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Abstract 
 

We intend to study a particle fluid suspension model for blood flow through an axially 

asymmetric but radially symmetric mild stenosis in the annular region of an inclined tapered 

artery and a co-axial catheter in a suitable flow geometry has been considered to investigate 

the influence of velocity slip at the stenotic wall as well as hematocrit, shape parameter. The 

model also includes the tapering effect and inclination of the artery. Expressions for the flow 

variables have been derived analytically and their variations with various flow parameters are 

represented graphically. The results for the different values of the parameters involved show 

that the impedance to flow increases with stenosis height, hematocrit and catheter radius. 

However, it decreases with the shape parameter, angle of inclination of artery and velocity 

slip at the stenotic wall. The present analysis is an extension of the work by Chakraborty et al. 

(2011) and also includes several theoretical models of arterial stenosis in the uniform, 

tapering and catheterized tubes, with the consideration of velocity slip or zero slip at the 

vessel wall. Finally, some biological implications of this theoretical modeling are included in 

brief. 

 

Keywords: Blood; hematocrit; catheter; impedance; shear stress; stenosis; slip; taper angle 
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1. Introduction 
 

Atherosclerosis (stenosis) is a wide spread Cardiovascular (CVS) disease. Majority of deaths 

in developed countries result from CVS diseases and most of which are associated with 

abnormal flow in arteries (Ku, 1997). Stenosis is an abnormal and unnatural growth that 

develops at one or more locations of Cardiovascular System, under diseased conditions and 

causes serious circulatory disorders (Guyton, 1970; Young, 1968). There is no exact 
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information regarding such unfamiliar growth at an arterial wall. However, due to the deposits 

of atherosclerotic plaques, cholesterol, lipids, fats etc., at an innermost arterial wall, the kind 

of formation may develop at the vessel wall.  

 

It is reported that circulatory disorders could be responsible for over seventy five percent of 

all deaths (Srivastava et al. 2010). These circulatory disorders may include (i) the narrowing 

in body passage or orifice, leading to the reduction in nutrient supply an impediment to blood 

flow in constricted artery regions, (ii) blockage of artery, in turning the flow irregular and 

causing abnormality of blood flow and (iii) presence of stenosis at one or more major blood 

vessels, supplying blood to heart or brain could lead to various arterial and Cardiovascular 

diseases like, angina pectoris, myocardial infarction, cerebral accident, coronary thrombosis, 

heart attack, strokes, thrombosis etc. (Young, 1968). In view of the above, blood flow 

modeling in arterial system is a topic of recent interest to theoretical and clinical investigators. 

 

Blood is a suspension of different cells or corpuscles in plasma. Most of the models on blood 

flow have dealt with a one phase model (Womersley, 1955; Lightfoot, 1974; Sud and Sekhon, 

1985; Young, 1968). As blood is a suspension, a two phase model seems to be more 

appropriate. At low shear rates and while flowing in narrow channels, blood behaves as a non-

Newtonian fluid (Merril and Pelletier, 1967; Charm and Kurland, 1974). The theoretical 

results of Haynes (1960) indicate that blood cannot be considered as a single phase 

homogeneous viscous fluid while flowing through narrow arteries (of diameter ≤ 1000µm). 

Srivastava and Srivastava (1983) have mentioned that blood can be suitably represented by a 

macroscopic two-phase model (i.e., a suspension of red cells in plasma) in small vessels (of 

diameter ≤ 2400µm). Recently, Chakraborty et al. (2011) have considered a two-phase model 

for blood flow through a constricted artery. 

 

In most of the aforementioned works, blood vessels are considered horizontal. It is well 

known that many ducts in the human physiological systems are not horizontal, rather they 

have some inclination to the axis. The force of gravity comes into the flow field due to the 

consideration as an inclined tube. Steady blood flow through an inclined non-uniform tube 

with multiple stenoses has been proposed by Maruti Prasad and 

Radhakrishnachandramacharya (2008). Chakraborty et al. (2011) have proposed a blood flow 

model through an inclined tube with stenosis. 

 

Normally, in circulatory systems arteries are assumed to be clear pipes and blood can flow 

easily without any hindrance and performs specific functions like, transporting nutrients, 

maintaining metabolic processes and regulating body balance (Guyton, 1970). The study of 

circulatory systems is pretty old and the quest for knowing the living world, especially the 

human physiological systems had its beginning in the long past (Fung, 1981). In fact, both 

Aristotle and Leonardo the Vinci were interested in blood flow through human circulatory 

systems. Many investigators have proposed theoretical models on blood flow from various 

considerations (Fung, 1981). Blood flow through stenosed arteries with axially symmetric 

stenosis, have been proposed by many researchers (Young, 1968; MacDonald, 1979). Flow of 

blood in obstructed arteries with axially non-symmetrical stenosis is investigated by 

Mekheimer and Kothari (2010), Chakraborty et al. (2011). Pressure-flow relationship alters 

the blood flow in a stenosed artery. Sometimes, for some clinical purposes, catheters are 

inserted in arteries. The pressure-flow relationship changes appreciably when a catheter is 

inserted in a stenosed artery. Blood flow models through catheterized stenosed artery have 

been proposed by Mekheimer and Kothari (2010), Chakraborty et al. (2011). 

 

In human systems, there prevail different geometries in blood vessels such as, circular, 

branched, bifurcated, tapered, inclined etc. (Guyton, 1970). It could be important to 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 28

https://digitalcommons.pvamu.edu/aam/vol10/iss1/28



476                                                                                                                 Devajyoti Biswas and Moumita Paul 

 

investigate blood flow through an inclined tapered artery for Newtonian fluid (Biswas and 

Paul, 2012) and for the two phase flow, in the present study. 

 

Recently, Chakraborty et al. (2011) have used the slip condition in their two-phase stenosed, 

but to the authors knowledge, no theoretical or experimental work has been done to analyze 

the effects of velocity slip at the stenotic wall on macroscopic two-phase (plasma red-cell) 

blood flow model, in an inclined constricted catheterized tapering artery.  

 

In the present analysis, an effort has been made to study the effects of velocity slip (at the 

stenotic vessel wall), hematocrit, tapering tube, catheterization and inclination of the artery on 

the flow variables for annular blood flow through an inclined, catheterized tapering artery 

with the formation of an axially asymmetric mild stenosis, by considering blood to behave as 

a particle-fluid suspension. 

 

2. Mathematical Formulation: 
 

We consider a steady, laminar and fully developed flow of blood (supposed to be 

incompressible) through the annular region of an inclined tapering circular tube and a co-axial 

rigid catheter, with the formation of an axially asymmetric mild stenosis. The flow geometry 

of the inclined catheterized tapering vessel and the non-axisymmetrical stenosis but radially 

symmetric growth, are presented in Figure 1 and 2 respectively. 

 

                    

The geometry of an arterial asymmetric stenosis, developed along a tapered wall, can be 

reproduced (Mekheimer and Kothari, 2008) as      

               
1

0 0( ) ( )[1 ( ( ) ( ) )], ,
n nR z b z A L z d z d d z d L


       
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                ( ), ,b z otherwise
                                                                           (1) 

with  

0( ) ( ),b z R z 
 

where ( )b z
 
represents the radius of the tapered arterial segment along  the stenotic portion,  

ξ(=tanΦ) is the tapering parameter, Φ the tapering angle,  ( )R z is the radius of the stenosed 

region, 0R is the radius of the artery in the non-stenotic region, 1R  is the catheter radius,  

 

                       
 

( 2)n   is a parameter (treated as shape parameter), signifying the stenosis shape which 

includes the symmetric stenosis case when n=2, and, (r,z) are the radial and axial co-

ordinates,  the respective quantities 0L , d  and L  denote the stenosis  length, its location and 

the total length of the obstructed artery. The parameter  A  is taken as 

 
/( 1)

0 0

,
( 1)

n n

n

n
A

R L n

 




                                                                                                                                      (2) 

where   is the maximum height of the stenosis at a distance 
0

1/( 1)
.

n

L
z d

n 
   

 

The body fluid blood is assumed to behave like a two fluid model that is a mixture of 

erythrocytes and plasma. The equations describing the steady flow of a two phase model, 

comprising the fluid phase and particle phase of blood may be expressed as (Srivastava and 

Srivastava, 1983) as 
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(1 ) ( ) (1 )f f ff

p
C v u v C

r z r


  
    

         

         

2 2

2 2

1 1
(1 ) ( )( ) ( ) (1 ) cos ,f p fs fC C v CS v v C g

r r rr z
  

  
        

 
           (3) 

                                                                                                                                                   

(1 ) ( ) (1 )f f ff

p
C v u u C

r z z


  
    

       

        

2 2

2 2

1
(1 ) ( )( ) ( ) (1 ) sin ,f p fs fC C u CS u u C g

r rr z
  

  
       

 
                  (4)                                              

               

   

1
(1 ) (1 ) (1 ) 0.f f fC v C u C v

r z r

 
     

                                                                 (5)    

                                                                                               

Particulate phase: 

 

( ) ( ) cos ,p p p f pp p

p
C v u v C CS v v C g

r z r
  

  
     

                                           (6)

( ) ( ) sin ,p p p f pp p

p
C v u u C CS u u C g

r z z
  

  
     

  
                                        (7)

 
1

( ) ( ) ( ) 0,p p pCv Cu Cv
r z r

 
  

                                                                                    (8) 

 

where ( , )r z  are (radial, axial)  coordinates, ( , )f pu u  and ( , )f pv v  are the respective axial and 

radial velocities of  fluid and particle phases, ( , )f p  are corresponding densities of two 

stages, ( )s s C   is the suspension viscosity, C denotes the constant volume fraction 

density of the particles (called hematocrit), p  is the pressure, S  is the drag coefficient of 

interaction between these two (fluid, particle) phases , g  is the acceleration due to gravity and 

  is the inclination of the tube to the horizontal. The expression for the drag coefficient of 

interaction S  and empirical relation for the viscosity of suspension ,s  may be taken 

(Srivastava, 1995; 2002) as 

 
1

2 2
0

2 2

0

9 [4 3(8 3 ) 3 ]
,

2 (2 3 )

C C C
S

Ca

   



                                                                                  (9)      

     

0 ,
1

s
qC


 


                                                                                                               (10)    

     
01107

0.07exp[2.49 exp( 1.69 )],
K

q C C
T

                                                               (11) 

 

where 0a  is the particle radius, 0  is the plasma viscosity  and T is measured in absolute 

temperature. 

 

We introduce the following dimensionless quantities in the foregoing analysis: 
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2
0 0 0 0 0 00 0 0

0
0 0 00

0

2

00 0
0

0

, , , , , , ,
/

( , )
, ( , ) , ( , ) ( , ) / , ,

(4(1 ) )

, ,
(4 ) 4

n f p

f p

f

p

d p

z d r R dp Sd zz d r R S
dzR R R R R q R

qu u
A AR u u L L L L R F

U C g

q q R
G U

C g

 
 

 



 

       

   


 

                        (12) 

 

where 0U  is the maximum velocity at the axis of a horizontal tube with radius 0R  and 0
q  is 

the negative of the pressure gradient, in case of an unobstructed uniform horizontal tube. 

 

Due to the non-linearity of the convective acceleration terms, integration of equations (3-8) is 

a difficult task. It is already reported by many investigators (Srivastava, 1995, 2002; Sankar 

and Lee, 2009) that the radial velocity being very small for the case of a mild stenosis

0( / 1)R  , subject to additional conditions  

 
1

1
0Re( / ) 1nn L    and 

1

1
0 0/ ~O(1),nn R L   

 

can be neglected. 

 

In view of the above simplified form of above partial equations (3)-(8), governing the steady 

flow of a particulate (particle- fluid) suspension with the above parameters, can be expressed 

in the following coupled equations   

 

( )
(1 ) (1 ) ( ) ( ) (1 ) sin ,

fs
p f f

d p C u
C C r CS u u C g

d z r r r


 

 
      

 
                      (13) 

( ) sin ,f p p

d p
C CS u u C g

d z
                                                                                    (14) 

 

In integrating equations (13-14), boundary conditions employed are the following:  

 

 u     at     ,f su r R                                                                                                       (15) 

1pu 0, =finite    at     ,f u r R                                                                                               (16) 

 

where su   is the slip velocity at the tapered constricted wall (Biswas and Chakraborty, 2009). 

Using the non-dimensional quantities as included in equation (12), the following equations 

have been obtained in dimensionless form. 

 

The flow geometry expressed in equation (1) can be written as 

1

0 0(1 )[1 ( ( ) ( ) )], ,n nR z A L z d z d d z d L         
 

            (1 ), .z otherwise 
                                                                                                  (17)

 

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 28

https://digitalcommons.pvamu.edu/aam/vol10/iss1/28



480                                                                                                                 Devajyoti Biswas and Moumita Paul 

 

The equations (13, 14) governing the fluid flow reduce to the forms 

4(1 ) (1 ) ( ) ( ) sin / ,
fs

p f

udp
C C r CS u u F

dz r r r





     

 
                                         (18)       

4 ( ) sin / .f p

dp
C CS u u G

dz
                                                                                        (19) 

Boundary conditions inserted in equations (15, 16), for integrating the above (18-19) 

equations, reduce to the forms 

    at     ,f su u r R 
                                                                                                       (20) 

10, =finite    at     .f pu u r R 
                                                                                        (21) 

The non-dimensional flow rate Q can be expressed as 

1

4
0 00

4 [(1 ) ] ,
( ) /8

R

f p

R

Q
Q r C u Cu dr

R q 
                                                                  (22) 

where   

 

1

2 [(1 ) ]

R

f p

R

Q r C u Cu dr     

 

is the volumetric flow ratio.  

 

The non-dimensional shear stress at a radial distance r is given by 

 

00

(1 )
.

2/ 2

f fs
f

uC

rq R





  


                                                                                       (23) 

 

3. Integrals  

 

The expressions of velocity for fluid and particle phases in non-dimensional forms are 

obtained by straight forward integration of equations (18, 19) as follows: 

 

1

1

log( / )

log( / )
f s

R r
u u

R R
         

               
2 2 2

1 1 1

1

log( / ) log( / ) log( / )1
{ }[ ],

(1 ) log( / )s

R R r r R R R r Rdp
h

C dz R R

 
 


                        (24)                  

                                                                                                              
2 2 2

1 1 1 1

1 1

log( / ) log( / ) log( / ) log( / )1
{ }[ ]

log( / ) (1 ) log( / )
p s

s

R r R R r r R R R r Rdp
u u h

R R C dz R R

 
  


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4

[ ],
dp

k C
CS dz

                                                                                                       (25) 

 

where  

 

sin sin 1 1 1
, , .

4 4
h k

H G H F G

 
     

 

The non-dimensional flow rate from equation (22), is given by  

 
2

2 2

1 2 2

1 1

2 1
( )[ ]

log( / )
s

R
Q R R u

R R R R
  


                                                

              
2 2 2 2

2 2 2 21 1
1 1

1

( ) ( ) 8
{ }[( ) ] ( )( ).

(1 ) log( / )s

R R R Rdp dp
h R R R R k C

C dz R R S dz

 
      


                   (26) 

 

The expression for pressure gradient  
dp

dz
 can be obtained directly from equation (26) as 

(1 ) ( ),s

dp
C I z

dz
                                                                                                          (27) 

 

Where 

 
2 2

1

2 2

1

( )[ ]
( )

( )( )

sQ R R Mu N
I z

R R N

 



   


 
 

 

And 

 
2

2 2

1 1

8 (1 )8 2 1
, , , ,

(1 ) log( / )

s

s

C Ch k R
M

C S S R R R R


  




    

 

2 2
2 2 1

1

1

( )
( ) .

log( / )

R R
N R R

R R


    

 

From equation (27), the expression for the pressure drop, p across the stenosis, may be 

obtained as  

 

0

( )

L
dp

p dz
dz

    

             
0

(1 ) ( ) .

L

sC I Z dz                                                                                                     (28) 

 

The resistance to flow (impedance) is given by (using equation (28)) 

 

1
(1 ) ( ),s

p
C J z

Q Q
 


                                                                                                 (29) 

 

where       
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0

( ) ( )

L

J z I z dz   

                        
0

0

1 1

0

( ) ( ) ( ) .

d Ld L

R R

d d L

I z dz I z dz I z dz



 



      

 

The first and the third integrals in the expression for J(z) are straight forward whereas the 

analytic evaluation of the second integral is a formidable task. In view of this, one can obtain 

the final expression for λ as 

 

0

2
2 2 1
1 12

1 1 1
02

2 1
1

1

1
(1 )

2 1 (1 )
(1 )[{ } {(1 ) }]

1 log(1 / ) log(1 / )
( )

(1 )
(1 )

log(1 / )

1 / (1 ) ( ) .

s

s

d L

s

d

C
Q

R
Q R u R

R R R
L L

R
R

R

Q C I z dz

 

 







 


      


 


  

  

 

                                                                                                      (30) 

 

The expression for wall shear stress, may now be written from equation (23) as 

 
2 2

1
1

1 1

(1 )( )1
( ){ log( / ) } .

log( / ) 2 2 log( / )

s s
R

C uR Rdp
h R R R

R R dz R R R R





                   (31) 

 

The shear stress at the throat of the stenosis can be computed 0/2(at , 1, )R sz d L R       

from equation (31) as 

 
2 2

1
1

1

((1 ) )1
{ }{(1 ) log((1 ) / ) }

log((1 ) / ) 2(1 )
s

Rdp
h R

R dz
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 

 
    

 
 

                                                                                
1

(1 )
,

2 (1 ) log((1 ) / )

s sC u

R



 




 
                        (32) 

where  

 

0( ) (1 ) ( )s

dp
C H z

dz
    

 

is the pressure gradient at the stenotic throat and 
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4. Results and Discussions 

 

Analytic expressions for the important flow variables are presented in an earlier section and 

their variations with several flow parameters are considered here. For this purpose, computer 

codes have been developed to evaluate the effects of various flow variables as included in 

equations (24) to (32). The variations of these flow variables with different relevant 

parameters, like hematocrit C, maximum height attained by the stenosis δ, slip velocity us in 

the stenotic wall, artery inclination α, tapering angle Φ, shape parameter n (≥2) and catheter 

radius R1 in the annular region, are presented graphically for better understanding of the 

problem. For this computation, we have considered some numerical measures like δ=0-0.15; 

us=0, 0.05; α=0
0
 (horizontal tube), 30

0
 (inclined vessel); C=0-0.6; R1=0.1, 0.2, 0.3; ξ(=tanΦ)= 

-1.0, 0, 1.0 for tapering cases Φ < ,=, > 0; n = 2, 6, 11; 0a =4×10
-6

m; T=25.5
0
C (Srivastava, 

2002); 0R =8×10
-5

m; 0
q =20,000 kgm

-2
s

-2
 (Usha and Prema, 1999); f =1025 kgm

-3
; p

=1125 kgm
-3

 (Chakraborty et al., 2011); Q=1 (Sankar and Lee, 2009); z = d to d + L0 and R1 ≤ 

r ≤ R(z). In the foregoing analysis, an effort is taken to indicate the variations in flow 

characteristics due to such parameters.  

 

The present analysis includes  

 

(i)  the model of Chakraborty et al. (2011) when R1 = 0, Φ = 0;  

 

(ii)  the analysis of Srivastava (2002) for us = 0, α = 0 and R1 = 0, Φ = 0;  

 

(iii)  the Srivastava and Rastogi (2010) model when us=0 α, α=0 and Φ=0;  

 

(iv)  the tapered or non-tapering (Φ ≥ 0) models with slip (us > 0) and zero slip (us = 0) for 

inclined (α > 0) and horizontal (α = 0) vessels, with or without stenosis (δ ≥ 0);  

 

(v)  the catheterized tapering or non-tapering (Φ ≥ 0) models with slip or no-slip (us ≥ 0) 

cases for inclined or horizontal (α ≥ 0) tube, with or without constriction (δ ≥ 0), as 

its special cases .  

 

The velocity, in equations (24-25) is a function of several flow parameters and co-ordinates. 

 

The variations of axial velocity uf versus the radial distance r for different values of R1 and α 

are shown in Figures (3-4). Figures (5-6) shows the variation of axial velocity uf versus radial 

distance r for different values of slip velocity us and hematocrit C. The variation of the 

pressure gradient, using equation (27), with the axial distance, for different values of catheter 

radius R1, inclination α, slip velocity us and hematocrit C are depicted in Figures (7-10). 
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In this unidirectional flow, the profiles for the axial velocity versus the radial distance through 

the annular region (R1 ≤ r ≤ R), clearly indicate a deviation from the usual parabolic profiles. 

As the radial co-ordinate r increases in the full scale from R1 to R.  The  velocity increases 

rapidly to a greater value, wherefrom, it gradually decreases to a lower value at or near the 

vessel wall. It is observed from Figure 3 that as the catheter radius R1 increases, velocity 
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decreases. As expected, the velocity decreases with the rise in catheter radius (Figure 3) but it 

is found that the velocity increases, with the increase in inclination (α) of the artery (Figure 4). 
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The velocity increases with slip employed at the stenotic wall. Its values are higher for the 

flows with slip (us > 0) than those with no slip (Figure 5). The profiles indicate that an 

increase in hematocrit C decreases the velocity of the blood (Figure 6). The magnitude of the 

velocity shows the lowest for converging tapering tube, higher in case of a non-tapered artery 

and highest for the diverging tapering vessel. 
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It could be noticed that the pressure gradient increases from a lower magnitude at one end of 

the stenosis, and gradually attains the maximum at the stenosis throat and there from, it 

decreases to almost the same lower value. However pressure gradient attains the highest value 

at the throat of a stenosis and the lower value at the two ends of a stenosis.  
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As the catheter radius R1 increases the pressure gradient also increases (Figure 7), but the 

pressure gradient decreases with the increase in inclination (α) of the artery (Figure 8). It may 

be noted that in all such variations, pressure gradient decreases with the employment of a 

velocity slip (us) at the vessel wall (Figure 9) but increases with increase with the hematocrit 

C (Figure 10). Also for a diverging tapering with taper angle Φ > 0, the pressure gradient is 

lower as compare to converging tapering (Φ < 0) and without tapering (Φ = 0). 

 

                      

The variation of the resistance to the flow λ versus the maximum height of the stenosis δ for 

different magnitudes of the parameters n, Φ, α and for different values of C, n and Φ, are 

shown in Figures 11-12. The variation of impedance λ with hematocrit parameter C for 

different values of n, us and Φ, is presented in Figure 13 and, Figure 14 shows the profile for λ 

versus δ for variation in R1, n and Φ. In Figure 15, the profile of the wall shear stress 

distribution τR against the axial distance z for variation of n, R1 and Φ, is drawn. Figure 16 

shows the variation of the shear stress at the stenotic throat versus stenosis height δ for 

different values of C and us. In Figure 17 variation of τs with R1 for different values of us and δ 

is shown.  

 

In this catheterized tapering inclined artery region, it could be noticed that the resistance 

(impedance) to flow λ increases with the maximum stenosis height δ and, decreases with the 

rise in both the shape parameter n and inclination α of the artery (Figure 11), but the 

impedance λ increases as the hematocrit C increases (Figure 12). In Figure 13, it is clearly 

noticed that the resistance λ, experienced by the streaming fluid over the whole arterial 

segment in the annular region increases with the hematocrit C but decreases with the slip 

velocity us attained by the fluid at the constricted wall and shape parameter n(≥2) of the 

stenosis. It is seen in Figure 14 that as catheter radius R1 increases, impedance (λ) to flow 

increases. However, resistance increases with stenosis height δ but decreases with the rise in  
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shape parameter n. For any given value of stenosis height δ as the hematocrit increases from 0 

to 0.1, resistance to flow increases steeply, the increment is relatively slower from C = 0.1 to 

0.5 and again, it goes on increasing rapidly from C = 0.5 to 0.6 (Figure 13). However, an 

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 28

https://digitalcommons.pvamu.edu/aam/vol10/iss1/28



490                                                                                                                 Devajyoti Biswas and Moumita Paul 

 

employment of velocity slip at vessel wall, decreases the resistance if the other parameters are 

kept constant. The behaviour of resistance in tapering region (Φ > ,=, < 0) of the constricted 

artery in this annular flow is reflected as, λ| diverging tapering < λ| non-tapering < λ| converging tapering. 

 

 

                   

 

 

The impedance (λ) to the flow is influenced by the shape parameter as its magnitude is seen to 

be lower in asymmetric stenosis (n > 2) than that in axi-symmetric stenosis (n = 2). As 

expected, resistance λ increases with the rise in catheter radius but it decreases, as we consider 

a horizontal artery (α = 0
0
) to an inclined tube (α > 0

0
). The consideration 0/ 1R    (for 

mild stenosis case) could make this analysis useful only in the formative (early) stage of a 

stenosis. The range of the parameter δ is restricted upto 0.15 (i.e., 28% of area reduction), as 

beyond this quantity, flow separation may happen for even very low magnitude Reynolds 

number (Young, 1968). Numerical results further reveal that the resistance assumes an 

asymptotic magnitude at about n=11, that in turn implies that no significant change in the 

flow would occur beyond this magnitude of shape parameter n. This behaviour in λ conforms 

to the results obtained by Srivastava (2002), Srivastava and Rastogi (2010), and, Chakraborty 

et al. (2011). 
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The wall shear stress τR in this annular stenotic region (d ≤ z ≤ d+L0) increases rapidly from 

its approached value (initiation point) at z=d in the upstream of the stenotic throat and attains 

its maximum magnitude at the throat, wherefrom it decreases rapidly to a lower magnitude at 

the termination (end point) of the constricted region at z = d+L0 (Figure 15). The wall shear 

stress τR decreases with increasing shape parameter n in the upstream of the throat but this 

behaviour reverses in the downstream. As the catheter radius R1 increases in the constricted 

annular region (with other parameters keeping fixed), τR decreases from a higher value to a 

lower one. 

 

It is also observed that wall shear stress at any axial distance increases with tapering angle Φ 

(from Φ > 0, Φ = 0, Φ < 0) of the inclined tube as follows τR (divergent tapering tube) < τR 

(non-tapering tube) < τR (converging tapering tube). 

 

It could be observed from Figures 16 and 17 that the wall shear stress at the peak of the 

stenosis τs, increases with both stenosis height δ and hematocrit C, for any given value of the 

angle of inclination of the artery (α) and catheter radius (R1). However, τs decreases with 

velocity slip us, at the stenotic wall in the constricted annular region. As the catheter radius R1 

increases for given magnitudes of C and α, τs increases as δ increases but it decreases with 

velocity slip at the wall. 
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5. Conclusion 
 

To account for the combined influence of several flow parameters like slip velocity, 

hematocrit, catheter radius, tapering geometry, shape parameter and inclination of the vessel a 

two phase annular model, on assuming that blood is represented by a suspension of 

erythrocytes in plasma, has been considered. The annular region is spaced within an inclined, 

tapering, constricted (-asymmetric stenosis) wall and a co-axial catheter. Analytical 

expressions of the flow variables are obtained and the variations of the important flow 

characteristics such as, velocity, pressure gradient, resistance (impedance) to flow and wall 

shear stress, have been included.  

 

The flow characteristics (viz., resistance to flow, wall shear stress in the stenotic region and 

shear stress at the throat of the constriction) increase with hematocrit, stenosis height and 

catheter radius. It may be interesting to observe that the resistance to the flow decreases with 

the inclination of the tapering vessel. However, all the three flow characteristics decrease with 

velocity slip at the stenotic wall. Both the resistance to the flow and the wall shear stress are 

seen to be higher in the case of axially symmetric stenosis than those in case of axially non-

symmetric ones. It is also exhibited that both these flow variables attain the lower magnitude 

in a diverging tapering region than that in the non-tapering tube which value is lower than that 

obtained in a converging tapering vessel.  

 

The present analysis includes the models of Srivastava, Srivastava and Rastogi and 

Chakraborty et al., uniform, tapering and catheterized models for inclined or horizontal 

vessels with velocity slip or zero slip at stenotic wall, as its special cases. 

 

It is already reported that arterial stenosis or atherosclerosis is a common and wide spread 

disease that may severally influence human health in general and cardiovascular system in 

particular. In the present analysis, a mild stenosis formation has been dealt with. However, its 

gradual growth from mild to moderate stage and moderate to severe forms at certain locations 

eg. , carotid, bifurcations, coronary arteries, distal to abdominal aorta etc. , could lead to 

serious complications inside the body and several health hazards, like reduction in blood 

supply, cut off in nutrition supply, stroke, thrombosis, renal problems, circulatory disorders 

etc. Theoretical models can throw some insight into the complicated situations and in turn, it 

could suggest some measures in regulating the normal blood flow and nutrition supply to each 

and every body organ, tissue, cell etc.  

 

In this analysis, it is observed that a velocity slip condition employed at the constricted 

tapering vessel wall may accelerate the flow of the one hand and, retard the resistance to flow 

and wall shear stress on the other. Thus, by employing an appropriate velocity slip, damages 

to the diseased vessel wall could be reduced and bore of the blood vessel could be enlarged. It 

is therefore necessary to determine an appropriate velocity slip in accordance with the 

hematocrit, stenosis size, artery radius and other physiological situations. Theoretical analysis 

could be improved by considering a two-dimensional, pulsatile, two-layered annular model 

with employing slips in both radial and axial directions and, with permeability of the arterial 

wall. Such models could be used as a device in the initiation of atherosclerosis and also in the 

treatment modalities of cardiovascular complications, cardiac arrest, haematological, stroke, 

thrombosis, renal and sickle cell diseases and other arterial disorders. 
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