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Abstract

In this paper, global dynamics of an SIR model are investigated in which the incidence rate is
being considered as Beddington-DeAngelis type and the treatment rate as Holling type II (satu-
rated). Analytical study of the model shows that the model has two equilibrium points (disease-
free equilibrium (DFE) and endemic equilibrium (EE)). The disease-free equilibrium (DFE) is
locally asymptotically stable when reproduction number is less than one. Some conditions on the
model parameters are obtained to show the existence as well as nonexistence of limit cycle. Some
sufficient conditions for global stability of the endemic equilibrium using Lyapunov function are
obtained. The existence of Hopf bifurcation of model is investigated by using Andronov-Hopf
bifurcation theorem. Further, numerical simulations are done to exemplify the analytical studies.

Keywords: SIR model; Beddington-DeAngelis type nonlinear incidence rate; Limit cycle; Hopf
bifurcation; Next generation matrix method; Central manifold theory
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1. Introduction

Epidemiological models have been recognized as valuable tools in analyzing the spread and
control of infectious diseases. In epidemiological models, incidence rate as well as treatment rate
play an important role while analyzing the transmission of diseases. The number of individuals
who become infected per unit of time in epidemiology is called incidence rate. Incidence rate
has been defined in multiple ways. Firstly, the bilinear incidence rate (Anderson and May (1992),
Bailey (1975), Brauer and Castillo-Chavez (2001), Hethcote (2004), Kermack and McKendrick
(1927), Shulgin et al. (1998), Zhang and Suo (2010), Ghosh et al. (2004), Shukla et al. (2011))
is based on the law of mass action (βSI , where β is infection rate and S and I denote the
susceptible and infected individuals, respectively) which is unreasonable for large population.
As we can infer from the term βSI that if the number of susceptibles increases, the number of
individuals who become infected per unit of time increases, which is not realistic. So there is a
need to modify the classical linear incidence rate to study the dynamics of infection among large
population.

Several authors (Anderson and May (1978), Wei and Chen (2008), Zhang et al. (2008), Li et al.
(2009), Li and Muldowney (1995), Korobeinikov and Maini (2005), Xu and Ma (2009), Capasso
and Serio (1978)) suggested different types of nonlinear incidence rates. The saturated incidence
rate αSI

(1+βS)
was introduced by Anderson and May in 1978. The effect of saturation factor β

stems from epidemical control. Further, many authors (Mondal and Kar (2013), Agarwal and
Verma (2012), Wei and Chen (2008), Zhang et al. (2008)) incorporated this incidence rate into
their models. Li et al. (2009) proposed an SIR model with nonlinear incidence rate given by
αSI

(1+γI)
. In this incidence rate the number of effective contacts between infective and susceptible

individuals may saturate at high infective levels due to crowding of infective individuals. Bedding-
ton (1975) and DeAngelis (1975) independently introduced nonlinear incidence rate known as
Beddington-DeAngelis type incidence rate

(
αSI

1+βS+γI

)
. Later, some authors (e.g. Kaddar (2009),

Kaddar (2010), Huang et al. (2011), Elaiw and Azoz (2013)) used this incidence rate to describe
epidemiological models.

We are aware of the fact that the treatment is an important method to reduce the spread of
diseases. In classical epidemic models, the treatment rate of infected individuals is assumed to be
either constant or proportional to the number of the infected individuals. However, we know that
there are limited treatment resources available in community. Therefore, this is very important to
choose a suitable treatment rate of a disease. In the absence of effective therapeutic treatments and
vaccines, the epidemical control strategies are based on taking appropriate preventive measures.
Wang and Ruan (2004) considered an SIR epidemic model with constant treatment rate (i.e., the
recovery from infected subpopulation per unit time) as given below:

h(I) =

{
r, I > 0

0, I = 0
,

where r is a positive constant and I is the number of infected individuals. They studied stability
analysis and showed that this model exhibits various bifurcations. Further, Zhou and Fan (2012)
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modified the treatment rate to Holling type II

h(I) =
βI

(1 + γI)
, I ≥ 0, γ ≥ 0, β ≥ 0.

They have shown that, with varying amount of medical resources and their supply efficiency, the
target model admits both backward bifurcation and Hopf bifurcation. Dubey et al. (2013) have
also used Holling type II, III, and IV treatment rates to study their model.

To the best knowledge of the authors, an SIR model with Beddington-DeAngelis type incidence
rate and the saturated treatment rate has not been considered. Taking these important facts into
account and getting motivated from Kaddar’s work (Kaddar (2009), Kaddar (2010)), we propose
an SIR model with Beddington-DeAngelis type incidence rate and the saturated treatment rate.

This paper is organized as follows. After the abstract and introduction, Section 2 discusses the
formulation of the mathematical model and well-posedness of the model. In Section 3, we discuss
the equilibrium points of model (3), the stability of equilibrium points, and the existence of Hopf
bifurcation. Further, in Section 4, numerical simulations are done to validate the analytical studies.
Finally, Section 5 concludes this paper.

2. The Mathematical Model

We assume that the entire population is divided into three classes: susceptible individuals (S),
infected individuals (I), and removed or recovered individuals (R). Susceptible individuals are
those who are healthy and can contract disease under appropriate conditions. Infected individuals
are the one who have contracted the disease and are now infected with it. These individuals are
capable of transferring the disease to susceptible individuals via contacts. As time progresses,
infected individuals lose infectivity and move to the removed or recovered compartment (by auto
recovery due to immune response of the body or by treatment). These recovered individuals are
immune to infectious microbes and thus do not acquire the disease again. The model is given
by following differential equations:

dS
dt

= A− δ0S − αSI
1+βS+γI

,

dI
dt

= αSI
1+βS+γI

− δ0I − δ1I − δ2I − aI
1+bI

,

dR
dt

= δ2I − δ0R + aI
1+bI

,

(1)

where S(0) > 0, I(0) ≥ 0, R(0) ≥ 0.

Let the susceptibles be recruited at a constant rate A and δ0 be the natural death rate of the
population in each class. Let δ1 be the death rate of infected individuals due to infection and δ2
be the natural recovery rate of infected individuals due to immunity. In model (1), we take the
incidence rate as Beddington-DeAngelis type:

f(S, I) =
αSI

1 + βS + γI
. (2)
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Here α is the transmission rate, β is a measure of inhibition effect, such as preventive measure
taken by susceptible individuals, and γ is a measure of inhibition effect such as treatment with
respect to infectives. It is interesting to note that the following three types of incidence rates can
be derived from the incidence rate proposed in this paper:

(1) If we set β = γ = 0, then f(S, I) = αSI which is bilinear incidence rate (Anderson and
May (1992), Bailey (1975), Brauer and Castillo-Chavez (2001), Hethcote (2004), Kermack
and McKendrick (1927), Shulgin et al. (1998), Zhang and Suo (2010)).

(2) If we set γ = 0, then f(S, I) = αSI
(1+βS)

, which is saturated incidence rate with the susceptible
individuals. The inhibition effect due to the saturation factor β results due to the preventive
measure to control the spread of epidemic (Korobeinikov and Maini (2005), Xu and Ma
(2009), Capasso and Serio (1978)).

(3) If we set β = 0, then f(S, I) = αSI
(1+γI)

, which is saturated incidence rate with the infected
individuals. In such a case, the contact between infective and susceptible individuals may
saturate at high infection level due to crowding of infective individuals or due to protection
taken by susceptible individuals (Anderson and May (1978), Wei and Chen (2008), Zhang
et al. (2008), Li et al. (2009), Mukhopadhyay and Bhattacharya (2008), Xue and Duan
(2011), Liu et al. (1987), Li and Muldowney (1995)).

The term h(I) = aI
(1+bI)

in system (1) represents the treatment term, where a is a positive constant
whereas b is a constant taking into account resource limitation (Zhang and Suo (2010), Zhou and
Fan (2012)).

From the above system (1) we can infer that S and I are free from the effect of R. Thus it is
enough to consider the following reduced system for the study:

dS
dt

= A− δ0S − αSI
1+βS+γI

,

dI
dt

= αSI
1+βS+γI

− δ3I − aI
1+bI

,
(3)

where δ3 = δ0 + δ1 + δ2 and S(0) > 0, I(0) ≥ 0.

A. Positivity of the model

For the above system (3), we find a region of attraction which is given by Lemma 1.

Lemma 1.

The set Ω = {(S, I) ∈ R2
+ : 0 < S + I ≤ A

δ0
} is a positively invariant region of system (3).

Proof:

Let N = S + I , then Ṅ = Ṡ + İ = A− δ0N − (δ1 + δ2)I − aI
1+bI

. Then,

N(t) ≤ N(0)e−δ0t +
A

δ0
(1− e−δ0t).

Thus, limt→∞ supN(t) ≤ A
δ0
. Furthermore, Ṅ < 0 if N > A

δ0
. This shows that solutions of system

(3) point towards Ω. Hence Ω is positively invariant and solutions of (3) are bounded. �
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The above lemma shows that all solutions of the model are non-negative and bounded. Thus the
model is biologically well-behaved.

In the next section, first we find the equilibrium points of system (3), then discuss the existence
and stability of equilibrium points of system (3).

3. Equilibrium points and their stability analysis

System (3) has only two equilibria: (i) the disease-free equilibrium (DFE) E0(S0, I0), i.e., there
is no infection and (ii) the endemic equilibrium E1(S

∗, I∗), i.e., infection persists. We can infer
from system (3) that the disease-free equilibrium E0 is trivial equilibrium point and given by
E0(S0, I0) = E0(

A
δ0
, 0).

To compute the basic reproduction number and to study the local stability of the DFE, we use
the next generation matrix method (Diekmann et al. (1990), Van den Driessche and Watmough
(2002)). Using the same notation as in Van den Driessche and Watmough (2002), we define
ẋ = F (x) − V (x), where x = [I, S]T , F (x) is the matrix of new infection terms, and V (x) is
the matrix of transfer terms into compartment and out of compartment. The Jacobian of matrices
F (x) and V (x) at DFE E0(

A
δ0
, 0) is given by

F =

[
αA

δ0+Aβ
0

0 0

]
,

and

V =

[
(δ3 + a) 0

αA
δ0+Aβ

δ0

]
.

Then the spectral radius of new generation matrix (Van den Driessche and Watmough (2002))
(FV −1) gives R0 i.e.,

R0 = ρ(FV −1) =
Aα

(δ3 + a)(δ0 + Aβ)
,

where R0 is basic reproduction number, the number of newly infected individuals produced by
a single infected person when introduced into a completely susceptible population. We conclude
the following result using the above computation for R0 and from Theorem 2 of the paper by
Van den Driessche and Watmough (2002).

Theorem 1.

The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1 and is a saddle point
with stable manifold locally in the S-direction and unstable manifold locally in the I-direction
if R0 > 1.

Epidemiologically, the above result depicts that small inflow of infected individuals will not be
able to spread infection if R0 < 1. In this case the spread of infection is dependent on initial
sizes of sub-population. To ensure that the spread of infection is independent of initial sizes of
sub-population, we study the global stability of the DFE in the next theorem.
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Theorem 2.

(i) When b = 0, then the disease free equilibrium E0 is globally asymptotically stable if R0 ≤ 1

and (ii) when b 6= 0, then the disease free equilibrium E0 is globally asymptotically stable if
R1 = αA

(δ0+Aβ)δ3
≤ 1.

Proof:

Let L be the Lyapunov function defined as

L =
1

1 + βS0

(
S − S0 − S0ln

S

S0

)
+ I, where S =

A

δ0
.

Differentiating L along the solutions of (3) and after simplification, we have

L̇(t) = −
[
δ0(S − S0)

2

S(1 + βS0)
+

αγS0I
2

(1 + βS + γI)(1 + βS0)

]
+

(δ3 + a)I

(1 + γI)
[R0 − 1] + PI2,

where P = b
1+bI

(
αS0

(1+βS0)
− δ3

)
.

Case I: b = 0

Then, clearly P = 0 and

L̇(t) < 0 if R0 ≤ 1 and L̇(t) = 0 iff S = S0 = A
δ0

and I = I0 = 0.

Case II: b 6= 0

Then,

L̇(t) < 0 if P < 0 i.e., αA
(δ0+Aβ)

< δ3 and L̇(t) = 0 iff S = S0 = A
δ0

and I = I0 = 0.

This implies that the largest compact invariant set in {(S, I) ∈ Ω : L̇(t) = 0} is the singleton set
{E0}. From LaSalle’s invariance principle (LaSalle (1976)) disease free equilibrium is globally
asymptotically stable. �

Remark 1: (i) We observe that R0 < R1 (if a > 0) and R0 = R1 (if a = 0). (ii) When R1 ≤ 1,
then R0 ≤ 1.

This implies that the threshold value for the disease eradication is less if there is no limitation on
the medical resources availability in the community (b = 0). However, this threshold increases
as the availability of the medical resources limits in the community (b > 0).

B. Analysis at R0 = 1

In this section, we analyze the behavior of system (3) when the basic reproduction number
is equal to one. We notice that the Jacobian matrix of system (3) evaluated at R0 = 1 and
α = α∗ = (δ3+a)(δ0+Aβ)

A
has a simple zero eigenvalue and another eigenvalue with negative real

part. Stability behaviour of equilibrium points at R0 = 1 cannot be determined using linearization
so we use Center manifold theory (Sastry (1999)). In order to apply center manifold theorem to
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system (3), we made following assumptions: Let S = x1 and I = x2, then the system (3) can be
rewritten as 

dx1
dt

= A− δ0x1 − αx1x2
1+βx1+γx2

,

dx2
dt

= αx1x2
1+βx1+γx2

− δ3x2 − ax2
1+bx2

,
(4)

Let J be the Jacobian matrix at R0 = 1 and α = α∗. Then

J =

 −δ0 − α∗A
(δ0+Aβ)

0 α∗A
(δ0+Aβ)

− δ3 − a

 .
Let w = [w1, w2] and u = [u1, u2]

T be the left eigenvector and right eigenvector of J correspond-
ing to the zero eigenvalue. Then we have

w1 = 0, w2 = 1 and u1 = − α∗A

(δ0 + Aβ)δ0
, u2 = 1.

The nonzero partial derivatives associated with the functions of the system (4) evaluated at R0 = 1

and α = α∗ are(
∂2f2
∂x1∂x2

)
E0

=
α∗

(1 + βS0)2
,

(
∂2f2
∂x22

)
E0

= − 2α∗γS0

(1 + βS0)2
,

(
∂2f2

∂x2∂α∗

)
E0

=
S0

(1 + βS0)2
.

Then from Theorem 4.1 of Castillo-Chavez and Song (2004), the bifurcation constants a1 and b1
are

a1 =
2∑

k,i,j=1

wkuiuj

(
∂2fk
∂xi∂xj

)
E0

= w2

(
u1u2

α∗

(1 + βS0)2
+ u22

(
− 2α∗γS0

(1 + βS0)2

))
= − α∗

(1 + βS0)2

(
α∗A

(δ0 + Aβ)δ0
+ 2γS0

)
< 0,

and

b1 =
2∑

k,i=1

wkui

(
∂2fk
∂xi∂α∗

)
E0

= w2

(
u2

S0

(1 + βS0)2

)
=

S0

(1 + βS0)2
> 0.

Thus from Theorem 4.1(iv) of Castillo-Chavez and Song (2004), we conclude the following
result.

Theorem 3.

The disease free equilibrium changes its stability from stable to unstable at R0 = 1 and there exists
a positive equilibrium as R0 crosses one. Hence system (3) undergoes transcritical bifurcation at
R0 = 1.
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C. The existence of endemic equilibrium E1(S
∗, I∗)

Equating the second equation of system (3) to zero, we have

αS∗I∗

1 + βS∗ + γI∗
− δ3I∗ −

aI∗

1 + bI∗
= 0. (5)

After solving the above equation (5), we get S∗ in terms of I∗ as follows:

S∗ =
(δ3 + a+ δ3bI

∗)(1 + γI∗)

(α− δ3β − aβ) + (α− δ3β)bI∗
. (6)

S∗ is positive if
α > (δ3 + a)β. (7)

Now equating the first equation of system (3) to zero and solving we get the following quadratic
equation in S∗:

δ0βS
∗2 + (δ0 − Aβ + (δ0γ + α)I∗)S∗ − A(1 + γI∗) = 0. (8)

Substituting the value of S∗ from Equation (6) into Equation (8), we get the following cubic
equation in I∗:

A1I
∗3 + A2I

∗2 + A3I
∗ + A4 = 0, (9)

where
A1 = δ0βγδ3

2b2 + δ3b
2pl,

A2 = δ0βδ3
2b2 + 2δ0δ3(δ3 + a)βγb+ bδ3ql + bp((δ3 + a)l + δ3bm− Abp),

A3 = 2δ0δ3(δ3 + a)βb+ δ0βγ(δ3 + a)2 + (δ3 + a)bmp+ q((δ3 + a)l + δ3bm− 2Abp),

A4 = δ0β(δ3 + a)2 + (δ3 + a)mq − Aq2,

and

p = (α− δ3β), q = (α− δ3β − aβ), l = (δ0γ + α), m = (δ0 − Aβ).

It may be noted that p, q > 0 under condition (7). Now using Descartes’ rule of sign, the cubic
equation (9) has unique positive real root I∗ if any one of the following holds:
(i) A2 > 0, A3 > 0 and A4 < 0,
(ii) A2 > 0, A3 < 0 and A4 < 0,
(iii) A2 < 0, A3 < 0 and A4 < 0.

We consider first two cases from which we have the following inequalities

(δ3 + a)l + δ0δ3b > Aαb, (10)

and
R0 > 1. (11)
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After finding the value of I∗, we can find the value of S∗ from equation (6). This implies that
there exists a unique endemic equilibrium E1(S

∗, I∗) if the inequalities (7), (10) and (11) are
satisfied.

Theorem 4.

The endemic equilibrium E1(S
∗, I∗) is locally asymptotically stable if and only if the following

inequalities hold true:
αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
< L1, (12)

δ0αS
∗(1 + βS∗)

(1 + βS∗ + γI∗)2
< L2, (13)

where

L1 = δ0 + δ3 +
a

(1 + bI∗)2
+

αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2
,

L2 =

(
δ3 +

a

(1 + bI∗)2

)(
δ0 +

αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2

)
.

Proof:

The variational matrix corresponding to endemic equilibrium E1(S
∗, I∗) is

ME1 =

 −δ0 −
αI∗(1+γI∗)

(1+βS∗+γI∗)2
− αS∗(1+βS∗)

(1+βS∗+γI∗)2

αI∗(1+γI∗)
(1+βS∗+γI∗)2

αS∗(1+βS∗)
(1+βS∗+γI∗)2

− δ3 − a
(1+bI∗)2

 .
The characteristic polynomial of the above matrix is given by the following equation

λ2 + a1λ+ a2 = 0, (14)

where

a1 = δ0 +
αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2
− αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
+ δ3 +

a

(1 + bI∗)2
,

a2 =

(
δ3 +

a

(1 + bI∗)2

)(
δ0 +

αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2

)
− δ0αS

∗(1 + βS∗)

(1 + βS∗ + γI∗)2
.

Using the Routh-Hurwitz criteria, it follows that eigenvalues of the above variational matrix have
negative real parts if and only if a1 > 0 and a2 > 0. This implies that the endemic equilibrium
E1(S

∗, I∗) is locally asymptotically stable if and only if inequalities (12) and (13) hold true. �

Remark 2: If α = 0, then conditions (12) and (13) are satisfied. This shows that if the transmis-
sion rate of infection is zero or very small, then E1 is locally asymptotically stable.

Remark 3: If α is very large, then conditions (12) and (13) may not hold true. This implies
that if the transmission rate of infection is large enough, then the endemic equilibrium may be
unstable.
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Remark 4: It may be noted that conditions (12) and (13) hold true if

αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
< δ3 +

a

(1 + bI∗)2
.

From Equation (14), noting the sign of real parts of the eigenvalues λ, we can state the following
two theorems, (5) and (6).

Theorem 5.

Let the following inequality hold true:

δ0αS
∗(1 + βS∗)

(1 + βS∗ + γI∗)2
> L2. (15)

Then E1(S
∗, I∗), whenever it exists, is a saddle point.

Theorem 6.

If inequality (13) and the following inequality hold true:

αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
> L1, (16)

then E1(S
∗, I∗), whenever it exists, is unstable.

In the following theorem, we are able to show the existence of a Hopf bifurcation under certain
conditions.

Theorem 7.

Assume that:
αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
= L1, (17)

and (13) hold true. Then system (3) exhibits Hopf bifurcation near E1(S
∗, I∗).

Proof:

Condition (17) implies that a1 = 0 in equation (14) and condition (13) implies that a2 > 0. Thus,
Equation (14) has purely imaginary roots. From Theorem 4 and Theorem 6, it follows that the
positive equilibrium E1(S

∗, I∗) changes its behavior from stability to instability as the parameter
α passes through its critical value α = α∗, where

α∗ =
(1 + βS∗ + γI∗)2

S∗(1 + βS∗)− I∗(1 + γI∗)

(
δ0 + δ3 +

a

(1 + bI∗)2

)
.

Again we have

d

dα
[tr(ME1)]α=α∗ =

S∗(1 + βS∗)− I∗(1 + γI∗)

(1 + βS∗ + γI∗)2

=
1

α∗

(
δ0 + δ3 +

a

(1 + bI∗)2

)
6= 0.

Hence the system (3) shows a Hopf bifurcation near the positive equilibrium E1 when α = α∗.
�
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In the following theorem, we show the nonexistence of limit cycle under certain condition.

Theorem 8.

If b(1 + βA
δ0

) < γ, then the model (3) does not have any periodic solution in the interior of the
positive quadrant of the S-I plane.

Proof:

We define a real-valued function in the interior of positive quadrant of the S-I plane as follows:

H(S, I) =
1 + βS + γI

SI
> 0.

Let us consider

h1(S, I) = A− δ0S −
αSI

1 + βS + γI
,

h2(S, I) =
αSI

1 + βS + γI
− δ3I −

aI

1 + bI
.

Then we have

div(Hh1, Hh2) =
∂

∂S
(Hh1) +

∂

∂I
(Hh2)

= −A(1 + γI)

IS2
− δ0β

I
− δ3γ

S
− a(γ − b(1 + βS))

S(1 + bI)2
.

We can see that the above expression is not equal to zero and this will not change sign in the
positive quadrant of the S-I plane if the inequality b(1 + βA

δ0
) < γ holds. Then from Dulac’s

criterion (Sastry (1999)), we can say that model (3) does not have any periodic solution in the
interior of the positive quadrant of the S-I plane. �

Epidemiologically the above theorem implies that if the given inequality holds true then disease
will not reoccur.

Since the set Ω defined in Lemma 1 is a positively invariant set, then the following theorem is a
direct consequence of the Poincare-Bendixon theorem (Sastry (1999)) showing the existence of
a limit cycle about the interior equilibrium E1.

Theorem 9.

Assume that either (13) and (16) or (15) are satisfied, then the model (3) has at least one limit
cycle in the interior of the positive quadrant of the S-I plane.

This theorem depicts that if the positive equilibrium point E1 is a saddle point or unstable then
disease may reoccur in future.

In the following theorem, we show that the endemic equilibrium E1(S
∗, I∗) is globally asymp-

totically stable.
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Theorem 10.

Let the following inequality holds in Ω:

α2γS∗I∗(1 + γI∗)

(1 + βS∗ + γI∗)2
< X1X2, (18)

where
X1 = δ0 +

αI∗(1 + γI∗)δ0
(δ0 + (β + γ)A)(1 + βS∗ + γI∗)

,

X2 =
αγS∗δ0

(δ0 + (β + γ)A)(1 + βS∗ + γI∗)
− ab

1 + bI∗
.

Then E1(S
∗, I∗) is globally asymptotically stable with respect to all solutions in the interior of

the positive quadrant Ω.

Proof:

We consider the following positive definite scalar function about E1:

V =
1

2
(S − S∗)2 + k

(
I − I∗ − I∗ln I

I∗

)
,

where k is a positive constant to be chosen suitably.

Now differentiating V with respect to time t along the solutions of model (3), we get

dV

dt
= (S − S∗)dS

dt
+ k

(I − I∗)
I∗

dI

dt
.

Substituting the values of dS
dt

and dI
dt

from model (3) into the above equation, we get

dV

dt
= −a11(S − S∗)2 + a12(S − S∗)(I − I∗)− a22(I − I∗)2,

where
a11 = δ0 +

αI∗(1 + γI∗)

(1 + βS + γI)(1 + βS∗ + γI∗)
,

a12 =
αγS∗I∗

(1 + βS + γI)(1 + βS∗ + γI∗)
− αS

(1 + βS + γI)
+

kα(1 + γI∗)

(1 + βS + γI)(1 + βS∗ + γI∗)
,

a22 =
kαγS∗

(1 + βS + γI)(1 + βS∗ + γI∗)
− kab

(1 + bI)(1 + bI∗)
.

Sufficient conditions for dV
dt

to be negative definite are given as follows:

a11 > 0 and a212 < 4a11a22.

Here we can see that a11 is positive for all values of (S∗, I∗) and another condition for global
stability a212 < 4a11a22 is satisfied if inequality (18) holds true. Hence the theorem follows. �
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4. Numerical Simulations

In this section, we present computer simulation results for system (3) by using MatLab 7.10.

We choose the set of parameters given in Table 1.

Table 1. List of parameters.
Parameter Value Unit

A 7 person (day)−1

δ0 0.02 (day)−1

δ1 0.05 (day)−1

δ2 0.002 (day)−1

a 0.2 (day)−1

b 0.02 (person)−1

α 0.003 (person)−1 (day)−1

β 0.002 (person)−1

γ 0.5 (person)−1

For these values of parameters, conditions (7), (10), and (11) for the existence of E1(S
∗, I∗) are

satisfied and E1(S
∗, I∗) is given by

S∗ = 301.0107, I∗ = 3.7996.

We further note that inequalities (12) and (13) in Theorem 4 are satisfied for E1 to be locally
asymptotically stable. The trajectories of S and I with initial conditions S(0) = 245, I(0) = 45,
approach to the endemic equilibrium E1(301.0107, 3.7996) as shown in Figure 1.
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Figure 1: Susceptible (S) and Infected (I) population vs Time.

In Figure 1, the number of the infected population decreases with time due to treatment, and these
individuals once recovered have become immunized to the infection and will not get reinfected
in future. Furthermore, the susceptible population increases to attain a steady state. This increase
may be due to decrease in the number of infected individuals because of treatment.
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Further, we choose the set of parameters as given in Table 2.

Table 2. List of parameters.
Parameter Value Unit

A 1.97 person (day)−1

δ0 0.2 (day)−1

δ1 0.03 (day)−1

δ2 0.03 (day)−1

a 0.02 (day)−1

b 0.02 (person)−1

α 0.05 (person)−1 (day)−1

β 0.01 (person)−1

γ 0.1 (person)−1

For these values of parameters given in Table 2, we see that the endemic equilibrium E1(7.0861, 1.9796)

exists and all conditions of Theorem 4 and Theorem 5 are satisfied. From these simulations and
following Figure 2, we conclude that the endemic equilibrium E1 is globally asymptotically
stable. This implies that for the given set of parameters the trajectories of S and I will converge
to the same value (steady state) E1 irrespective of the initial value of S and I . This implies that
for the given set of parameters the disease will restrict itself to a given endemic zone, no matter
what the magnitude of infection and susceptibility is.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Suceptible population (S)

In
fe

ct
ed

 p
op

ul
at

io
n 

(I)

 

 

IV1 [15 28]
IV2 [20 3]
IV3 [25 18]
IV4 [30 8]
IV5 [1 27]

IV3

IV1

IV4

E
1
(7.0681, 1.9796)

IV2

IV5

Figure 2: Global stability of endemic equilibrium point.

In Figure 2, we considered five different initial values of the susceptible and infected popula-
tions. All trajectories starting from different initial values approach to the endemic equilibrium
E1(7.0861, 1.9796). All the details related to initial values (IV) are shown in the legend.

In Figures 3(a) and 3(b), we plotted the effect of incidence rate α on S and I population
(respectively) for the set of parameters given in Table 1. In Figure 3(a) we see that as α increases,
the susceptible population S shows sharp decline initially and after a threshold value of α (say
α = 0.006) S decreases slowly and settles to the its equilibrium point. From Figure 3(b), we note
that when the incidence rate is high then more people will be infected and only the remaining
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Figure 3: Effect of α on S and on I population respectively.

noninfected people will be susceptible. When the incidence rate is low, then less people are
infected and the noninfected, i.e. susceptible population, is larger. We further note that for a larger
incidence rate, the number of infected individuals increases initially, then decreases and finally
settles down at its steady state. This decrease is possibly due to immunity and the treatments.
When the incidence rate is below a threshold value, then the number of infected individuals first
decreases, then increases and finally gets stabilized at its steady state. This increase may be due
to the fact that the infection is not removed completely but will persist in the endemic zone
due to inability of treatment to eradicate the infection. The details of different trajectories and
different values of α used in Figures 3(a) and 3(b) are shown in the legend, which is same for
both Figures.
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Figure 4: Effect of β on S on I population respectively.

In Figures 4(a) and 4(b), we plotted the effect measure of inhibition β (preventive measure
taken by susceptible individuals) on the susceptible and infected populations respectively, with
respect to time. From Figures 4 (a) and 4(b), we observe that the number of infected individuals
decreases as β increases and consequently the susceptible population increases with increase in
β. The trajectories of S and I settle down at their respective equilibrium levels. Figure 4(b) also
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shows that initially the number of infected individuals decreases then increases for some time
and finally obtains its equilibrium level. The initial decrease in number of infectives may be due
to the prevention measures taken by susceptibles and the treatments received. However, these
preventive measures and treatments may not be adequate, thus number of infectives increases
slightly and gets stabilized at the steady state. This implies overall that when the inhibition is
less then more people are infected and less people are susceptible whereas when the inhibition
is more then more people are susceptible and less are infected.
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Figure 5: Effect of a and b on I population.

Figures 5(a) and 5(b) show the effect of treatment rate ‘a’ and limitation to treatment rate ‘b’
on infected population. Figure 5(a) shows a decrease in infected population as treatment rate a
increases and it settles down at its steady state, but the disease is not getting totally eradicated
as it will persist at a much lower level. Figure 5(b) shows an increase in infected population as
b increases which is due to limited availability of resources in community.

Table 3. List of parameters.
Parameter Value Unit

A 7 person (day)−1

δ0 0.002 (day)−1

δ1 0.005 (day)−1

δ2 0.01 (day)−1

a 2 (day)−1

b 0.02 (person)−1

β 0.02 (person)−1

γ 0.005 (person)−1

Now we choose another set of parameters for model (3) as given in Table 3. In addition to the
values of parameters given in Table 3, we chose α = 0.15 (person)−1 (day)−1. Then it is noted
that all the conditions of Theorem 4are satisfied. Hence E1 is locally asymptotically stable. For
α = 0.06 (person)−1 (day)−1 (keeping other values of parameters same as in Table 3, condition
(16) in Theorem 6 is satisfied. Hence E1 is unstable. Further, for α = α∗ = 0.08863 (person)−1

(day)−1 and other values of parameters are same as in Table 3, all conditions in Theorem 7
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are satisfied, which shows the existence of Hopf bifurcation near the interior equilibrium E1.
These three different behavior are shown in Figures 6(a) and 6(b) for susceptible and infected
populations respectively.
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Figure 6: Plot of susceptible and infected population vs time for different values of α.

The phase plane analysis of susceptible and infected population are represented in Figure 7 and
Figure 8, respectively. Figure 7 represents a stable limit cycle for α = 0.08863 (person)−1 (day)−1

and other parameters are same as given in Table 3. In Figure 8, trajectories represent unstable
endemic equilibrium for α = 0.06 (person)−1 (day)−1 and other parameters are same as given
in Table 3.
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Figure 7: Limit cycle in S − I plane.
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Figure 8: Phase portrait of model (3) in S − I plane.

17

Naji and Soner: Independent Monopoly Size In Graphs

Published by Digital Commons @PVAMU, 2015



AAM: Intern. J., Vol. 10, Issue 2 (December 2015) 735

5. Conclusion

In this paper, we have introduced an SIR model with Beddington-DeAngelis type incidence rate
and saturated treatment rate. The local and global dynamics of this model has been studied. The
analysis of the proposed model shows that there exists only two non-negative equilibrium points;
the disease-free equilibrium E0(

A
δ0
, 0), i.e. when there is no infection (as I = 0), and the endemic

equilibrium E1(S
∗, I∗), i.e. when infection is present in the community. The DFE is locally

asymptotically stable when the basic reproductive number R0 < 1 and globally asymptotically
stable when R1 = αA

(δ0+Aβ)
≤ 1. It is also noted that the value of the threshold R1 can be made less

than or equal to one by decreasing the incidence rate (α) and by increasing the preventive measures
(β) adopted by susceptibles. We have also shown that the system (3) undergoes transcritical
bifurcation at R0 = 1 and there exists an endemic equilibrium when R0 exceeds one. Biologically
this depicts that if the average number of newly infected individuals is more than one then
infection will persist. The endemic equilibrium is locally asymptotically stable for R0 > 1 and
under conditions stated in Theorem 4. We observed that the system changes its stability behavior
around the endemic equilibrium from stable to unstable as bifurcation parameter α changes and
system (3) exhibits Hopf bifurcation near endemic equilibrium E1 for α = α∗ (defined in the
proof of Theorem -C). We have found that system (3) has periodic solution if inequalities as
stated in Theorem -C hold true and there is no periodic solution if b(1 + βA

δ0
) < γ holds true.

The existence of periodic solution shows that the infection may reoccur in the future.

The proposed model depicts the presence of endemic equilibrium point that is not only globally
asymptotically stable but is also independent of the initial values of the susceptible and infected
individuals. This indicates the restriction of the disease within endemic zone. This model shows
a decrease in infected individuals with both decline in incidence rate α and an enhancement of
inhibition rate (preventive measures) i.e., β. It has also been observed that the number of infected
individuals decreases as the treatment rate (a) increases. However it increases as the limitation
on resource (b) increases. This shows that for effective treatment the resource limitation should
be minimized.
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