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Abstract  
 

In this article, the thermal stresses in a hollow thick sphere of functionally graded material 

subjected to non-uniform internal heat generation are obtained as a function of radius to an 

exact solution by using the theory of elasticity. Material properties and heat generation are 

assumed as a function of radius of sphere and Poisson’s ratio as constant. The distribution of 

thermal stresses for different values of the powers of the module of elasticity and varying 

power law index of heat generation is studied. The results are illustrated numerically and 

graphically. 

 

Keywords:  Functionally graded material; non-uniform heat source; thermal stresses and 

thick hollow sphere 

 

AMS 2010 No.: 34B07, 34B40, 35G30, 35K05 

 

 

 

1. Introduction  
 

Functionally graded material are inhomogeneous composites having the properties that vary 

gradually and continuously within the material. FGMs were first developed by a group of 

Japanese scientists to meet the need of destructive environment of the thermal shocks and 

have been widely explored in various engineering applications including space technology, 

optics, biomedicines, etc. (1997). The analytical solution for the stresses in spheres and 

cylinders made of functionally graded materials are  obtained by Lutz and Zimmerman (1996, 

1999) under radial thermal loads, where radially graded materials with linear composition of 

constituent materials were considered. Obata and Noda (1994) studied the one dimensional 
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steady thermal stresses in a functionally graded circular hollow cylinder and a hollow sphere 

using the perturbation method to achieve the effect of the composition of stresses to design 

the optimum FGM hollow circular cylinder and hollow sphere under different assumptions of 

temperature distribution. By the theory of laminated composites, Ootao et al. (1995) treated 

the theoretical analysis of a three dimensional thermal stress problem for a nonhomogeneous 

hollow circular cylinder due to a moving heat source in the axial direction in a transient state.  

Jabbari et al. (2002, 2003) derived the analytical solution for one dimensional and two 

dimensional steady state thermo elastic problem of the functionally graded circular hollow 

cylinder, where the material properties are expressed as functions of radius. Chen and Lin 

(2008) carried out the elastic analysis for a thick cylinder as well as spherical pressure vessel 

made of FGM with exponentially varying properties which has significant role in the stress 

distribution along the radial direction and useful to engineers for design. Shao and Ma (2008) 

carried out thermo mechanical analysis of FGM hollow cylinder subjected to mechanical 

loads and linearly increasing boundary temperature. Thermomechanical properties of 

functionally graded material are temperature independent and vary continuously in the radial 

direction of cylinder.  

 

Nayak et al. (2011) presented an analysis of FGM thick spherical vessel with radially varying 

properties in the form of displacement, strain and stress for thermal mechanical and thermo 

mechanical loads and validated the method of solution and results by means of reducing it to 

isotropic and homogeneous material. Recently Ehsani Farshad and Ehsani Farzad (2012) 

analyzed the one dimensional non steady state temperature distribution in a hollow thick 

cylinder of FGM with non-uniform heat generation by homotopy perturbation method. 

Deshmukh et al. (2012) studied the thermal deflection which is built in edge in a thin hollow 

disc subjected to the activity of heat source which changes its place on the plate surface with 

time. Recently Kedar and Deshmukh (2013) studied the determination of thermal stresses in a 

thin clamped hollow disk under unsteady temperature field due to point heat source.  

 

In the present work an attempt is made to study the quasi-static thermal stresses based on 

uncoupled thermoelasticity for FGM hollow thick sphere with non-uniform internal heat 

generation which is a function of the radial position. We have extended the work of Nayak et 

al. (2011) and non-uniform heat generation is as Farshad Ehsani and Farzad Ehsani (2012) in 

the form of power law function of radius and exact analytical solutions are obtained for radial 

and tangential stresses by using the theory of elasticity. Numerical solutions are presented for 

the material rich of ceramic Zirconia. 

 

 

2. Formulation of Problem 
 

Temperature distribution 

 

Consider the FGM hollow sphere with inner radius   and outer radius  . The properties in 

spherical coordinate   and   direction are identical. The sphere is graded in the radial 

direction so that the properties of the material, modulus of elasticity, thermal expansion 

coefficient and thermal conductivity are the function of  . Assume that the non-uniform heat 

is generated within it and it is also a function of    The following power law functions of 

radius in the radial direction are considered as Nayak et al. (2011) and Farshad Ehsani and 

Farzad Ehsani (2012)  

 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 33

https://digitalcommons.pvamu.edu/aam/vol10/iss1/33



554                                                                                                                                                  S.P. Pawar et al. 

 
 

 
 

Modulus of elasticity:                      1

0

m
rEE  , 

Thermal conductivity:                      1

0

n
rkk  , 

Coefficient of thermal Expansion:  2

0

m

tt raa  ,                               

Non- uniform heat generation:         2

0

n
rqq  ,              (2.1) 

 

where, 
2211 ,, nandmnm are parameters and  the 

0E , 0ta  and 
0k   are the material constants for 

the modulus of elasticity, thermal expansion coefficient, thermal conductivity and with non-

uniform heat generation q  3/ mW  within the sphere and 
0q  3/ mW  is heat generation 

constant which is  the magnitude of heat generation in homogeneous and isotropic hollow 

sphere. 

 

The heat conduction equation in the steady state condition for one dimensional spherical 

coordinates and first kind thermal boundary condition as in Nayak et al. (2011) and 

introducing non-uniform heat generation term expressed in (2.1) is obtained as Ozisik (1968), 

 
 

  
 

  
0     

  
  

  
1     

    ,                 ,  

 (2.2) 

 

subjected to boundary conditions 

 

     ,    at        ,                                                                                                   (2.3) 

     ,    at        .  (2.4) 

 

 

Problem of Thermoelasticity 

 

The properties in spherical coordinate    and   direction are identical and   denotes the 

displacement in the radial direction, the strain-displacement relations are as Noda et al. 

(2003), 

 

    
  

  
 ,      

 

 
 .  (2.5) 

 

The corresponding thermo elastic stress-strain relation or Hooke’s relations are 

 

             (     )   ,  (2.6) 

                 (     )   ,    (2.7) 

 

where      ,             are the stresses in the radial and tangential direction and     and 

    are strains in radial and tangential direction   is the temperature change determined from 

the heat conduction equation (2.2),    is the coefficient of thermal expansion,   is the strain 

dilatation  and    and µ are the Lame constants related to the modulus of elasticity    and the 

Poisson’s ratio  as, 

 

  
  

(   )(    )
    ,    

 

 (   )
 .  (2.8) 
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The equilibrium equation in the radial direction, excluding the body force and the inertia term 

is, 

 

 
    

  
  (       )   .    (2.9) 

 

The stress components in terms of the displacement    are obtained by using (2.5)-(2.8) as 

Noda et al. (2003)  

 

    
 

(   )(    )
0(   )

  

  
   

 

 
 (   )   1,   (2.10) 

     
 

(   )(    )
0 

  

  
 
 

 
 (   )   1 .  (2.11) 

 

The sphere is subjected to the traction free boundary conditions 

 

             at      and     .   (2.12) 

 

The equations (2.1) to (2.12) constitute the mathematical formulation of the problem.  

 

3. Solutions 
 

Temperature distribution function  
 

The solution of (2.2) is obtained as,  

 

For        

  

 ( )     
           

         ,  (3.1) 

 

where,      

                                 

   
   

  (    )(       )
 ,  (3.2) 

    
  

  (    )
  .  (3.3) 

 

The constant of integration can be determined by using (2.3) and (2.4) in (3.1) as 

 

      (    ) 2
(     )   [ 

                ]

(             )
3,  (3.4) 

      
(     ) 

     

(             )
   2 

        
{                 }      

(             )
3 .  (3.5) 

The parameters    and    are chosen in such a way that the denominator is nonzero, the 

temperature distribution function is obtained as 

 

 ( )      
(     )( 

            )

(             )
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For      ,  

 

 ( )     
              ,  (3.7) 

   
   

  (    ) 
 .  (3.8) 

 

Using the boundary condition (2.3) and (2.4) one obtains the constants 

 

   
  

  
  ,  (3.9) 

     {
(     )   [ 
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} ,   (3.10) 

      
(     )   
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(           )   
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(     )  

 

 

  
 

 

   {( 
          )  

{           }  
 

 

  
 

 

}.      (3.12) 

 

Solution of Thermoelastic Equations 

 

The equilibrium equation (2.9) is converted in terms of displacement    by using the 

functional relations (2.1) and using equations (2.10) and (2.11) as 

 

For       

 

(   )

(   )
  
   

   
 
(   )

(   )
(    ) 

  

  
 
 (   )

(   )
{
(       )

(   )
}   

                                                              

   
   

   
   

  

  
                               .  (3.13) 

 

For       

 

   
   

   
   

  

  
       

           
           

    ,   (3.14) 

 

where, 

 

  .
   

   
/ ,    (    ),       2

(       )

(   )
3 ,   (3.15) 

        ,             - ,  (3.16) 

         *          + ,  (3.17) 

       (     ) ,    (3.18) 

        ,          - ,     (3.19) 

          *          + ,   (3.20) 
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      *   (     )  + .  (3.21) 

 

The general solutions of equations (3.13) and (3.14) which are non-homogeneous differential 

equations are obtained by adding a particular solution to the complimentary solution of 

homogeneous form of them. The complementary function    is by letting 

 

  ( )    
 . 

 (3.22) 

Putting this in homogeneous form of (3.13) and (3.14) one gets  

 

   
  

   
,   -    

 

  
,   -         , 

     (   )                    ,  

  (   )        ,  

    (   )     .  (3.23) 

 

Equation (3.23) has two roots  

 

     
(   ) √(   )       

  
 .    (3.24) 

 

Thus, the complementary function for (3.13) and (3.14) are as  

 

  ( )     
      

  ,    (3.25) 

  ( )     
      

  .    (3.26) 

 

The particular solution    ( )  for (3.13) and (3.14) are considered in the form 

 

  ( )      
              

          
    ,  (3.27) 

  ( )      
        (         )      .  (3.28) 

 

Substituting equation (3.27) in (3.13) and (3.28) in (3.14), and equating the coefficient of 

identical powers and using the values of L, M, N and        and   are obtained from (3.16) - 

(3.21) as 

 

   
     (             )

(          ), (          )  -  
 ,  (3.29) 

   
     (          )

(     ), (       )  -  
   ,     

  

  (    )
 ,  (3.30) 

   
     (     )

(    )(     )  
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(       )* (       )  +  
 ,  (3.32) 

   
     (     )

(    ),     -  
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 ,    (3.33) 
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,      (     )      - ,(     )(     )  -      (     ), (     )  -

,(    ),     -   - 
 .    (3.34) 

 

The general solution  ( ) of (3.13) is obtained for       as 

 

 ( )     
      

       
              

          
    .    (3.35) 

 

The general solution  ( ) of (3.14) for       is 

 

 ( )     
      

       
        (         )      .   (3.36) 

 

Using (3.35) in (2.10) and (2.11) radial and tangential stress functions obtained  

 

for       , as: 

 

    
  

(   )(    )
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        *(   )     +   
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     -.    

(3.38) 

 

Using (3.36) in (2.10) and (2.11) one gets 

 

for       , as 

 

    
  

(   )(    )
,*(   )     +   

        *(   )     +   
        

                     ,*(       )  (       ) +   (   )     - 
           

                     ,*(   )   (   )+   (   )     (   )   - 
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        -                    (    )  
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  (3.40) 
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Obtaining constants    ,       ,        by using the condition  (2.12)  and then one gets the 

expressions for thermal stress function from (3.37) to (3.40)  

 

for       as: 
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4.  Validation 
 

If, in the expression for radial stress and tangential stress one substitutes   ,  ,    and 

   equal to zero, one gets the expression for radial stress and tangential stress in an isotropic 

and homogeneous hollow sphere with uniform volumetric heat generation. This fact can be 

used for validation of the problem. 

 

When one substitute                 in equation (2.1),         and   become 

           and    which are modulus of elasticity, coefficient of thermal expansion, thermal 

conductivity and constant volumetric heat generation respectively for an isotropic and 

homogeneous material. From equations (3.4), (3.5), (3.24), (3.29) - (2.34), (3.41) and (3.42) 

one obtains, 
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If one puts      in equations (4.1) and (4.2), one verifies that the results obtained will be 

the expressions for the radial and the tangential stresses for an isotropic and homogeneous 

hollow thick sphere without heat generation. The results obtained for thermal stresses with 

non-uniform heat generation are validated with the results of   Nayak et al. (2011) by putting 

    and     equal to zero in the expressions (3.41) to (3.44) respectively. 

 

5. Special case and numerical calculations 
 

To construct the mathematical thermoelastic model of a FG thick hollow sphere one 

considers a thermal gradient through its radial direction.  In numerical representative results 

are presented for rich of ceramic (Zirconia) material. The FG hollow thick vessel of single 

constituent with 

 

Inner radius:       , 

Outer radius:             

Poisson’s ratio is:       . , 

Inner surface of the hollow sphere is fixed at:                 
   , 

Outer surface is kept at:                                                  
   , 

 

         
 .  

 

The thermo mechanical properties of ceramic Zirconia are,  

 

          ,  

         
      , 

            .  

 

Graphical illustrations 

 

For graphical illustrations of this problem, one considers following two cases. 

 

Case 1:  

 

In the first part, the power index for the modulus of elasticity, coefficient of thermal 

expansion, heat conduction coefficient and heat generation functional are assumed to be 

identical               . For                , one uses the temperature 

distribution obtained by (3.6) and thermal stress components which obtained in equations 

(3.41) and (3.42). While for                   , the temperature distribution and 

thermal stress components are determined by using the expressions (3.12), (3.43) and (3.44) 

respectively. The temperature distribution and thermal stresses with non-uniform heat 

generation are represented graphically and discussed as a particular case with variation 

in power index parameter as                             . 

 

Figure 1 represents the variation in the temperature with radius in the presence of non-

uniform heat source within the sphere. The temperature increases as power law decreases for 

12
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             but it is interesting to note that the temperature shows small variation for the 

parameter      when one compares results with the other parameter values.  

 

Figure 2 represents the radial stress distribution with heat generation within it. The radial 

stress is zero on the surfaces, due to assumed mechanical boundary conditions. The radial 

stress is compressive throughout the sphere. It is observed that the compression shifts towards 

the outer surface as parameters decreases as 3, 2, 1 and -2. For      the variation can be 

observed as the case of the homogeneous and isotropic material.  

 

It is interesting to note that the radial stress is tensile in nature for      as shown in a 

Figure 3. 

 

Figure 4 gives the variation in tangential stress with radius in the presence of non-uniform 

source of heat inside the sphere. The stress is decreases from inner to outer surface. The curve 

associated some values of a parameter the variation of tangential is almost uniform across the 

radius. 

 

 
Figure 1. Temperature distribution with radius for                  

 

 

 
Figure 2. Radial stress with radius for              
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Figure 3. Radial stress distribution with radius for       

 

 
Figure 4. Tangential stress distribution with radius  

 

 

Case 2:  

 

In second part of the analysis, the temperature distribution and thermal stresses are 

represented graphically with variation in the power index parameter of heat generation    for 

the fixed values of the other power index parameters of modulus of elasticity, coefficient of 

thermal expansion, heat conduction coefficient              
 

Figures 5, 6 and 7 represents the radial stress distribution along the radial direction with 

variation in the power law index of heat generation functional. In Figure 5 stress function is 

plotted with radius for            with varying the value of   . For            

the stress is compressive within the sphere and as the values of    increase the nature of 

stress changes. For greater values of    the stress become tensile for the region up to radius 

about        and remaining part is compressive. Figure 6 shows the variation in radial 

stress with                and with varying the value of   . It gives the same result 

with small variation in the values of stress. For              the result is totally 

different which is shown in Figure 7. When one increases the value of heat generation 

parameter    , the radial stresses change their nature from compression to tensile. In Figure 8 

and Figure 9 the tangential s tress distribution is plotted with the radial direction with respect 
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to the change in the power index of heat generation parameter. The nature of the stresses 

varies with the variation in the value of parameter   . 

 

 
Figure 5. Radial stresses with varying heat generation parameter 

 

 
Figure 6. Radial stresses with varying heat generation parameter 

 

 
Figure 7. Radial stress with varying heat generation parameter for      
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Figure 8: Tangential stress distribution with radius for varying      

 

 
Figure 9. Tangential stress distribution with radius for varying      

 

 

6. Conclusion 
 

In this article exact analytical solutions are obtained for the temperature distribution and 

thermal stresses with a non-uniform internal heat generation when the inner and outer surface 
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mathematical model is constructed for hollow sphere of Zirconia with material properties as 

specified in the numerical calculations.  

 

In this study the attempt is made to observe the variation in the thermal stresses in presence 

of variable heat source which varying from the inner to the outer surface. It is observed that 

in the presence of the source in the present form the temperature increases as the power law 

index decreases. In presence of the heat source the radial stress is compressive inside sphere 

as per the earlier results as Nayak et al. (2011) but in our study it is found that the 

compression shifts towards the outer surface. It is Interesting to observe that for      the 
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nature of radial stress becomes tensile which is a new finding. The tangential stress is 

decreases from inner to outer surface.  

 

When the power index of the heat source function is varied keeping the power indices of 

material properties fixed, the radial stress switches from compression to tensile for      in 

the region        while for other part it remains under compression. The nature of the 

tangential stress changes with change in the power index parameter in source function.  

In this article the temperature distribution and thermal stresses in an FGM hollow sphere is 

obtained with non-uniform heat source inside it. The effect of change in power index 

parameter of heat source on thermal stress keeping other parameters fixed is also discussed 

and compared with the results of Nayak et al. (2011). The results can be generalized for other 

parameter values. 

 

This is a novel approach to study the thermal stresses in an FGM hollow sphere with non-

uniform heat generation within the sphere and the results presented in this problem are new 

and not discussed previously in the open literature.   
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