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Abstract

In this article, a numerical approach is given for studying the flow of a Newtonian fluid over
an impermeable stretching sheet embedded in a porous medium with a power law surface
velocity and variable thickness in the presence of thermal radiation. The flow is caused by a
non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly
with temperature. The governing PDEs are transformed into a system of coupled non-linear
ODEs which are using appropriate boundary conditions for various physical parameters. The
proposed method is based on replacement of the unknown function by truncated series of well
known Laguerre expansion of functions. An approximate formula of the integer derivative is
introduced. The introduced method converts the proposed equations by means of collocation
points to a system of algebraic equations with Laguerre coefficients. Thus, by solving this system
of equations, the Laguerre coefficients are obtained. The effects of the porous parameter, the wall
thickness parameter, the radiation parameter, thermal conductivity parameter, and the Prandtl
number on the flow and temperature profiles are presented. Moreover, the local skin-friction and
Nusselt numbers are presented. Comparison of obtained numerical results is made with previously
published results in some special cases. The results attained in this paper confirm the idea that
the proposed method is powerful mathematical tool and it can be applied to a large class of
nonlinear problems arising in different fields of science and engineering.

Keywords: Newtonian fluid, stretching sheet, thermal radiation, variable thermal conductivity,
variable thickness, Laguerre collocation method, numerical simulation
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1. Introduction

The study of flow and heat transfer of a Newtonian fluid over a stretching surface issuing from
a slit has gained considerable attention from many researchers due to its importance in many
industrial applications, such as extraction of polymer sheet, wire drawing, paper production, glass-
fiber production, hot rolling, solidification of liquid crystals, petroleum production, continuous
cooling and fibers spinning, exotic lubricants, and suspension solutions. Much work on the
boundary-layer Newtonian fluids has been carried out both experimentally and theoretically. Crane
(1970) was the first one who studied the stretching problem taking into account the fluid flow
over a linearly stretched surface. There has been a great deal of the work done on Newtonian
fluid flow and heat transfer over a stretching surface, but only a few recent studies are cited here.
Gupta and Gupta (1979) analyzed the stretching problem with a constant surface temperature,
while Soundalgekar and Ramana (1980) have investigated the constant surface velocity case
with a power-law temperature variation. Grubka and Bobba (1985) have analyzed the stretching
problem for a surface moving with a linear velocity and with a variable surface temperature. Chen
and Char (1988) investigated the heat transfer characteristics over a continuous stretching sheet
with variable surface temperature. Using the homotopy analysis method (HAM), series solutions
were obtained by Hayat et al. (2008) for the stretching sheet problem with mixed convection.

Despite the practical importance of the flow in a porous medium, all the above-mentioned works
do not consider the situations where the flow in fluid-saturated porous media arise. The study
of the flow in fluid-saturated porous media due to a stretching sheet is important in engineering
problems, such as the design of building components for energy consideration, soil science,
mechanical engineering, control of pollutant spread in groundwater, thermal insulation systems,
compact heat exchangers, solar power collectors, and food industries. Because of such important
practical applications, many investigators have modeled the behavior of a boundary layer flow
embedded in a porous medium. Cheng and Minkowycz (1977) studied the problem of free
convection about a vertical impermeable flat plate in a Darcy porous medium. Elbashbeshy and
Bazid (2004) studied flow and heat transfer in a porous medium over a stretching surface with
internal heat generation and suction/blowing when the surface is held at a constant temperature.
Cortell (2005) has presented an analytical solution of the problem considered by Elbashbeshy and
Bazid (2004) considering the constant surface temperature and prescribed surface temperature.
Recently Hayat et al. (2010) used HAM to give analytical solution for flow through porous
medium.

In all the previous investigations, the effects of radiation on the flow and heat transfer have not
been provided. Radiative heat transfer flow is very important in manufacturing industries for the
design of reliable equipments, nuclear plants, gas turbines and various propulsion devices for
aircraft, missiles, satellites and space vehicles. Also, the effect of thermal radiation on the forced
and free convection flows are important in the context of space technology and processes involving
high temperature. Based on these applications, Hossain et al. (1999) and Elbashbeshy and Demain
(2002) have studied the thermal radiation of a gray fluid which is emitting and absorbing radiation
in non-scattering medium. Abel and Mahesha (2008) studied the effect of radiation in different
situations. Recently, Battaler (2008) has studied the effect of thermal radiation on the laminar
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boundary layer about a flat plate.

Historically the study on boundary layer flows over a stretching sheet with variable thickness was
studied by Fang et al. (2012). So far no attention has been given to the effects of the non-flatness
on the stretching sheet problems considering a variable sheet thickness. The purpose of the present
paper is to investigate the numerical solution for the variable thermal conductivity effect on the
flow and heat transfer of a Newtonian fluid-saturated porous medium over a stretching sheet with
variable thickness in the presence of thermal radiation (see Pedro (2015)).

Spectral collocation methods are efficient and highly accurate techniques for numerical solution of
non-linear differential equations (Sweilam at al. (2012)). The basic idea of the spectral collocation
method is to assume that the unknown solution y(x) can be approximated by a linear combination
of some basis functions, called the trial functions, such as orthogonal polynomials. Khader
(2011) introduced an efficient numerical method for solving the fractional diffusion equation
using the shifted Chebyshev polynomials. In Cheng and Ben (2002) the generalized Laguerre
polynomials were used to compute a spectral solution of a non-linear boundary value problems.
The generalized Laguerre polynomials constitute a complete orthogonal sets of functions on the
semi-infinite interval [0,∞). Convolution structures of Laguerre polynomials were presented in
Askey and Gasper (1977).

The Laguerre collocation method is used to solve many problems, in more papers such as
Khabibrakhmanov and Summers (1998) and Sweilam et al. (2012). In this work, we use the
properties of the Laguerre polynomials and the derived approximate formula of the integer
derivative D(n)y(x) to solve numerically the proposed problem.

2. Formulation of the problem

Consider a steady, two-dimensional boundary layer flow of an incompressible Newtonian fluid
over a continuously impermeable stretching sheet embedded in a porous medium. The origin is
located at a slit, through which the sheet (see Figure 1) is drawn through the fluid medium. The
x-axis is chosen along the sheet and y-axis is taken normal to it. The stretching surface has the
velocity Uw = C(x+ b)m, where C is a constant. We assume that the sheet is not flat in which it
is specified as y = A(x+ b)

1−m
2 , where A is a very small constant so that the sheet is sufficiently

thin and m is the velocity power index. We must observe that our problem is valid only for
m 6= 1, because for m = 1, the problem reduces to a flat sheet. Likewise, the fluid properties are
assumed to be constant except for thermal conductivity variations in the temperature.
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Figure 1. Schematic of a stretching sheet with variable sheet thickness

Making the usual boundary layer approximations for the Newtonian fluid, the steady two-dimensional
boundary-layer equations taking into account the thermal radiation effect in the energy equation
can be written as

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− µ

ρk
u, (2)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κ
∂T

∂y

)
− ∂qr
∂y

, (3)

where u and v are the velocity components in x and y directions, respectively. ρ and κ are the
fluid density and the thermal conductivity, respectively. T is the temperature of the fluid, ν is
the fluid kinematic viscosity, cp is the specific heat at constant pressure, µ is the fluid viscosity,
k is the permeability of the porous medium and qr is the radiative heat flux.

The radiative heat flux qr is employed according to Rosseland approximation (Raptis (1998))
such that

qr = −4σ∗

3k∗
∂T 4

∂y
, (4)

where σ∗ = 5.6697 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant and k∗ is the mean
absorption coefficient. Following Raptis (1999), we assume that the temperature differences
within the flow are sufficiently small such that T 4 may be expressed as a linear function of
the temperature. Expanding T 4 in the Taylor series about T∞ and neglecting higher-order terms,
we have

T 4 ∼= 4T 3
∞T − 3T 4

∞. (5)

The physical and mathematical advantage of the Rosseland formula (5) consists of the fact that
it can be combined with Fourier’s second law of conduction to an effective conduction-radiation
flux qeff in the form

qeff = −
(
κ+

16σ∗T 3
∞

3k∗

)
∂T

∂y
= −κeff

∂T

∂y
, (6)
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where κeff = κ + 16σ∗T 3
∞

3k∗
is the effective thermal conductivity. So, the steady energy balance

equation including the net contribution of the radiation emitted from the hot wall and absorbed
in the colder fluid, takes the form

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κeff

∂T

∂y

)
. (7)

To obtain similarity solutions, it is assumed that the permeability of the porous medium k(x) is
of the form

k(x) = k0(x+ b)1−m, (8)

where k0 is the permeability parameter. The boundary conditions can be written as

u
(
x,A(x+ b)

1−m
2

)
= C(x+ b)m, v

(
x,A(x+ b)

1−m
2

)
= 0, T

(
x,A(x+ b)

1−m
2

)
= Tw,

(9)
u (x,∞) = 0, T (x,∞) = T∞. (10)

The mathematical analysis of the problem is simplified by introducing the following dimensionless
coordinates

ζ = y

√
C(
m+ 1

2
)

(
(x+ b)m−1

ν

)
, ψ(x, y) =

√
νC(

2

m+ 1
)(x+ b)m+1F (ζ),

Θ(ζ) =

(
T − T∞
Tw − T∞

)
,

(11)

where ζ is the similarity variable, ψ(x, y) is the stream function which is defined in the classical
form as u = ∂ψ/∂y and v = −∂ψ/∂x and Θ(ζ) is the dimensionless temperature.

In this study, the equation for the dimensionless thermal conductivity κ is generalized for the
temperature dependence as follows (Chiam (1997), Mahmoud and Megahed (2009))

κ = κ∞(1 + εΘ), (12)

where κ∞ is the ambient thermal conductivity and ε is the thermal conductivity parameter.

Upon using these variables, the boundary layer governing Equations (1)-(3) can be written in a
non-dimensional following form

F
′′′

+ FF
′′ − 2m

m+ 1
F
′2 −DF ′ = 0, (13)(

1 +R

Pr

)(
(1 + εΘ)Θ

′′
+ εΘ

′2
)

+ FΘ
′
= 0, (14)

where D = 2ν
k0C(m+1)

is the porous parameter, Pr = µcp
κ∞

is the Prandtl number and R = 16σ∗T 3
∞

3k∗κ∞
is the radiation parameter.

The transformed boundary conditions are

F (α) = α

(
1−m
1 +m

)
, F

′
(α) = 1, Θ(α) = 1, (15)
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F ′(∞) = 0, Θ(∞) = 0, (16)

where α = A
√

C(m+1)
2ν

is a parameter related to the thickness of the wall and ζ = α = A
√

C(m+1)
2ν

indicates the plate surface. To facilitate the computation, we define F (ζ) = F (η − α) = f(η)

and Θ(ζ) = Θ(η − α) = θ(η). The similarity equations and the associated boundary conditions
become

f
′′′

+ ff
′′ − 2m

m+ 1
f
′2 −Df ′ = 0, (17)(

1 +R

Pr

)(
(1 + εθ)θ

′′
+ εθ

′2
)

+ fθ
′
= 0, (18)

f(0) = α

(
1−m
1 +m

)
, f

′
(0) = 1, θ(0) = 1, (19)

f ′(∞) = 0, θ(∞) = 0, (20)

where the prime denotes differentiation with respect to η. Based on the variable transformation,
the solution domain will be fixed from 0 to ∞.

The physical quantities of primary interest are the local skin-friction coefficient Cf and the local
Nusselt number Nu which are defined as

Cf = −2

√
m+ 1

2
Re

−1
2
x f

′′
(0), Nu = −

√
m+ 1

2
Re

1
2
x θ
′(0), (21)

where Rex = UwX
ν

is the local Reynolds number and X = x+ b.

3. An approximate derivative of L(α)
i (x) and its convergence analysis

The generalized Laguerre polynomials [L
(α)
i (x)]∞i=0, α > −1 are defined on the unbounded interval

(0,∞) and can be determined with the aid of the following recurrence formula

(i+ 1)L
(α)
i+1(x) + (x− 2i− α− 1)L

(α)
i (x) + (i+ α)L

(α)
i−1(x) = 0, i = 1, 2, ..., (22)

where, L(α)
0 (x) = 1 and L(α)

1 (x) = α + 1− x.

The analytic form of these polynomials of degree i is given by

L
(α)
i (x) =

i∑
k=0

(−1)k

k!

(
i+ α

i− k

)
xk, L

(α)
i (0) =

(
i+ α

i

)
. (23)

Any function u(x) belongs to the space L2
w[0,∞) of all square integrable functions on [0,∞)

with weight function w(x) and can be expanded in the following Laguerre series u(x) =∑∞
i=0 ciL

(α)
i (x), where the coefficients ci are given by

ci =
Γ(i+ 1)

Γ(i+ α + 1)

∫ ∞
0

xαe−xL
(α)
i (x)u(x)dx, i = 0, 1, ... .
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Consider only the first (m+ 1)-terms of generalized Laguerre polynomials, so we can write

um(x) =
m∑
i=0

ciL
(α)
i (x). (24)

For more details on Laguerre polynomials, its definitions, and properties, see Cheng and Ben
(2002), Talay (2009), and Khabibrakhmanov and Summers (1998).

The main approximate formula of the derivative of u(x) is given in the following theorem.

Theorem 3.1. (Khader (2014))

Let u(x) be approximated by the generalized Laguerre polynomials as (24) and also suppose
n ∈ N. Then its approximated derivative can be written in the following form

D(n)(um(x)) ∼=
m∑
i=n

i∑
k=n

ci γi, k, n x
k−n, γi, k, n =

(−1)k

(k + n)!

(
i+ α

i− k

)
. (25)

Theorem 3.2. (Khader (2014))

The derivative of order n for the generalized Laguerre polynomials can be expressed in terms of
the generalized Laguerre polynomials themselves in the following form

D(n)L
(α)
i (x) =

i∑
k=n

k−n∑
j=0

Ωi j k L
(α)
j (x), i = n, n+ 1, ...,m , (26)

where Ωi j k =

j∑
r=0

(−1)r+kΓ(α + i+ 1)(j)! Γ(k + α− n+ r + 1)

(k − n)!(i− k)! Γ(α + k + 1) r!(j − r)! (α + r)!
.

4. Procedure solution

In this section, we present the proposed method to solve numerically the system of ordinary
differential equations of the form (17)-(18). The unknown functions f(η) and θ(η) may be
expanded by finite series of Laguerre polynomials in the following approximation

fm(η) =
m∑
i=0

ciL
(α)
i (η), θm(η) =

m∑
i=0

diL
(α)
i (η). (27)

From Equations (17)-(18), (27), and Theorem 3.1 we have
m∑
i=3

i∑
k=3

ci γi, k, 3 η
k−3 +

m∑
i=0

ciL
(α)
i (η)

(
m∑
i=2

i∑
k=2

ci γi, k, 2 η
k−2

)

−
(

2m

1 +m

)( m∑
i=1

i∑
k=1

ci γi, k, 1 η
k−1

)2

−D
m∑
i=1

i∑
k=1

ci γi, k, 1 η
k−1 = 0,

(28)
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m∑
i=2

i∑
k=2

di γi, k, 2 η
k−2 + ε

m∑
i=0

diL
(α)
i (η)

(
m∑
i=2

i∑
k=2

di γi, k, 2 η
k−2

)

+ ε

(
m∑
i=1

i∑
k=1

di γi, k, 1 η
k−1

)2

+
Pr

1 +R

(
m∑
i=0

ciL
(α)
i (η)

)(
m∑
i=1

i∑
k=1

di γi, k, 1 η
k−1

)
= 0.

(29)

We now collocate Equations (28)-(29) at (m− n+ 1) points ηs, s = 0, 1, ...,m− n as

m∑
i=3

i∑
k=3

ci γi, k, 3 η
k−3
s +

m∑
i=0

ciL
(α)
i (ηs)

(
m∑
i=2

i∑
k=2

ci γi, k, 2 η
k−2
s

)

−
(

2m

1 +m

)( m∑
i=1

i∑
k=1

ci γi, k, 1 η
k−1
s

)2

−D
m∑
i=1

i∑
k=1

ci γi, k, 1 η
k−1
s = 0,

(30)

m∑
i=2

i∑
k=2

di γi, k, 2 η
k−2
s + ε

m∑
i=0

diL
(α)
i (ηs)

(
m∑
i=2

i∑
k=2

di γi, k, 2 η
k−2
s

)

+ ε

(
m∑
i=1

i∑
k=1

di γi, k, 1 η
k−1
s

)2

+
Pr

1 +R

(
m∑
i=0

ciL
(α)
i (ηs)

)(
m∑
i=1

i∑
k=1

di γi, k, 1 η
k−1
s

)
= 0.

(31)

For suitable collocation points, we use roots of Laguerre polynomial L(α)
m−n+1(η). Also, by

substituting Formula (27) in the boundary conditions (19)-(20), we can obtain five equations
as follows

m∑
i=0

(−1)ici = α

(
2m

m+ 1

)
,

m∑
i=0

(−1)idi = 1,
m∑
i=0

di = 0,
m∑
i=0

`1ici = 1,
m∑
i=0

`2ici = 0,

(32)

where `1i = L
′(α)
i (0), `2i = L

′(α)
i (η∞).

Equations (30)-(31), together with five equations of the boundary conditions (32), give a system
of (2m + 2) algebraic equations which can be solved, for the unknowns ci, di, i = 0, 1, ...,m,
using Newton iteration method. In our numerical study we take m = 5, i.e., five terms of the
truncated series solution (27), at η∞ = 15.

5. Results and discussion

Tables l and 2 clearly reveal that the present solution using the Laguerre collocation method
shows excellent agreement with the existing solutions in the literature (Fang at al. (2012)). This
analysis shows that the proposed method is suitable for the problems of boundary layer flow

8
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in fluid-saturated porous medium. This section provides the behavior of parameters involved in
the expressions of heat transfer characteristics for the stretching sheet. Numerical evaluation for
the solutions of this problem is performed and the results are illustrated graphically in Figure
2 through Figure 10. The study of flow in porous media is very important in approximating
the shape of spherical particles or cylindrical fibers which better fit the model of permeability
assumed for the analysis. The effects of the porous parameter D on velocity and temperature
profiles are shown in Figures 2 and 3, respectively. It is observed that the velocity decreases
for increasing values of porous parameter. Furthermore, the momentum boundary layer thickness
decreases as porous parameter D increases. Figure 3 elucidates that the fluid temperature enhance
with an increase in the porous parameter.

Table 1. Comparison of the Numerical Value −f ′′(0), Obtained by Laguerre Collocation
Method for α = 0.5, λ = 0 with Fang et al. (2012)

m 10.00 9.00 7.00 5.00 3.00 2.00 1.00 0.50 0.00 -0.50
−f ′′(0) 1.0603 1.0589 1.0550 1.0486 1.0359 1.0234 1.0000 0.9799 0.9576 1.1667

Present work 1.0602 1.0589 1.0550 1.0486 1.0358 1.0235 1.0000 0.97989 0.9576 1.1667

Table 2. Comparison of the Numerical Value −f ′′(0), Obtained by Laguerre Collocation
Method for α = 0.25, λ = 0 with Fang et al. (2012)

m 10.00 9.00 7.00 5.00 3.00 1.00 0.50 0.00 -1/3 -0.50
−f ′′(0) 1.1434 1.1405 1.1326 1.1186 1.0905 1.0000 0.9338 0.78439 0.5000 0.0833

Present work 1.1434 1.1405 1.1326 1.1186 1.0905 1.0000 0.9338 0.7843 0.5000 0.0832

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

F'

D 1.0, 0.5, 0.0

m 0.5, 0.2

Figure 2. The behavior of the velocity distribution for various values of D
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Figure 3. The behavior of the temperature distribution for various values of D
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Figure 4-a. The behavior of the velocity distribution for various values of α with m = 0.5
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Figure 4-b. The behavior of the velocity distribution for various values of α with m = 5

The effects of wall thickness parameter on the fluid flow and the temperature distribution have
been analyzed and the results are presented in Figures 4-5. From Figure 4, it is clear that the
velocity at any point near to the plate decreases as the wall thickness parameter increases for
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m < 1 and the reverse is true for m > 1. Also, it is obvious from these figures that the thickness
of the boundary layer becomes thinner for a higher value of α when m < 1 and becomes thicker
for a higher value of α when m > 1.

Figure 5 displays that the wall thickness parameter decreased the thickness of the thermal
boundary layer and enhanced the rate of heat transfer for m < 1 whereas the reverse trend
is observed as m > 1. Physically, increasing the value of α when m < 1 will decrease the
flow velocity because under the variable wall thickness not all the pulling force of the stretching
sheet can be transmitted to the fluid causing a decrease for both friction between the fluid layers
and temperature distribution for the fluid. But when m > 1 the velocity of the flow layers will
increase causing an enhancement for the friction force between this layers and thus increasing
its temperature. Likewise for a higher value of α, the thermal boundary layer becomes thinner
when m < 1 compared with the case of m > 1.
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Figure 5-a. The behavior of the temperature distribution for various values of α with m = 0.5
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Figure 5-b. The behavior of the temperature distribution for various values of α with m = 5

Figure 6 shows that the velocity rises with a decrease in the values of the velocity power index
m. This implies the momentum boundary thickness becomes thinner as the m increases along
the sheet and the reverse is true away from it.
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Figure 6. The behavior of the velocity distribution for various values of m
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Figure 7. The behavior of the temperature distribution for various values of m

Figure 7 displays the influence of the velocity power index parameter m on the temperature
profiles. It is clearly seen from this figure that increasing the value of m produces an increase in
the temperature profiles. It further shows that the larger the value of m the higher the magnitude
of the thermal boundary thickness will be.

In Figure 8 we have varied the thermal conductivity parameter ε keeping the values of all other
parameters fixed. Figure 8 reveals that the temperature profile as well as the thickness of the
thermal boundary layer increase when ε increases.
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Figure 8. The behavior of the temperature distribution for various values of ε

Figure 9 illustrates the effects of radiation parameter R on the temperature profiles when other
parameters held constant. It is depicted that the temperature field and the thermal boundary layer
thickness increase with the increase in R.
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Figure 9. The behavior of the temperature distribution for various values of R

It is observed from Figure 10 that an increase in the Prandtl number results in decreases in the
heat transfer profiles. The reason is that increasing values of Prandtl number are equivalent to
decreasing the thermal conductivities and therefore heat is able to diffuse away from the heated
sheet more rapidly. Hence in the case of increasing Prandtl number, the boundary layer is thinner
and the heat transfer is reduced.
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Figure 10. The behavior of the temperature distribution for various values of Pr

Table 3 shows the influence of the porous parameter D, wall thickness parameter α, the velocity
power index parameter m, the radiation parameter R, the Prandtl number Pr, and the thermal
conductivity parameters ε on the local skin friction coefficient and the local Nusselt number. It is
noticed that increases in the wall thickness parameter leads to an increase in both the local skin-
friction coefficient and the local Nusselt number. Likewise, the local Nusselt number is reduced
but the skin-friction coefficient is increased with increases for both values of porous parameter
and velocity power index parameter. Also, an increase in the Prandtl number causes an increase
in the local Nusselt number. This is because the fluid with larger Prandtl number possesses larger
heat capacity and hence intensifies the heat transfer. Moreover, it is observed that the values of
the local Nusselt number decreases with increases in both the thermal conductivity parameter
and the radiation parameter.
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Table 3. Values of −f ′′(0) and −θ′(0) for Various Values of D,α,m, ε, R and Pr

D α m ε R Pr −f ′′(0) −θ′(0)

0.0 0.2 0.5 0.1 0.5 1.0 0.92415 0.441854
0.5 0.2 0.5 0.1 0.5 1.0 1.16835 0.401896
1.0 0.2 0.5 0.1 0.5 1.0 1.36946 0.372239
0.5 0.0 0.5 0.1 0.5 1.0 1.13345 0.375139
0.5 0.25 0.5 0.1 0.5 1.0 1.17745 0.408659
0.5 0.5 0.5 0.1 0.5 1.0 1.22258 0.443236
0.5 1.0 0.5 0.1 0.5 1.0 1.31669 0.515145
0.5 0.2 0.0 0.1 0.5 1.0 1.04434 0.472787
0.5 0.2 0.5 0.1 0.5 1.0 1.16867 0.401809
0.5 0.2 5.0 0.1 0.5 1.0 1.32715 0.303359
0.5 0.2 0.5 0.0 0.5 1.0 1.16812 0.434859
0.5 0.2 0.5 0.2 0.5 1.0 1.16834 0.373947
0.5 0.2 0.5 0.5 0.5 1.0 1.16854 0.310646
0.5 0.2 0.5 0.1 0.0 1.0 1.16834 0.547756
0.5 0.2 0.5 0.1 0.5 1.0 1.16876 0.401887
0.5 0.2 0.5 0.1 1.0 1.0 1.16890 0.319509
0.5 0.2 0.5 0.1 0.5 0.7 1.16815 0.302212
0.5 0.2 0.5 0.1 0.5 1.0 1.16865 0.401834
0.5 0.2 0.5 0.1 0.5 3.0 1.16848 0.896355

6. Conclusions

In this paper, the Laguerre collocation method is used to investigate the approximate solution
of the resulting non-linear system of ODEs for the problem of flow and heat transfer in a
quiescent Newtonian fluid flow caused solely by a stretching sheet which is embedded in a
porous medium with variable thickness, variable thermal conductivity, and thermal radiation. The
fluid thermal conductivity is assumed to vary as a linear function of temperature. A comparison
with previously published work was performed and the results were found to be in excellent
agreement. Asystematic study on the effects of the various parameters on flow and heat transfer
characteristics is carried out. It was found that the effect of increasing values of the porous
parameter, the velocity power index parameter, thermal conductivity parameter, and the radiation
parameter reduce the local Nusselt number. On the other hand it was observed that the local
Nusselt number increases as the Prandtl number and the wall thickness parameter increases.
Moreover, it is interesting to find that as the porous parameter, wall thickness parameter, and the
velocity power index parameter increase in magnitude, this causes the fluid to slow down past
the stretching sheet, and the skin-friction coefficient increases in magnitude. From the presented
results, we can see that the numerical solution is in excellent agreement with those obtained by
other methods.
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