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Abstract 
 

In this paper we study the dynamics of two competing species model; one of this competing 

species is stage structured and the disease spreads only in the other competing specie. In 

order to keep the model simple, we present it under the strong assumption that the disease can 

not cross the species barrier. Dynamical behaviors such as positivity, boundedness, stability, 

bifurcation and persistence of the model are studied analytically using the theory of 

differential equations. Computer simulations are carried out to substantiate the analytical 

findings. It is noted that c  the loss rate of the population,   the maturation time and f the 

intraspecific coefficient are the key parameters which we need to control or protect th to keep 

away the mature healthy population from extinction and also keep the infected individuals of 

the latter species from extinction respectively.  

 

Keywords: Competing Species; Stage-Structured Disease; Stability; Permanence; 

Numerical Simulation 

 

AMS 2010 Classification: 34D20, 34D23 

 

 

 

1. Introduction  
 

Population that compete for common resources are known among ecologists. They are 

classically modeled by observing their interactions that hinder the growth of both populations 
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and are thus described by negative bilinear terms in all the relevant differential equations. In 

the natural world, there are many species whose individual members have a life history that 

takes them through the two stages-immature and mature. In Freedman et al. a stage structured 

model of population growth consisting of immature and mature individuals was analyzed, 

where the stage-structured was modeled by the introduction of a constant time delay. Other 

population growth and infectious disease models with time delays were considered in 

D’Onofrio (2002), Hethcote (2000) and Roberts et al. (2002).  

 

Another major problem in today’s modern society is the spread of infectious diseases. In 

general, the spread of infectious disease in a population depends upon various factors such as 

the number of infective and susceptible, modes of transmission; as well as socio-economic 

factors, environmental factors and ecological and geographic conditions Dutour (1982). A 

detailed account of modeling and the study of epidemic diseases can be found in the literature 

in the form of lecture notes, monographs etc. Bailey (1975), Hethcote (1976), Waltman 

(1974), Bailey (1982), Hethcote et al. (1981) and Agarwal et al. (2012). The population 

biology of infectious diseases has also been presented in Anderson et al. (1979). A recent 

trend on modeling population dynamics is to emphasize infectious diseases as regulators of 

population size Mena-Lorca et al. (1992). A system where one disease-free species competes 

with another host which is infected by the epidemics is also considered in Begon et al. 

(1995). This is most closely related to the present investigation. The classical paper Anderson 

et al. (1986) considered the two-competitor, one of which is affected by a disease, which is 

assumed to annihilate the reproductive rate of the infected individuals. The possibility that a 

superior competitor favors coexistence with another one, which would otherwise be wiped 

out, is inferred from the study.  

  

The organization of this paper is as follows: In Sec.2, we introduce our mathematical model. 

In Sec.3 and 4, we present positivity and boundedness of solutions, respectively. In Sec.5, we 

analyze our model with regard to equilibria and their stabilities. In Sec.6, we establish 

bifurcation criterion to show the regulating impact of maturation delay. In Sec.7, we obtain 

conditions that influence the permanence of the solutions. Computer simulations are 

performed to illustrate the feasibility of our analytical findings in Sec.8. In the last Sec.9, we 

present the conclusion based on our analysis. 

 

2.  Mathematical Model  
 

Here we consider a competition model with infection as studied in Venturino (2001) where 

two logistically growing populations )(tP  and )(tQ which are competing for the same 

resource are analyzed. It is  assumed that one of the competing  species )(tP is stage 

structured and the disease spreads only in the other competing species,  ).(tQ We specify the 

healthy individuals of respectively as immature and mature )(tPi and ),(tPm the healthy 

individuals )(tQ  and the infected individuals of the latter species  denoted by ).(tV To study 

the effect of the disease in the competing species system we have proposed the following 

model: 

),()()()(     tPetPtPtP mimi


 
),()()()()()()( 2 tVtPtQtcPtPtPetP mmmmm    

                                         (2.1)                                                                                                                               

),()()())()(()()()()( tQtVtQtVtQftQtePtdQtQ m 
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),())()(()()()()()( tVtVtQftVtgPtQtVtV m  
 

 

where  

  

,0)()(  ttP mm   0 t  and ,0)0( iP ,0)0( Q .0)0( V  
 

Now for continuity of initial conditions we require, 

 

dsseP m

s

i )()0(

0










                                                                                            (2.2) 

 

And with the help of (2.2) the solution of the first equation of system (2.1) can be written in 

terms of the solution for )(tPm  as  

 

( )( ) ( ) .

t

t s

i m

t

P t e P s ds



  



                                                                                               (2.3) 

 

Equations (2.2) and (2.3) suggest that, mathematically no information of the past history of 

)(tPi is needed for the system (2.1) because the properties of )(tPi can be obtained from (2.2) 

and (2.3) if we know the properties of ).(tPm Therefore, in the rest of this paper we need only 

to consider the following model: 

 

),()()()()()()( 2 tVtPtQtcPtPtPetP mmmmm    
 
),()()())()(()()()()( tQtVtQtVtQftQtePtdQtQ m                                            (2.4)                                                                                                                                                 

),())()(()()()()()( tVtVtQftVtgPtQtVtV m  
 

where   

 

,0)()(  ttP mm   0 t  and ,0)0( Q .0)0( V   

 

At any time ,0t birth into the immature healthy population is proportional to the existing 

mature healthy population with proportionality constant .0 The immature healthy 

population will transfer to mature healthy class after its birth with a maturity period .  The 

immature healthy population has the natural death rate .0  The death rate of the mature 

healthy population is proportional to the square of the existing mature healthy population 

with proportionality constant .0 The term )(    tPe m that  appears in the first and 

second equations of system (2.1) represents the immature healthy population born at time 

)( t and surviving at the time t  and therefore represents the transformation from immature 

healthy to mature healthy population. c is the loss rate in the population )(tPm  
due to the 

competitor )(tQ and e is the loss rate in the population )(tQ  due to the competitor ).(tPm    

is the loss rate in the population )(tPm  due to the competitor )(tV  and g  is loss rate in the 

population )(tV due to the competitor ).(tPm , f  are intraspecific coefficients of the 

competition of ),(tPm  )(tQ  and ).(tV    is the transmission rate of the infection. 
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3.  Positivity of Solutions  
 

Theorem 3.1.   

 

All solutions of the system (2.4) are positive for all .0t  
 

Proof:  

 

Clearly 0)( tQ  and 0)( tV  for 0. t,0)0( ,0)0(  VQ  Now 0)0( mP hence if there 

exist at such that ,0)( 0 tPm then .00 t
 

Assume that 0t is the first time such that 

,0)( tPm that is,  0)( :0.inf0  tPtt m  , then  

 

0 0

0

0 0

( ),       0 ,
( )

( ),        .

m

m

m

e t t
P t

e P t t





   

  





   
 

 

 

 

so that .0)( 0 tPm
  Hence, for sufficiently small ,0  .0)( 0 tPm


 
But by definition of 

,0t  0)( 0 tPm
 , a contradiction. Hence, 0)( tPm  for all .00 t

 
 

4.  Bondedness of Solutions 
 

To prove the boundedness of the solutions, we shall need the following result, which is a 

direct application of Theorem (4.9.1) in Kuang.Y (1993) (p159). 

 

Lemma 4.1.   
 

Consider the equation,  

 

 2( ) ( ) ( ) ( ), , , , 0,  ( ) 0,  0 .m m m m mP t e P t P t cP t c P t for t              
   

 
Then, we have  

(i)  If ce  then ,
)(

)( lim


  ce
tP

t
m






   

 

(ii)  If ce  then .0)( lim 


tPm
t   

Theorem 4.1.   
 

All solutions of model (2.4) will lie in the region,  

 

 maxmaxmax

3 0 ,0 ,0  : ),,( VVQQPPRVQP mm    
as ,t  

                                                           for all positive initial values .),,( 3

000 RVQP
 

 

Proof:  

 

First from equation (2.4) we get, 
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).()()( 2 tPtPetP mmm    

 
 

According to lemma (4.1) and the comparison theorem D’Onofrio (2002), there is a 0T  
and 0 such that  

 




 


e

tPm )(   for    .Tt  

This implies that  .)(  lim maxP
e

tPSup m
t




 

 

 

Similarly from the second and third equation in model (2.4) we get as ,t    

 

 max)(  lim Q
f

d
tQSup

t



  and    .)(lim max2

V
f

d
tSupV

t





 

This completes the proof of the theorem. 

 

5.  Boundary Equlibria and their Stability 
 

Setting 0)()()(  tVtQtPm
  in model (2.4) and solving the resulting equations, 

 

)()()()()()( 2 tVtPtQtcPtPtPe mmmm    =0 

)()()())()(()()()( tQtVtQtVtQftQtePtdQ m  =0 

)())()(()()()()( tVtVtQftVtgPtQtV m  =0 

 

We see that model (2.4) has six non negative equilibria:  

       

),0,0,0(0E ),0,0,( 11 mPE )0,0( ,22 QE ),0,,( 333 QPE m  ),,0( 444 VQE  and ),ˆ,ˆ,ˆ(ˆ VQPE m  
 

 

where  

 

,1


 


e

Pm
,2

f

d
Q  ,

)(

)(
3

ecf

cdfe
Pm










 

,
)(

)(
3

ecf

eed
Q










 

,
24



df
Q   

.
)(

24


 df
V




   

 

Equilibrium Ê  exists if the system of following equations; 

)()()( tVtcQtPe m    =0 

)())()(()( tVtVtQftePd m  =0                                                                        (5.1)                                                                                  

))()(()()( tVtQftgPtQ m  =0 
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has a positive solution ).ˆ,ˆ,ˆ( VQPm  
From second and third equation of system (5.1) we get, 

)(

)(






f

fQePd
V m                                                                                                        (5.2)  

 

and  

 

( )
.mf Q gP

V
f

  
                                                                                                      (5.3) 

 

From equation (5.2) and (5.3) we get, 

 

)(

)(





f

fQePd m = 
( )

.mf Q gP

f

  

 
 

Now solving above equation we get, 

 

2

( )
.mfd ef gf g P

Q




  
                                                                                           (5.4) 

 

Using equation (5.4) in equation (5.3) we get, 

 

22

)(ˆ))((ˆ






 df
P

f

g

f

efgfgf
V m














                                                            (5.5) 

      21
ˆˆ aPaV m  ,  

 

where   

 

1a  
f

g

f

efgfgf



2

))((




 and 2a  

2

)(



 df
.  

 

Also using equation (5.5) in equation (5.3) we get, 

 

mP
efggffd

Q ˆ)(ˆ
22 






  ,                                                                                        (5.6) 

       mPaaQ ˆˆ
43  ,  where   3a  

2

fd
 and 4a  

2

)(



 efggf 
. 

 

Now putting values of Q̂ and V̂ in first equation of system (5.1) we get, 

 

)(

)(ˆ

14

23

aca

acae
Pm



 








. 

 

The interior equilibrium Ê  is feasible when  
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,f ,)( effg  )( 23 acae   
and .))(( 2 gefggff   

 

The characteristic equation of the equilibrium 0E  is  

)( )(   e )( d .0)0(   

Clearly, ,)(   e d and 0  are all positive equilibrium therefore equilibrium 

0E is completely unstable. The characteristic equation of equilibria 
1E  is 

  )2( 1

)(

mPe    
)( 1 dePm  .0)( 1  mgP

 
 

Since above characteristic equation has one negative eigenvalue corresponding to the 

V direction and all other eigenvalues, i.e., eigenvalues in the mP  and Q directions are 

given by solution of 1

)( 2 mPe    
 and 1mePd 

 
which always has a positive 

solution provided that 
1E is unstable. The characteristic equation of equilibria 

2E  is 

   

)( 2

)( cQe    )2( 2 dfQ    .0)( 2  Qf  
 

From this ,2 2fQd   2)( Qf   and 2

)( cQe    . 

 

Since one eigenvalue 
2)( Qf   is always positive therefore equilibrium 

2E  is unstable. 

The characteristic equation of equilibrium 3E
 
is 

  

 33 )( QfgPm    2

1 2 3 4( ) 0,B B B B e        
 

 

where  

 

dPeQcfB m  )2()2( 331  , 

  

          
2

33332 2)2)(2( mm ePcQPdfQB   , 

  

   
)( 333 cQPeB m    

, 

   
))(2()2( 3333334 cQPePQfeePQfB mmm    

. 

 

Clearly, 3 3( ) 0.mf Q gP      Therefore, equilibrium 3E  is unstable. 

 

The characteristic equation of equilibrium 4E is  

 

  )(

44

 eVcQ 2

1 2( ) 0,H H     
 

where   
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),33(1 dQVfVfQH    

  

 .)(24)(22)( 2

444

22

4442 VffVQfQfffdVQfdH    
 

The characteristic equation of equilibrium Ê is  

 

0,)( 65

2

4321

23   eAAAAAA                                                       (5.7) 

 

where  

 ,)ˆ2ˆˆ)(ˆ)(ˆ2ˆ()ˆˆˆ2(1 VfPgQfVfQfPedVQcPA mmm     

  

 
,

ˆ2ˆˆ)(ˆ)(ˆ2ˆ

)ˆˆˆ2(ˆˆˆˆˆ)(

ˆ2ˆˆ)(ˆ)(ˆ2ˆ

22

2



























VfPgQfVfQfPed

VQcPVPgQPceVQf

VfPgQfVfQfPed

A

mm

mm

mm







  

 

  
 

   
,

ˆ)(ˆ2ˆˆˆˆˆˆ)()(

ˆˆˆ2ˆˆ)(ˆˆ))(ˆˆˆ2(

ˆ2ˆˆ)(ˆ)(ˆ2ˆ)ˆˆˆ2(

22

3



























VfQfPedVPgVQPefgfc

QPceVfPgQfVQfVQcP

VfPgQfVfQfPedVQcP

A

mmm

mmm

mmm







 

,ˆˆˆ
4 VQcPeA m   

 
 

  ,ˆ)(ˆ)()ˆˆ(2ˆ)(5

 edQfVfVQfPgeA m                                      (5.8)                                       

 

    ,ˆˆˆˆ)(ˆ)()ˆˆ(2ˆ)( VQcPdQfVfVQfPge mm  
 

 

,ˆˆ)ˆˆˆ)((ˆˆ)( 2222

6 VQVPcPfeVQfA mm    

 
 

Let 

 

),(  0.)( 65

2

4321

23   eAAAAAA                                        (5.9) 

 

To show the positive equilibria )ˆ,ˆ,ˆ(ˆ VQPE m is locally asymptotically stable for all ,0 we 

use the following Theorem 5.1 Begon et al. (1995). 

 

Theorem 5.1.  

A set of necessary and sufficient conditions for )ˆ,ˆ,ˆ(ˆ VQPE m  to be asymptotically stable for all 

0 is 

(i)  The real part of all roots of 0)0,(   are negative. 
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(ii)  For all real 0  and ,0 0),( 0 i where .1i  

 

Theorem 5.2.   
 

Assume that  

 

,f ,)( effg  )( 23 acae   
and ))(( efggff   .2g

 
 

Then, the positive equilibrium of system (2.4) is asymptotically stable. 

 

Proof:  

 

We now apply Theorem (5.1) to prove Theorem (5.2). We prove this theorem in two steps. 

 

Step 1. Substituting 0  in equation (5.7), we get 

)0,( ,0)( 65

2

4321

23  AAAAAA    

                                             

)0,( = ,023  UTS                                                                                           (5.10)    

 

where  

 

,0)( 41  AAS ,0)( 52  AAT 0)( 63  AAU and .0UST  

 

Therefore, by Routh-Hurwitz criterion, all roots of equation (5.10) have negative real parts. 

Hence, condition (i) of Theorem (5.1) is satisfied and Ê  is a locally asymptotically stable 

equilibrium in the absence of delay. 

 

Step 2. Suppose that 0( , ) 0i    holds for some real .0
 

 

Firstly, when ,00 
 

 

.0),0( 63  AA
 

 

Secondly, suppose ,00 
 

 

.)(),( 0

605

2

04302

2

01

3

00

 i
eAiAAAiAAii 

                          (5.11) 

 

Equating real and imaginary parts of equation (5.11), we obtain 

 

,sincos)( 00506

2

043

2

01  AAAAA 
                                                   (5.12) 

                                                                                                                                   

 00506

2

0402

3

0 cossin)( AAAA                                                        (5.13) 

 

Squaring and adding equation (5.12) and (5.13), we get 
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6 2 2 4 2 2 2 2 2

0 1 2 4 0 2 1 3 4 6 5 0 3 6( 2 ) ( 2 2 ) ( ) 0,A A A A A A A A A A A                         (5.14) 

 

where   

 

,0)2( 2

42

2

1  AAA 0)22( 2

56431

2

2  AAAAAA  and .0)( 2

6

2

3  AA
 

 

It follows that  

  

.0)()22()2( 2

6

2

3

2

0

2

56431

2

2

4

0

2

42

2

1

6

0  AAAAAAAAAAA 
 

 

This contradicts (5.14). Hence, .0),( 0  i For any real ,0 it satisfies condition (ii) of 

Theorem (5.1). Therefore, the unique positive equilibrium )ˆ,ˆ,ˆ(ˆ VQPE m  
is locally 

asymptotically stable for all 0 and the delay is harmless in this case. 

 

6.  Bifurcation Analysis  
 

Substituting )()(  iba  in (5.9) and separating real and imaginary parts, we obtain the  

following transcendental equations 

 
3 2 2 2 2 2

1 2 3 4 5 6

4 5

3 ( ) ( ) cos

(2 )sin 0,

a

a

a ab A a b A b A e A a b aA A b

e abA bA b













          

                            (6.1) 
3 2

1 2 4 5

2 2

4 5 6

3 2 (2 )cos

   ( ) sin 0,

a

a

b a b Aab A b e abA bA b

e A a b aA A b













     

                                     (6.2) 

 

where a and b are functions of  . We are interested in the change of stability of Ê  which 

will occur at the values of   for which 0a and .0b  
 

Let ̂  be such that 0)ˆ( a and .0ˆ)ˆ(  bb  then equation (6.1) and (6.2) become 

 

,0ˆˆsinˆˆˆcos)ˆ(ˆ
56

2

43

2

1   bbAbAbAAbA                                                     (6.3) 

 

.0ˆˆsin)ˆ(ˆˆcosˆˆˆ
6

2

452

3   bAbAbbAbAb                                                       (6.4) 

 

Now eliminating ̂  from (6.3) and (6.4), we get 

 

.0)(ˆ)22(ˆ)2(ˆ 2

6

2

3

22

56431

2

2

42

42

2

1

6  AAbAAAAAAbAAAb                   (6.5) 

 

To analyze the change in the behavior of stability of Ê  with respect to , we examine the 

sign of 
d

da
 as a crosses zero. If this derivative is positive (negative), then clearly a 
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stabilization (destabilization) cannot take place at that value of .  Differentiating equations 

(6.1) and (6.2) with respect to , then setting ,̂   0a and ,b̂b   we get  

 

,)ˆ()ˆ( 21 k
d

db

d

da
 





                                                                                               (6.6) 

 

,)ˆ()ˆ( 12 l
d

db

d

da
 





                                                                                             (6.7) 

 

where, 

 

,ˆˆsinˆ2ˆˆsinˆˆˆˆcosˆˆcosˆ)ˆ(ˆ3 4556

2

42

2

1  bbAbbAbAbAbAAb 
 

 

,ˆˆcosˆ2ˆˆcosˆˆˆˆsinˆˆsinˆ)ˆ(ˆ2 4556

2

412  bbAbbAbAbAbAbA 
 

    

,ˆˆsinˆ)ˆ(ˆˆcosˆ
6

2

4

2

5  bbAbAbbAk                                                                         (6.8) 

 
2 2

5 4 6
ˆ ˆ ˆ ˆ ˆˆ ˆsin ( ) cos .l A b b A b A b b     

 
 

Solving (6.6) and (6.7), we get    

  

.)ˆ(
2

2

2

1

21






 




lk

d

da
                                                                                                       (6.9) 

 

From (6.9), it is clear that )ˆ(
d

da
 has the same sign as .21  lk    

 

From (6.8) after simplification and solving (6.3) and (6.4), we get 

 

.)2
564

2
31

22
2

(2ˆ)2
42

22
1

(24ˆ32ˆ
21 



  AAAAAAbAAAbblk        (6.10) 

 

Let  

 

,)( 32

2

1

3 SuSuSuuG                                                                                         (6.11) 

 

where  

 

,2 2

42

2

11 AAAS   ,22 2

56431

2

22 AAAAAAS  .2

6

2

33 AAS 
 

 

From (6.11), we note that )(uG is the left hand side of equation (6.5) with .ˆ2 ub  Therefore,  

 

.0)ˆ( 2 bG                                                                                                                    (6.12) 

 

Now  
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2

2

1

4
2

ˆ2ˆ3
)ˆ(

SbSb
du

bdG


 
 

             
)22(ˆ)2(2ˆ3 2

56431

2

2

22

42

2

1

4 AAAAAAbAAAb 
 

 

             

).ˆ(
ˆˆ 2

2

2

2

1

2

21 




d

da

bb

lk 





 
 

This implies that,  

 

.
)ˆ(ˆ

)ˆ(
2

2

2

2

1

2

du

bdGb

d

da




 
                                                                                           (6.13) 

 

Hence, the criterion for instability (stability) of Ê  are  

 

(1)  If the polynomial )(uG has no positive root, there can be no change of stability. 

 

(2)  If )(uG is increasing (decreasing) at all of its positive roots, instability (stability) is 

preserved. Now in this case, if  

 

(i) ,03 S  )(uG has unique positive real root then it must increase at that point 

(since )(uG is a cubic in ,u ).)(lim 


uGit
u  

 

(ii)  ,03 S
 
then (1) is satisfied, i.e. there can be no change of stability. 

 

Therefore, we have the following theorems. 

 

Theorem 6.1.  

 

If 03 S  and Ê  is unstable for ,0 it will remain unstable for .0  

 

Theorem 6.2.  

 

If 03 S  and Ê  is asymptotically stable for ,0  it is impossible that it will remain stable 

for .0 Hence there exist a ,0ˆ  such that for ,̂  Ê  is asymptotically stable and for 

,̂  Ê  is unstable and as   increases together with ,̂ Ê  bifurcates  into small amplitude  

periodic solutions of the Hopf  type Begon et al. (1995). The value of  ̂  is given by the 

following equation;  

 
















 

22

5

2

6

2

4

53

2

16

2

42

3

1

ˆ)ˆ(

ˆ)ˆ()ˆ)(ˆˆ(
sin

ˆ

1
ˆ

bAAbA

bAAbAAbAbAb

b

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7.  Persistence 
 

Theorem 7.1.   

 

Assume that  

 

,

















f

d

f
ce


 

2

)(

f

dfee
d





  




  

 

and  

 

*q d
f

deg









2





 

, 

 

where  

 

*q  

















 




f

f

dfee
d

2

)( 



 

. 

 

Then system (2.4) is permanent.  
 

Proof:  

 

From the first equation of system (2.4), we have  

 

  ).()()()( maxmax

2 tPVcQtPtPetP mmmm    
 

 

According to Lemma (4.1) and comparing principal, it follows that   

 

liminf ( ) ( 0).m
t

d
e c

f f
P t

 








   
    
    

 
 
 

 

 

From the second equation of system (2.4), we have 

 

2
( ) ( ) ( ) ( ) .

e e d
Q t Q t d f fQ t

f

 




 
     

   
 

This yields that for ,
)(

2f

dfee
d





  



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  ).( 0

)(

)(inflim *
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sayq
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d
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
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
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
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




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


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From third equation of system (2.4), we have 

 

 

 

   

This yields that for, ,
2

* d
f

deg
q 




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
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 
 
   

 
According to the above arguments and Theorem (4.1), we have 
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
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This completes the proof of theorem (7.1). 

 

 

8.  Numerical Simulation 
 

In this section, we present numerical simulation to explain the applicability of the result 

discussed above. We choose the following parameters in model (2.1) are,  

 

.)( )()(
2

*








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



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,1 ,1 ,1.0c ,2d ,1.0e  ,1f ,2.0g ,5.1 ,1.0 ,1.0 .10                                                                                                                                
 

For the above set of parameter values the equilibrium Ê  is given by, ,2330.0ˆ mP       

,9304.0ˆ Q  .4186.0ˆ V  
 

Here, we note that all conditions of local stability and permanence are satisfied. From the 

existence, stability and persistence criteria c ,  and f  are recognized to be the important 

parameters. Using MATLAB software package, graphs are plotted for different values of c ,  

and f  in order to conclude and confirm some important points. 

 

(i)  Figure 1 shows that )(tPm  decreases with  , and becomes extinct if .15.20  

 

(ii)  Figure 2 shows that )(tQ  decreases with   increases. 

 

(iii)  Figure 3 shows the behavior of )(tV with time for different values of . From this 

figure, we can infer that   increases with an increase in time and the maturity 

time, and finally attains its equilibrium level. 

 

(iv)  Figure 4 shows that the value of c  at which the mature healthy population )(tPm  

tends to extinction is .364.0c  
 

(v)  Figure 5 shows that the value of c increases, as the population )(tQ decreases. 

 

(vi)  Figure 6 shows that the value of c increases, as the infected population 

)(tV increases.  

 

(vii) Figure 7 shows that the value of intraspecific coefficient f increases, as the mature 

healthy population )(tPm  increases. 

 

(viii) Figure 8 shows the behavior of )(tQ  with time for different values of .f  This 

figure shows that initially )(tQ  increases for some time, reaches the  peak, then 

starts decreasing and finally attains its equilibrium level. From this figure, we also 

note that )(tQ  remains constant at its equilibrium level as f  increases but the 

amplitude and timing of the peak decreases with an increase in .f  
 

(ix)  Figure 9 shows that the value of f at which the infected population )(tV tends to 

extinction is .4655.1f  
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Figure 1.   Variation of the mature healthy population with time for different   

and other values of the parameters are the same. 

 

Figure 2.  Variation of )(tQ with time for different   and other values of the 

parameters are the same. 

 

Figure 3. Variation of )(tV  with time for different   and other values of the 

parameters are the same. 
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Figure 4. Variation of the  mature healthy population )(tPm with time for 

different c  and other values of the parameters are the same. 

 
Figure 5. Variation of )(tQ with time for different c  and other values of 

parameters are the same. 

 

 
Figure 6. Variation of )(tV  with time for different c  and other values of 

parameters are the same. 
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Figure 7. Variation of the mature healthy population )(tPm with time for different 

f  and other values of the  parameters arethe  same. 

 

 
Figure 8. Variation of )(tQ with time for different f  and other values of the 

parameters are the same. 

 

Figure 9. Variation of )(tV  with time for different f and other values of the 

parameters are the same. 
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9.  Conclusion  
 

In this paper we have studied a competition model with infection populations competing for 

the same resource are analyzed.  Where the one competing species is divided into two stages, 

immature and mature by a constant time delay and the disease spreads only in the other 

competing species. This system is also analyzed for positivity and boundedness of solutions, 

equilibria and their stabilities. Conditions that influence the permanence of all populations are 

given. By Theorem 7.1, the population is permanent provided that  
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These results indicate that the loss rate, intraspecific coefficient, death rate, and transmission 

rate of the infection of populations plays an important role for the permanence of the 

solutions. With the help of computer simulations, it is concluded that if the maturation time 

increases, then the system is not permanent and mature healthy population tends to 

extinction. It is also noted that if the value of maturation time increases, the healthy 

population )(tQ and the infected individuals of the latter species )(tV decreases and increases 

respectively. Also when the value of parameter c  (loss rate) increases mature healthy 

population tends to extinction. It is also noted that if the value of loss rate increases, healthy 

population )(tQ and the infected individuals of the latter species )(tV decreases and increases 

respectively. When the value of the parameter f (intraspecific coefficient) increases, the 

mature healthy population )(tPm  increases and the infected individuals of the latter species 

)(tV  tends to extinction respectively.  

 

It is also noted that healthy population )(tQ  remains constant at its equilibrium level as f  

increases but the amplitude and timing of the peak decreases with increase in .f  It is 

observed that the parameters c  the loss rate of population,   the maturation time and f the 

intraspecific coefficient are the key parameters which we need to control to keep the mature 

healthy population away from extinction and the infected individuals of the latter species 

from extinction respectively. 
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