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Abstract 

In this paper, the exact implicit solution of the second order nonlinear ordinary differential 

equation which governing heat transfer in rectangular fin is obtained using symmetry reduction 

methods. General  relationship among  the temperature at the fin tip, the temperature gradient at 

the fin base, the mode of heat transfer, 𝑛 and the fin parameters 𝑁 and ℰ is obtained. Some 

numerical examples are discussed and it is shown that the temperature of fin increases when 

approaching from the heat source. The relationship between the fin efficiency and the 

temperature of fin tip is obtained for any value of the mode of heat transfer 𝑛. The relationship 

between the fin efficiency and both the parameter 𝑁 and the temperature gradient at the fin base 

is obtained. To our best knowledge, solutions obtained in this paper are new. 

Keywords: Rectangular fin; Heat transfer; Lambda λ-symmetry; Lie point symmetry 

MSC 2010 No.: 80A20, 35D99, 35Q79 

 

1. Introduction 
 

Fins are used to enhance convective heat transfer in a wide range of engineering applications, 

and they offer practical means for achieving a large total heat transfer surface area without the 
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use of an excessive amount of primary surface area. Fins are commonly applied for heat 

management in electrical appliances such as computer power supplies or substation transformers. 

Other applications include internal combustion engine cooling, such as fins in a car radiator. It is 

important to predict the temperature distribution within the fin in order to choose the 

configuration that offers maximum effectiveness. 

 

In this paper, we will obtain the general exact solution of the of nonlinear heat transfer in 

rectangular straight fin using λ-symmetry and Lie point symmetry methods. 

 

The following sections will be organized as follows: In section 2, the fin problem description is 

introduced. In section 3, λ-symmetry method will be used to reduce the order of fin equation, and 

then we will show the relation between the temperature at the fin tip 𝑢0 and the temperature 

gradient at the fin base 𝑢′(1).  In section 4, the reduced ODE will be solved using Lie point 

symmetry method, then we will get the exact solution of fin equation. Also, we will give some 

numerical examples and some physical interpretations. In section 5, the fin efficiency will be 

discussed. 

 

2.  Problem Description 
 

In this paper, we consider steady operation with no heat generation, and the fin tip is insulated, 

for one dimensional case, the energy balance equation is given by Y. Cengel and A. Ghajar 

(2011) 

 
𝑑

𝑑𝒳
𝐴𝑐 (𝐾(𝑇)

𝑑𝑇

𝑑𝒳
) − 𝑃ℎ(𝑇 − 𝑇𝑎) = 0, (2.1) 

 

where 𝐴𝑐 is the cross-sectional area of the fin, 𝒳 is the axial distance measured from the fin tip, 

𝑘(𝑇) is the thermal conductivity of the fin, 𝑇 is the fin temperature, 𝑃 is the fin perimeter, ℎ is  

the heat transfer coefficient and 𝑇𝑎 is the ambient temperature . 

 

Momoniat (2011), Khani et al. (2009), Harley (2013) and Arka Bhowmik et al. (2013) imposed 

that the cross-sectional area of the fin 𝐴𝑐 is fixed and take the form of a rectangle with length 𝑏 

and width  𝑤 which can be neglected (Lau et al., 1973). The thermal conductivity may be 

considered as a linear relation in the temperature as follows (Kim and Huang, 2007) 

 
 

𝐾(𝑇) = 𝐾𝑎(1 + 𝜏(𝑇 − 𝑇𝑎)), 
 

and the nonlinear heat transfer coefficient is given by  

 

ℎ = ℎ𝑏 (
𝑇 − 𝑇𝑎

𝑇𝑏 − 𝑇𝑎
)

𝑛

, 

 

where, ℎ𝑏 is the heat transfer coefficient at the base of temperature, 𝐾𝑎 is the thermal 

conductivity of the fin at the ambient temperature 𝑇𝑎 , 𝜏 is a constant,  𝑇𝑏 is the temperature of 

the heat source which relate fin and the constant  indicates the mode of heat transfer .  

2
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Here, the exponent represents transition boiling when 𝑛 = −4 , laminar film boiling or 

condensation when 𝑛 =  −1/4, laminar natural convection when 𝑛 = 1/4 , turbulent natural 

convection when 𝑛 = 1/3, nucleate boiling when 𝑛 = 2, radiation when 𝑛 = 3, and 𝑛 vanishes 

for constant heat transfer coefficient. The constant 𝑛 may vary between −6.6 and 5 (Momoniat, 

2011; Arka Bhowmik et al., 2013; Min-Hsing Chang, 2005; Unal, 1998). 

 

After taking the previous assumptions into account, Equation (2.1) becomes 

 

𝐴𝑐𝐾𝑎

𝑑

𝑑𝒳
((1 + 𝜏(𝑇 − 𝑇𝑎))

𝑑𝑇

𝑑𝒳
) − 𝑃ℎ𝑏

(𝑇 − 𝑇𝑎)𝑛+1

(𝑇𝑏 − 𝑇𝑎)𝑛
= 0. (2.2) 

 

Equation (2.2) can be made non-dimensional by the set of the transformations (Momoniat, 2011) 

 

𝑢 =
𝑇 − 𝑇𝑎

𝑇𝑏 − 𝑇𝑎
 ,     𝑘 =

𝐾

𝐾𝑎
 ,    𝑥 =

𝒳

𝑏
,     ℰ = 𝜏(𝑇𝑏 − 𝑇𝑎),       𝑁2 =

𝑃ℎ𝑏𝑏2

𝐾𝑎𝐴𝑐
 ,    (2.3) 

 

by substituting  Equation (2.3) into Equation (2.2), to obtain 

 

(1 + ℰ 𝑢(𝑥))𝑢′′(𝑥) + ℰ𝑢′(𝑥)2 − 𝑁2𝑢(𝑥)𝑛+1 = 0 .      (2.4) 

 

The boundary conditions are given by (Momoniat, 2011; Khani et al., 2009; Harley, 2013; Arka 

Bhowmik et al., 2013). 

 

1. At the fin tip  (𝒳 = 0). Because the fin is insulated, the change of temperature is 

 

𝑑𝑇

𝑑𝒳
= 0. (2.5) 

 

From Equation (2.3), Equation (2.5) becomes 

 
 

𝑑𝑢

𝑑𝑥
= 0         or       𝑢′(0) = 0 . 

 

2. At the fin base  (𝒳 = 𝑏). The fin temperature is the same temperature as the heat source 

𝑇𝑏 

𝑇(𝑏) = 𝑇𝑏 . (2.6) 

 

From Equation (2.3), Equation (2.6) becomes 

 
 

𝑢(1) = 1. 
 

Here, the boundary conditions are 

3
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𝑢(1) = 1,                     𝑢′(0) = 0, (2.7) 

 

where,  ′ =
𝑑

𝑑𝑥
 . 

 

Approximate solutions of Equation (2.4) are investigated using homotopy analysis method in 

Khani et al. (2009), by asymptotic analysis method in Harley (2013) and by decomposition and 

evolutionary methods in Arka Bhowmik et al. (2013). For the special case when  𝑛 = 0, series 

solutions of Equation (2.4) are investigated using Adomian decomposition method in Huang 

Chiu et al. (2002). For special case when ℰ = 0, series solutions of Equation (2.4) are 

investigated using homotopy asymptotic method in Haq and Ishaq (2012) and Adomian 

decomposition method in Min-Hsing Chang (2005). Exact analytical solution of Equation (2.4) 

when ℰ = 0 is obtained in Abbasbandy and Shivanian (2010). In this paper, we will obtain the 

exact solution of Equation (2.4) using symmetry reduction methods for all heat transfer modes  

𝑛. 

3. 𝝀-Symmetry Method 

In 2001, Muriel and Romero (2001; 2009) were able to show that many of the known order-

reduction processes of ODEs can be explained by the invariance of the equation under some 

special vector fields that are not Lie point symmetries, but satisfy a new prolongation formula. 

The components of these vector fields must satisfy a system of determining equations that 

depends on an arbitrary function λ, which can be chosen to solve the system easily. In fact, if an 

equation is invariant under a λ-symmetry, one can obtain a complete set of functionally 

independent invariants and reduce the order of the equation by one as in Lie symmetries.  

 

Soon afterwards, Pucci and Saccomandi have clarified the meaning of λ-prolongation by means 

of classical theory of characteristics of vector fields (Pucci and Saccomandi, 2002). Several 

applications of the λ-symmetry approach to relevant equations of the mathematical physics 

appear in Abdel Kader et al. (2013) and Bhuvaneswari et al. (2011; 2012). 

 

Following Muriel and Romero (2001; 2009), the prolongation formula 

 

𝑋[𝜆,(2)] = 𝜉𝜕𝑥 + 𝜂𝜕𝑢 + 𝜂[𝜆,(1)]𝜕𝑢′ + 𝜂[𝜆,(2)]𝜕𝑢′′ , 

𝜂[𝜆,(1)] = 𝐷𝑥𝜂 − 𝐷𝑥𝜉𝑢′ + 𝜆(𝜂 − 𝜉𝑢′), 

𝜂[𝜆,(2)] = 𝐷𝑥𝜂[𝜆,(1)] − 𝐷𝑥𝜉𝑢′′ + 𝜆(𝜂[𝜆,(1)] − 𝜉𝑢′′), 

is applied to Equation (2.4), where 𝐷𝑥 denotes the total derivative operator with respect to 𝑥. 
After solving the obtained determining equations we obtained a vector field  𝑋 = 𝜕𝑢  which is a 

λ-symmetry of Equation (2.4) with 

  𝜆 =
𝑁2𝑢1+𝑛 − ℰ(𝑢′)2

(1 + ℰ𝑢)𝑢′
. 

4
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The first integral of  𝑋[𝜆,(1)]can be obtained by solving the following equation 

 

𝑤𝑢 + 𝜆 𝑤𝑢′ = 0. 
 

This equation admits a solution in the form 

 

𝑤 = 𝐺 (𝑥,
−2𝑁2𝑢2+𝑛(3 + 𝑛 + 2ℰ𝑢 + ℰ𝑛𝑢) + (6 + 5𝑛 + 𝑛2)(𝑢′ + ℰ𝑢𝑢′)2

6 + 5𝑛 + 𝑛2
). 

 

Let, 

(3.1) 𝑍 =
−2𝑁2𝑢2+𝑛(3 + 𝑛 + 2ℰ𝑢 + ℰ𝑛𝑢) + (6 + 5𝑛 + 𝑛2)(𝑢′ + ℰ𝑢𝑢′)2

6 + 5𝑛 + 𝑛2
 . 

 

Hence, 

𝑍′ = 2(1 + ℰ 𝑢)𝑢′ ((1 + ℰ𝑢)𝑢′′ + ℰ𝑢′2
− 𝑁2𝑢1+𝑛). (3.1a) 

 

Substituting (2.4) into (3.1a), we obtain  

(3.2) 𝑍′ = 0. 

Equation (3.2) has a solution   𝑍 = 𝑐1. From (3.1), we obtain 

 

(3.3) 
−2𝑁2𝑢2+𝑛(3 + 𝑛 + 2ℰ𝑢 + ℰ𝑛𝑢) + (6 + 5𝑛 + 𝑛2)(𝑢′ + ℰ𝑢𝑢′)2

6 + 5𝑛 + 𝑛2
= 𝑐1, 

 

where, 𝑐1 is a constant. From (3.3) and (2.5), when  𝑥 = 0, we obtain 

 

(3.4) 𝑐1 = −
2𝑁2𝑢0

2+𝑛(3 + 𝑛 + ℰ(2 + 𝑛)𝑢0)

(6 + 5𝑛 + 𝑛2)
 , 

 

where, 𝑢0 = 𝑢(0) represents the value of temperature at the fin tip (𝑥 = 0). 
 

Substituting (3.4) into (3.3), we obtain 

 

−2𝑁2𝑢2+𝑛(3 + 𝑛 + 2ℰ𝑢 + ℰ𝑛𝑢) + (6 + 5𝑛 + 𝑛2)(𝑢′ + ℰ𝑢𝑢′)2               

= −2𝑁2𝑢0
2+𝑛(3 + 𝑛 + ℰ(2 + 𝑛)𝑢0). 

(3.5) 

 

By using the boundary condition 𝑢(1) = 1, Equation (3.5) becomes 

 

(3.6) 𝑢′(1) =
1

(1 + ℰ)
√(−

2𝑁2𝑢0
2+𝑛(3 + 𝑛 + (2 + 𝑛)ℰ𝑢0)

(2 + 𝑛)(3 + 𝑛)
+

2𝑁2(3 + 𝑛 + (2 + 𝑛)ℰ)

(2 + 𝑛)(3 + 𝑛)
) . 

5
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Equation (3.6) gives a general relationship among the temperature at the fin tip 𝑢0, the 

temperature gradient at the base 𝑢′(1), the mode of heat transfer 𝑛 and the fin parameters 𝑁 and 

ℰ . 

3.1.  Numerical Example 
 

The following example shows the relationship between 𝑢0 and 𝑢′(1) for different values of heat 

transfer mode  𝑛 at a special case when  𝑁 = 2  and  ℰ = 0.5 (Momoniat et al. (2009)). 

 

Example 3.1.1: ( 𝑁 = 2  and  ℰ = 0.5 ) 

 

Equation (3.6) takes the form 

 

(3.7) 𝑢′(1) =
4

3
√

8  + 3 𝑛 − 2(3 + 𝑛)𝑢0
2+𝑛 − (2 + 𝑛)𝑢0

3+𝑛

(2  + 𝑛)(3 + 𝑛)
 . 

Figure (1) shows that the temperature at the fin tip  𝑢0 decreases to zero when the magnitude of 

the temperature gradient at the base 𝑢′(1) increases and the rate of decay to zero decreases with 

increasing 𝑢′(1) when the value of  𝑛  decreases. 

 
Figure 1.  Plot of the relation (3.7) between 𝑢′(1) and  𝑢0 with 𝑁 = 2 and 

ℰ = 0.5 at various    values of  𝑛. 
 

 

Equation (3.6) is general for any 𝑛. Momoniat et al. (2009) obtained Equation (3.6) at 𝑛 = 0 

only. In the next section, Equation (3.5) will be solved using Lie point symmetry method. 

 

 

−
1

4
 −1 1

3
 2 1 

6
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4.  Lie Point Symmetry Method 
 

It is known that the autonomous ODE (3.5) admits the Lie point symmetry generator ( Bluman 

and   Kumei, 1989 ; Hydon , 2000) 

 

𝑋 = 𝜕𝑥 , (4.1) 

 

The canonical coordinates in this case are given by 

 

𝑣(𝑟) = 𝑥 ,      𝑟 = 𝑢(𝑥), 
which prolong to  

�̇� =
1

𝑢′(𝑥)
 .          

Hence, Equation (3.5) reduces to 

 

(4.2) 
−2𝑁2𝑟2+𝑛(3 + 𝑛 + ℰ(2 + 𝑛)𝑟) + (6 + 5𝑛 + 𝑛2)( 1 + ℰ𝑟)2

1

�̇�2

= −2𝑁2𝑢0
2+𝑛(3 + 𝑛 + ℰ(2 + 𝑛)𝑢0), 

where, �̇� =
𝑑𝑣

𝑑𝑟
 . 

 

By introducing the transformation  �̇�2 = 𝑦 , we obtain the following equation 

 

(4.3) 𝑦 =
(1 + ℰ𝑟)2

2𝑁2𝑟2+𝑛 (
1

2 + 𝑛 +
ℰ𝑟

3 + 𝑛) − 2𝑁2𝑢0
2+𝑛(

1
2 + 𝑛 +

ℰ𝑢0

3 + 𝑛)
 . 

 

Considering Equation (4.3), we obtain the following exact implicit solution for Equation (3.5) 

 

(4.4) 𝑣 = 𝑥 = ∫
√(2 + 𝑛)(3 + 𝑛)(1 + ℰ𝑟)

√2𝑁2(−𝑢0
2+𝑛(3 + 𝑛 + (2 + 𝑛)ℰ𝑢0) + 𝑟2+𝑛(3 + 𝑛 + (2 + 𝑛)ℰ𝑟))

𝑢

𝑢0

𝑑𝑟. 

 

This solution has an unknown parameter, namely 𝑢0. This parameter can be easily obtained with 

the help of boundary condition 𝑢(1) = 1 as follows: 

 

(4.5) 1 = ∫
√(2 + 𝑛)(3 + 𝑛)(1 + ℰ𝑟)

√2𝑁2(−𝑢0
2+𝑛(3 + 𝑛 + (2 + 𝑛)ℰ𝑢0) + 𝑟2+𝑛(3 + 𝑛 + (2 + 𝑛)ℰ𝑟))

1

𝑢0

𝑑𝑟. 

 

Equation (4.5) shows the relation between the temperature at fin tip 𝑢0 and the thermo-geometric 

parameter 𝑁. 

 

 

 

7
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4.1.  Numerical Example 

 

Example 4.1.1: 

In this example, we will consider the case   𝑛 = −4  (Haq and Ishaq, 2012; Abbasbandy and 

Shivanian, 2010; Liaw and Yeh, 1994). 

 

 Equation (4.4) and Equation (4.5) become 

 

𝑥 =
3ℰLog(𝑢 + 2𝑢ℰ𝑢0 − ℰ𝑢0

2 + √𝑢 − 𝑢0√1 + 2ℰ𝑢0√𝑢 + (1 + 2𝑢ℰ)𝑢0)𝑢0
3(1 + ℰ𝑢0)2

2𝑁(1 + 2ℰ𝑢0)5 2⁄
 

              +
𝑢0√𝑢 − 𝑢0√𝑢 + (1 + 2𝑢ℰ)𝑢0(2 + 𝑢ℰ + 2ℰ(2 + 𝑢ℰ)𝑢0 + 3ℰ2𝑢0

2)

2𝑁(1 + 2ℰ𝑢0)2

−
3ℰLog(𝑢0(1 + ℰ𝑢0))𝑢0

3(1 + ℰ𝑢0)2

2𝑁(1 + 2ℰ𝑢0)5 2⁄
, 

(4.6)   

𝑁 =
3ℰLog(1 + 2ℰ𝑢0 − ℰ𝑢0

2 + √1 − 𝑢0√1 + 2ℰ𝑢0√1 + (1 + 2ℰ)𝑢0)𝑢0
3(1 + ℰ𝑢0)2

2(1 + 2ℰ𝑢0)5 2⁄

+
𝑢0√1 − 𝑢0√1 + (1 + 2ℰ)𝑢0(2 + ℰ + 2ℰ(2 + ℰ)𝑢0 + 3ℰ2𝑢0

2)

2(1 + 2ℰ𝑢0)2

−
3ℰLog(𝑢0(1 + ℰ𝑢0))𝑢0

3(1 + ℰ𝑢0)2

2(1 + 2ℰ𝑢0)5 2⁄
. 

(4.7)   

 

Figure 2. Plot of the relation (4.7) between 𝑁 and 𝑢0 for various values of  ℰ and 𝑛 = 4. 

 

2 

1 

0.3 

-0.3 

-0.7 

-1 
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Figure 3.    Plot of the relation (4.6) between 𝑢 and 𝑥 with  𝑛 = −4  and ℰ = 0.3  

at various values of  𝑁.      
 

In Figure (2), the relation between the temperature at the fin tip 𝑢0 and the parameter  𝑁 has been 

plotted for various values of  ℰ  when 𝑛 = −4 .  Each curve with various values of ℰ has a peak 

value. The branch on the right-hand side of the peak corresponds to the physically stable and 

realizable states (Min-Hsing Chang, 2005). In the branch on the right-hand side of the peak, the 

temperature of fin tip 𝑢0 increases when the parameter 𝑁 decreases. 

Figure (3) shows that the temperature 𝑢 increases with increasing 𝑥 (in other words, the 

temperature increases when approaching from heat source).  

 

Remark 1:   

 

When ℰ = 0, 𝑛 ≠ −2  (Min-Hsing Chang, 2005; Haq and Ishaq, 2012; Abbasbandy and 

Shivanian, 2010), Equation (4.4) and Equation (4.5) become 

 

𝑥 = −
√2𝑛 + 4 

𝑛𝑁
𝑢−𝑛 2⁄  2𝐹1 (

1

2
,

𝑛

2𝑛 + 4
;
3

2
−

1

𝑛 + 2
; (

𝑢

𝑢0
)

−𝑛−2

)

−
1

𝑁
√𝜋√

𝑛

2
+ 1  𝑢0

−𝑛 2⁄
 Γ (

𝑛
2𝑛 + 4)

Γ (−
1

𝑛 + 2)
,   

(4.8)   

𝑁 =  −
√2𝑛 + 4 

𝑛
 2𝐹1 (

1

2
,

𝑛

4 + 2𝑛
,
3

2
−

1

2 + 𝑛
, 𝑢0

2+𝑛) − √𝜋√
𝑛

2
+ 1   𝑢0

−𝑛 2⁄
Г (

𝑛
4 + 2𝑛)

Г (−
1

2 + 𝑛)
, (4.9)   

 

where,  2𝐹1 is the hypergeometric function (Frank et al., 2010), which can be defined as 

0.337 

0.445 

0.506 

 

0.562 

0.541 

0.558 
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   2𝐹1(𝑎, 𝑏, 𝑐, 𝑥) =
Г(𝑐)

Г(𝑏)Г(𝑐 − 𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑡 𝑥)−𝑎𝑑𝑡.

1

0

 

Equations (4.8)-(4.9) are exactly the same as the solution given by (Abbasbandy and Shivanian, 

2010). 

 

Remark 2:   

 

When ℰ = 0, 𝑛 = −2  (Abbasbandy and Shivanian, 2010), Equation (4.4) and Equation (4.5) 

become 

𝑥 =
1

𝑁
√

𝜋

2
Erfi (√Log (

𝑢

𝑢0
)) 𝑢0  , (4.10) 

𝑁 = √
𝜋

2
Erfi (√Log (

1

𝑢0
)) 𝑢0 , (4.11) 

 

where, Erfi(𝑧) = ∫ 𝑒−𝑡2𝑍

0
𝑑𝑡, denotes the Error function.  

 

Equations (4.10)-(4.11) are exactly the same as the solution given by (Abbasbandy and 

Shivanian, 2010). 

 

5.  Fin Efficiency 
 

The fin efficiency can be stated as the ratio of actual heat transfer rate from the fin to ideal heat 

transfer rate from the fin if the entire fin were at base temperature (Y. Cengel and A. Ghajar, 

2011). This leads to ( Kim and Huang , 2007) 

𝜂𝑓𝑖𝑛 =
𝐾𝑏𝐴𝑐

𝑑𝑇
𝑑𝒳

|𝒳=𝑏

𝑝ℎ𝑏(𝑇𝑏 − 𝑇𝑎)𝑏
 , (5.1) 

where, 𝐾𝑏 is the thermal conductivity of the fin at fin base temperature 𝑇𝑏 . 

 

Using Equation (2.3), Equation (5.1) becomes (Momoniat, 2011) 

 

𝜂𝑓𝑖𝑛 =
1 + 𝜀

𝑁2
  𝑢′(1),         𝑁 ≠ 0 . (5.2)   

 

From Equation (4.5) we obtain 
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𝑁 = ∫
1 + ℰ𝑟

√2𝑟2+𝑛 (
1

2 + 𝑛 +
ℰ𝑟

3 + 𝑛) − 2𝑢0
2+𝑛(

1
2 + 𝑛 +

ℰ𝑢0

3 + 𝑛) 

1

𝑢0

𝑑𝑟 . 
(5.3) 

Substituting Equation (3.6) and Equation (5.3) into Equation (5.2) we obtain 

𝜂𝑓𝑖𝑛 =
2√3 + 𝑛 + (2 + 𝑛)ℰ − 𝑢0

2+𝑛(3 + 𝑛 + (2 + 𝑛)ℰ𝑢0)

(2 + 𝑛)(3 + 𝑛) ∫
1 + 𝑟ℰ

√𝑟2+𝑛(3 + 𝑛 + (2 + 𝑛)𝑟ℰ) − 𝑢0
2+𝑛(3 + 𝑛 + (2 + 𝑛)ℰ𝑢0)

𝑑𝑟

1

𝑢0

. 
(5.4) 

 

5.1.   Numerical Example 
 

In this example, we will consider ℰ = 0 (Min-Hsing Chang, 2005; Haq and Ishaq, 2012; 

Abbasbandy and Shivanian, 2010). 

 

Equation (5.4) becomes 

 

𝜂𝑓𝑖𝑛 = −
2𝑛𝑢0

𝑛 2⁄ √1 − 𝑢0
𝑛+2Γ (−

1
𝑛 + 2)

(𝑛 + 2)
(2𝑢0

𝑛 2⁄
Γ (−

1

𝑛 + 2
)  2𝐹1 (

1

2
,

𝑛

2𝑛 + 4
;
3

2

−
1

𝑛 + 2
; 𝑢0

𝑛+2) + √𝜋𝑛 Γ (
𝑛

2𝑛 + 4
))

−1

 . 

(5.5) 

Equation (5.5) represents the relation between the efficiency 𝜂𝑓𝑖𝑛 and the temperature of fin tip 

𝑢0  for any value of 𝑛. 
 
 

By using Equation (5.2), Equation (3.6) with ℰ = 0 and Equation (5.5), we can get relation 

between the efficiency 𝜂𝑓𝑖𝑛 and both the parameter 𝑁 and the temperature gradient at the fin 

base 𝑢′(1). 
 
 

−√2𝑛𝑁 Γ(−𝛽) 𝛲
𝑛𝛽
2

𝛽−
1
2

(2 Γ(−𝛽) 𝛲
𝑛𝛽
2  2𝐹1 (

1

2
,
𝑛𝛽

2
;
(3𝑛 + 4)𝛽

2
; 𝛲) + √𝜋𝑛 Γ (

𝑛𝛽

2
))

−1

= 1, (5.6) 

√𝜂𝑓𝑖𝑛 =
−√2𝑛√𝑢′(1) Γ(−𝛽) 𝜓

𝑛𝛽
2

𝛽−
1
2 

(2 Γ(−𝛽) 𝜓
𝑛𝛽
2  2𝐹1 (

1

2
,
𝑛𝛽

2
; 

(3𝑛 + 4)𝛽

2
;  𝜓)

+ √𝜋𝑛 Γ (
𝑛𝛽

2
))

−1

   , 

(5.7) 
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where, 

𝛽 =
1

𝑛 + 2
   , 𝛲 = 1 −

1

2𝛽
(𝑁 𝜂𝑓𝑖𝑛)

2
 and    𝜓 = (1 −

1

2𝛽
𝑢′(1) 𝜂𝑓𝑖𝑛 ). 

 

 

Figure 4.    Plot of the relation (5.6) between 𝜂𝑓𝑖𝑛 and 𝑁 for various values of  𝑛 

and ℰ = 0. 
 

 

From Figure (4), it is noticed that the fin efficiency 𝜂𝑓𝑖𝑛 decreases when the magnitude of 𝑁 

 increases and also, we note that the case 𝑛 = −1 indicates a uniform local heat flux over the 

whole fin surface and induces the result of  𝜂𝑓𝑖𝑛 = 1. So Equations (5.5)-(5.7) are valid only for 

the cases 𝑛 ≥ −1  (Min-Hsing Chang , 2005). 

6. Conclusions 
 

In this paper, the exact implicit solution of the nonlinear differential equation governing heat 

transfer in fins (2.4) subject to the boundary conditions (2.7) is obtained using λ-symmetry 

reduction method and Lie point symmetry method. λ-symmetry method enables us to reduce the 

original ODE (2.4) into autonomous  first order ordinary differential equation (3.5). Then we 

obtained  general  relationship among  the temperature at the fin tip, the temperature gradient at 

the fin base , the mode of heat transfer  𝑛 and the fin parameters 𝑁 and ℰ . By using Lie point 

symmetry, the first order ordinary differential equation (3.5) is transformed into algebraic 

equation (4.3), which is solved analytically in (4.4). Numerical examples show that the 

temperature of fin increases when approaching from the heat source. We showed that the fin 

efficiency 𝜂𝑓𝑖𝑛 increases when the parameter 𝑁 decreases.  

−0.5 

0.5 
−0.25 0 

1 2 3 
5 

−1 
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