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Abstract 

 
In this paper a method to obtain a non-dominated point for the multi-objective transportation 

problem is presented. The superiority of this method over the other existing methods is that the 

presented non-dominated point is the closest solution to the ideal solution of that problem. The 

presented method does not need to have the ideal point and other parameters to find this solution. 

Also, the calculative load of this method is less than other methods in the literature. 
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1.  Introduction 
 

One of the undeniable problems in the real world is that of transportation. In general terms, the 

transportation model presents a plan with the least expenses to transfer goods from some places 

to some destinations. In a lot of practical problems the transportation formulation in single-

objective form cannot be appropriate, because most of the problems include several objectives 

like minimizing the total cost, minimizing the total time etc. The transportation model was first 

developed by Hitchcock (1941). To obtain all of the non-dominated solutions of a multi-

objective linear transportation problem an algorithm was introduced by Isermann (1979). Such 

problems can be solved by programming multi-objective linear techniques like parametric 
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method, the adjacent point method and the adjacent basic point method (see Gal (1975) and 

Zelenv (1974)). Martnez-Salazar (2014) solved a bi-objective transportation optimization 

problem using a heuristic algorithm. In Hongwei (2010) and Kundu (2013). Some methods to 

solve multi-objective transportation optimization problem were presented. It is an undeniable 

fact that among all of the non-dominated solutions the solution with the least distance from the 

ideal solution can be considered decision-maker, and in the second part of this paper a method is 

presented to calculate the closest solution to the ideal solution for multi-objective transportation 

problems. In the following, the convergence of the method is discussed. In the third part two  

examples of the proposed method and the other existing methods are solved, the optimal solution 

and the calculative load of the methods are also compared. The results are provided in the final 

part.  

 

2. Problem Formulation 
 

The general form of a multi-objective transportation problem is as follows: 

 

                         ( )  ∑∑   
                            

 

   

 

   

                                                                  

∑                           

 

   

∑                          

 

   

 

                                        

 

where the subscript on    and the superscript on    
  are used to identify the penalty criterion. 

Without loss of generality it may be assumed throughout this paper that      for all i,      

for all j,    
    for all (i, j) and ∑    ∑   

 
   

 
   . Notice that the balance condition 

∑   ∑  

 

   

 

   

 

is both a necessary and sufficient condition for the existence of a feasible solution of problem   . 

Definition 2.1 (Ehrgott (2005)). 

    is an efficient solution for    if there is no other   belonged to the feasible region of problem 

   such that:  ( )    ( 
 )         and   ( )    ( 

 ) for some j. If 
*x  is an efficient 

solution for    then  (  )  (  ( 
 )     ( 

 )) is a non-dominated point for   . 

Definition 2.2 (Ehrgott (2005)). 
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    (  
      

 ) is the ideal point of    if    
       ( )

   
 for        . 

 

Definition 2.3. 

    is a supper-efficient for    if 

1)    is efficient 

2)  (  ) has the least distance to the ideal point. 

If    is a supper efficient then  (  ) is called the super non-dominated point. In the following it 

is shown that a single-objective linear problem can be solved instead of a multi-objective 

problem    and the optimal solution which is obtained from the new problem is the super-

efficient solution for problem   . 

Assume   ( )  ∑ ∑    
    

 
   

 
    and consider the following problem: 

                          ( )    ( )    ( )      ( ) 
                                                                  

∑                          

 

   

 

∑                           

 

   

                                        

 

Theorem 2.1.  

Every optimal solution for problem    is an efficient solution for problem   .  

 

Proof:  

 

Assume that    is an optimal solution of   , but not the efficient solution of   , so, there is a 

feasible solution (the feasible region of both problems is identical) like   that dominates   , that 

is,   ( )    ( 
 )         and   ( )    ( 

 ) for some j, adding the side of the inequalities 

there is:   ( )      ( )    ( 
 )      ( 

 ), which is in contrast with    to optimal for 

  . So,    is an efficient point for   . 

 

Definition 2.4.   

 

If    (  
      

 ) is the ideal solution of problem   , the distance of each point of the objective  

space from the ideal point (with the norm of L1) is considered as following: 

3
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    ∑|     
 | 

 

   

 

Theorem 2.2.  

 

The problem of finding the super-efficient solution (the closest point to the ideal point for the 

multi-objective transportation problem) for the problem    is equal to finding the optimal 

solution for the problem   . 

 
Proof:   

 

If S is the feasible region of problem   , the problem of the closest solution to the 

ideal solution is considered as following: 

 

        ∑|     
 | 

 

   

                                       

 

 

Because    is the ideal point of   , then for each     and for all i, 

 

 

  
    ( )  |     

 |       
 

         ∑(     
 )  

 

   

∑  

 

   

 ∑  
 

 

   

 
 

 

Since the vector   is specified and obtained, then it can be assumed that 

 

   ∑  
 

 

   

 

 

is a fixed value. So, for each     there is 

 

     {   
   

   ∑|     
 |  ∑  

 

   

  

 

   

}  {      
               

∑  

 

   

}  

  

This is the favorite result and the proof is complete. 

 

3. Numerical example  
 

Example 1.  Consider the following two-objective transportation problem: 
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         ∑   

 

   

                               

                                                                                                                                     ( ) 

 

Lushu et al. (2000) computed (163,190) (integer solution) or (163.33, 190.83) as the optimal 

compromise value of the objective vector (     ). Ringuest et al. (1978). Computed (156, 200) 

as the most preferred value of the objective vector (     ). Bit et al. (1992) obtained (160, 195) 

(integer solution) or (160.8591, 193.9260) as the optimal compromise value of the objective 

vector (     ).  

 

For solving the problem above with the presented method this paper, we have to solve the 

following problem: 

                                                                              
                                                                

   
                          

             ∑   

 

   

   ∑   

 

   

        ∑   

 

   

                                                             

            ∑   

 

   

         ∑   

 

   

         ∑   

 

   

         ∑   

 

   

                                

                                                                                         

 

The optimal solution 
*x is obtained: 

                   (                                               ) 

                                                                         

                                                                                         
                                                                                          

 

By Theorem 2.1,  (  )  (  ( 
 )   ( 

 )  (       ) is a non-dominated point for the 

problem (1). By Definition 2.2, obtained    (       ) as the ideal point of the problem (1). 
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The calculated non-dominated points of the problem (1) by various other methods and their 

distance from the ideal point are presented in the following table: 

 

Table 1. Result of Analysis for Example 1.
 

Method    Lusha      Ringues       Bit Our method 

  (     )   (163,190) (156,200) (160,195) (176,175) 

  ∑|     
 |

 

   

     43      46          45     41 

                   

Table 1 shows that the obtained solution by the presented method has the minimum from the 

ideal point. 

Example 2.  

In the following transportation objective problem obtained in Bit (1992), all of the non-

dominated points and their distances to the ideal point have been collected in a table using a 

method known as Figueria. 

 

                                                                
                                                               

         

                                                                                                                                    
                                                                       
                                                                        

                                                                               
                                                                                                                      

 

Solving both problems individually, the ideal solution was obtained (145,179). All of the non-

dominated points of the problem which obtained by the Figueria method and the distance of 

these points to the ideal point are shown in the following table using the d  meter.  

Regarding the Table 2, points of *              + are the non-dominated points which have the 

least distance to the ideal point. To obtain each of the non-dominated points using the Figueria 

method, complicated calculations are required, while using the proposed method solving a 

transportation linear programming problem which its target function is the sum of two given 

target functions, i.e.       and its feasible region is the feasible region of the two-objective 

problem, the solution of    (       ) is introduced as the optimized solution which is 

included in the points having the least distance to the ideal point. More surprising fact is that if 

the distance from the ideal point is being considered with the norm of    the    is the only point 

having the least distance from the ideal point. 
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Table 2. Result of Analysis for Example 2
  

Point   (  )   (  )   ∑ |     
 |

 

   
 

1x  145 215 36 

2x  149 211 36 

3x  153 207 36 

4x  157 203 36 

5x  161 199 36 

6x  167 195 38 

7x  173 191 40 

8x  179 187 42 

9x  185 183 39 

10x  191 179 46 

 

 

4. Conclusion 

 

As in the case of a linear transportation programming problem a   non-dominated solution for the 

multi-objective transportation problem which has the least distance to the ideal point, can be 

obtained. Even through the method of solution may be relatively complicated and has a great 

deal of calculative load.  The ideal solution itself to problem (2.2) and any other parameters may 

not be needed. This represents an advantage. 
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