S l A k l

S k
q k

S l I k l R





  
   

     
     
      

  





 

02

2

0

( ) ( )
(q k 1)

( 1) ,
( ( 1) 1)

( ) ( ) ( )

k

l

k

IA

l

S l I k l

I k
q k

A l I k l I k
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 3

3

(q k 1)
( 1) ( ) ,

( ( 1) 1)
R k R k

q k

 
  

  
                                    (5.5) 

4

0 04

(q k 1)
( 1) ( ) ( ) ( ) ( ) ,

( ( 1) 1)

k k

SA IA

l l

A k S l A k l A l I k l
q k  

      
         

       
   

 

where ( ), ( ), ( )S k I k R k  and ( )A k  are the differential transforms of ( ), ( ), ( )S t I t R t  and ( )A t  
respectively. The differential transform of the initial conditions are given by 

 

1 2 3(0) = , (0) = , (0) cS c I c R   and 4(0) = .A c  

 
In view of the differential inverse transform, the differential transform series solution for the 

system (5.1)-(5.4) can be obtained as 

 

1

2

3

4

0

0

0

0

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

N
q n

n

N
q n

n

N
q n

n

N
q n

n

s t S n t

i t I n t

r t R n t

a t A n t


















 


 










                                                      (5.6) 

 

According to the multi-step generalized differential transform method, the series solution for the 

system (5.1)-(5.4) is 

 

1

1

1

1 1

= 0

2 1 1 2

= 0

1 1

= 0

( ) , [0, ],

( )( ) , [ , ],
( )

( )( ) , [ , ].

K
q n

n

K
q n

n

K
q n

M M M M

n

S n t t t

S n t t t t t
s t

S n t t t t t 







 
 




 








                           (5.7) 

9

Handam and Freihat: Fractional modified epidemiological model for computer viruses

Published by Digital Commons @PVAMU, 2015



928                                                                                                                                 A. H. Handam and A.A. Freihat 

2

2

2

1 1

= 0

2 1 1 2

= 0

1 1

= 0

( ) , [0, ],

( )( ) , [ , ],
( )

( )( ) , [ , ].

K
q n

n

K
q n

n

K
q n

M M M M

n

I n t t t

I n t t t t t
i t

I n t t t t t 







 
 




 








                           (5.8) 

 

3

3

3

1 1

= 0

2 1 1 2

= 0

1 1

= 0

( ) , [0, ],

( )( ) , [ , ],
( )

( )( ) , [ , ].

K
q n

n

K
q n

n

K
q n

M M M M

n

R n t t t

R n t t t t t
r t

R n t t t t t 







 
 




 








                           (5.9) 

 

4

4

4

1 1

= 0

2 1 1 2

= 0

1 1

= 0

( ) , [0, ],

( )( ) , [ , ],
( )

( )( ) , [ , ],

K
q n

n

K
q n

n

K
q n

M M M M

n

A n t t t

A n t t t t t
a t

A n t t t t t 







 
 




 








                         (5.10) 

 
where ( ), ( ), ( )i i iS n I n R n   and ( )iA n  for =1,2, ,i M  satisfy the following recurrence relations 

 

 

01

1

0

( ) ( )
(q k 1)

( 1) ,
( ( 1) 1)

( ) ( )

k

SA i i

l

i
k
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l

S l A k l

S k
q k

S l I k l R
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2

0
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( 1) ,
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( ) ( ) ( )
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i i

l

i
k

IA i i i
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 3

3

(q k 1)
( 1) ( ) ,

( ( 1) 1)
i i iR k R k

q k

 
   

  
                                  (5.9) 

4

0 04

(q k 1)
( 1) ( ) ( ) ( ) ( ) ,

( ( 1) 1)

k k

i SA i i IA i i

l l

A k S l A k l A l I k l
q k  

      
         

       
   

 

Such that 

 

1 1 1(0) = ( ) = ( ),i i i i iS s t s t   1 1 1(0) = ( ) = ( ),i i i i iI i t i t    

1 1 1(0) = ( ) = ( )i i i i iR r t r t   and 1 1 1(0) = ( ) = ( )i i i i iA a t a t   . 

 

Finally, we start with 0 1 0 2 0 3(0) = , (0) , (0)S c I c R c    and 0 4(0)A c  and using the recurrence 

relation given in (5.11), then we can obtain the multi-step solution given in (5.7)-(5.10). 

 

6. Non-negative solutions 

 

Let 4 = ( ( ), ( ), ( ),A(t)) .TR S t I t R t  For the proof of the theorem about non-negative solutions we 

shall need the following Lemma 
 
Lemma 6.1. Lin (2007). (Generalized Mean Value Theorem) 

 

Let ( ) [ , ]f x C a b  and ( ) [ , ]D f x C a b   for 0 < 1.   Then we have, 

 

1
( ) = ( ) ( )( ) ,

( )
f x f a D f x a 


 


 

 
with 0 < ,x  for all ( , ].x a b  

 
Remark 6.2. Zeb et al. (2013)  

 

Suppose ( ) [ , ]f x C a b  and ( ) [ , ]D f x C a b   for 0 < 1.   It is clear from the above Lemma 

that if ( ) 0,D f x   for all (0, ),x b  then the function f is non-decreasing, and if 

( ) 0,D f x   for all (0, ),x b  then the function f  is non-increasing. 

 
Theorem 6.3. 

 
There is a unique solution for the initial value problem given by (5.1)-(5.4), and the solution 

remains in 4R . 
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Proof: 

 
The existence and uniqueness of the solution of (5.1)-(5.4), in (0, )  can be obtained from ((Lin, 

2007), Theorem 3.1 and Remark 3.2). We need to show that the domain 
4R  is positively 

invariant. Since 1
=0| = 0,

q

SD S R   2
=0| = 0,

q

ID I  3
=0| = 0

q

RD R I  and 4
=0A | = 0.

q

AD  On 

each hyper-plane bounding the nonnegative orthant, the vector field points into 
4.R  

 

7. Numerical results 

 
We shall demonstrate the accuracy of the MSGDTM against  Mathematica’s built-in fourth-order 

Runge–Kutta (RK4) procedure for the solutions of modified epidemiological model for computer 

viruses in the case of integer order derivatives The MSGDTM is coded in the computer algebra 

package Mathematica. The Mathematica environment variable digits controlling the number of 

significant digits are set to 20 in all the calculations done in this paper. The time range studied in 

this work is [0,25] and the step size 0.025t   and the value of K is 10. We take the initial 

condition for epidemiological model for computer viruses such as (0) 3,  I(0) 95,  R(0) 1S   

and (0) 1A  . The parameters are: 0.025SA  , 0.25IA  ,    , 0.8 .      

 
Figure 1 shows the phase portrait for the classical SIRA models using the fourth-order Runge–

Kutta method (RK4). Figure 2  shows the phase portrait for the classical SIRA models using 

multi-step generalized differential transform method. From the graphical results in Figure 1 and 

Figure 2 it can be seen the results obtained using the multi-step generalized differential transform 

method match the results of the RK4 very well, which implies that the multi-step generalized 

differential transform method can predict the behavior of these variables accurately for the region 

under consideration. Figure 3, Figure 4 and Figure 5 show the phase portrait for the fractional 

SIRA models of epidemics system using the multi-step generalized differential transform method. 

From the numerical results in Figure 3, Figure 4 and Figure 5, it is clear that the approximate 

solutions depend continuously on the time-fractional derivative , 1,2,3,4.iq i   

 
The effective dimension   of Equations (5.1)–(5.4) is defined as the sum of orders 

1 2 3 4q q q q     . Also in Figure 5 we can see that the numerical results exists in the 

fractional-order SIRA model of modified epidemiological system with order as low as 2.63. From 

the graphical results in Figure 6, it can be seen that the results obtained using the MSGDTM 

match the results of the RK4 very well, and it shows non-infected computers, infected omputers 

and removed ones due to infection or not vanish, while the noninfected computers equipped with 

anti-virus, in the long term, is in a good operational state. 
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Figure 1. Phase plot in the ( , , )S I R  and ( , , )S I A , with 

1 2 3 4 1.q q q q     (Using RK4) 

 

 

  

 

Figure 2. Phase plot in the ( , , )S I R  and ( , , )S I A , with 
1 2 3 4 1.q q q q     (Using MSGDTM) 
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Figure 3. Phase plot in the ( , , )S I R  and ( , , )S I A , with 
1 2 3 4 0.85.q q q q     

 

 

 

 

  

 

Figure 4. Phase plot in the ( , , )S I R  and ( , , )S I A , with 
1 2 3 4 0.7.q q q q     
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Figure 5. Phase plot in the ( , , )S I R  and ( , , )S I A , with 
1 0.67,q   

2 0.7,q    3 0.6q   and 

4 0.66.q   

 

 
 

  

Figure 6. The displacement for modified epidemiological model for computer viruses when 

1 2 3 4 1:        solid line: RK4 method solution, dotted line: MSGDTM solution 
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8. Conclusions 

 
The analytical approximations to the solutions of the epidemiological models are reliable and 

confirm the power and ability of the MSGDTM as an easy device for computing the solution of 

nonlinear problems, This method has the advantage of giving an analytical form of the solution 

within each time interval which is not possible using purely numerical techniques like the fourth-

order Runge–Kutta method (RK4). We conclude that MSGDTM is a very reliable method in 

solving a broad array of dynamical problems in fractional calculus due to its consistency used in a 

longer time frame. 

 

In this paper, a fractional order differential SIRA model is studied and its approximate solution is 

presented using a MSGDTM. The approximate solutions obtained by MSGDTM are highly 

accurate and valid for a long time. The reliability of the method and the reduction in the size of 

computational domain give this method a wider applicability. Finally, the recent appearance of 

nonlinear fractional differential equations as models in some fields such as models in science and 

engineering makes it is necessary to investigate the method of solutions for such equations. and 

we hope that this work is a step in this direction. 
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