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Abstract

The strong assumption of the stationarity in the analysis of time series may cause some lack of fit

problems because it is open to abuse. Therefore, nonstationary models have been developed when

one or two items of stationarity are not true. One of the most important subclasses of nonstationary

time series is locally stationary or time varying stationary family. In this family, the second order

properties oscillate smoothly over the time; while they seem constant within a suitable window

of time. When the finite-dimensional distributions are Gaussian, almost all properties of the

process are characterized through the local covariance function. Thus, two locally stationary time

series are clustered in a same group when the corresponding covariance functions are equal. We

propose two testing methods for the equality of covariance functions of two independent locally

stationary time series. Due to the local behavior of the locally stationary covariance function,

we look at the local discrete Fourier transform of the sample covariance function to capture

the frequency domain features of the observations. The test statistics are based on the limiting

distributions of bootstrap estimator of centered spectral mean. The empirical power and type I

error of testing procedures are examined through a simulation study. The motivating problem

is the use of tests in model diagnostics of a well-known mortality rate modeling. Using the

France population mortality experiences, we deduce that the time-varying ARMA models are

more appropriate in comparison to the prevalent ARIMA models or some other nonlinear or

conditionally heteroscedastic time series which have been widely used in the literature.

Keywords: Bootstrap; kernel smoothing; local periodogram; local spectral density function;
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1. Introduction

In a constant mean Gaussian process {Xt}, the covariance function γX(t, s) = cov(Xt, Xs)

specifies all the behaviors of sample path. For instance, continuity, stationarity, symmetry and self-

similarity are the most important features of the time series determined by the covariance function.

In some problems canonical facts induce special covariance functions. However, laboratory

situations or canonical facts exist circumstantially instead of certainly in real life data. So, testing

the structure of the covariance function plays a major role in the time series analysis and the

statistical aspects of this problem have come under explicit study. For stationary time series,

several methods were provided to test the equality of the covariance functions of two independent

time series in (Coates and Diggle, 1986) and (Lund et al., 2009). The same problem was

investigated for nonstationary time series by (Choi et al., 2008) and (Bengtsson and Cavanaugh,

2008). Some of the testing procedures deal with the classification of covariance functions and

determine whether a covariance function belongs or does not belong to a specific family or not.

Among them we refer to (Priestley and Rao, 1969) and (Fuentes, 2005) for stationarity, (Guan

et al., 2004) for isotropy, (Mitchell et al., 2005; Mitchell et al., 2006) for separability and (Li

et al., 2008) for symmetry. The main idea of our test is similar to (Lund et al., 2009). Based on

the asymptotic distribution of the estimate of spectral density function of a stationary time series,

a test statistic is constructed using the ratio of peridograms. Since the asymptotic distribution of

stationary periodogram belongs to the scale family, the distribution of the ratio does not depend

on the parameter under the equality of covariance function.

Although stationarity plays an important role in time series analysis, in many problems the

assumption does not hold true. For instance, stationarity is widely used in estimation of mortality

rate models. Let mX ,t be the central mortality rate at age X ∈ {X1, . . . ,XK}, K ∈ N and period

t ∈ {t1, . . . , tT} and define

ηX t = E

[
d

dt
log mX t

]
,

called the expected value of the mortality improvement rate. Then, the data is modeled through

the generalized linear model ηX t = βXκt +ιt−X , where βX is the effect of age, κt is the derivative

of period effect and ιt−X is the derivative of cohort effect. Using the Newton-Raphson algorithm,

the maximum likelihood estimates of parameters, κ̂tj and β̂Xi
, j = 1, . . . , T and i = 2, . . . , K

are obtained under the normality assumption. Therefore, one may predict the period effect at

tT+1, ̂̂κtT+1
say, by employing the time series observations κ̂t1, . . . , κ̂tT . To this end, the ARMA

model is used by (Haberman and Renshaw, 2012). However, our observations for the rectangular

age-period data of France shows a nonstaionarity behavior for this time series. According to

Figure 5, the estimated period effects have a constant mean along the time varying second order

properties, e.g. the variances.

2
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370 Z. Teimouri & A.R. Taheriyoun

A locally stationary (L-S) process is nonstationary but shows stationary behavior in small windows

of time and so is appropriate for modeling {κ̂tj}j. We are hopeful to find a Gaussian time series

in the family of L-S processes which determines the geometric behavior of the observations.

By Gaussian assumption we restrict the problem to find a suitable covariance function and for

a candidate covariance function h(·, ·) the motivating problem is testing the hypothesis H0 :

γX(·, ·) = h(·, ·) versus H1 : γX(t, s) 6= h(t, s) for some t, s. If {Yt}t is generated with respect

to the covariance function h(·, ·), then the mentioned hypotheses are justified through the testing

problem of H0 : γX = γY versus H1 : γX 6= γY .

To employ the spectral analysis methods, we first require a frequency domain representation for

L-S processes. In spite of stationary time series, in nonstationary time series the spectral repre-

sentation includes a stochastic integral with respect to a complex value independent increment

stochastic process (Bonami and Estrade, 2003). Fortunately, the representation for L-S time series

has a more appropriate form and then the spectral density function appears in a simple Reiman

integration form (Dahlhaus, 1997). This form is useful in the construction of almost all estimators

of the spectral density function. Among these estimators we prefer the one introduced by (Sergides

and Paparoditis, 2007). They developed a bootstrap method to accelerate the convergence rate of

CLT type of the sample distribution of the estimator. An admissible convergence rate is a critical

property to control the type I error of our tests.

The covariance function of a L-S time series is stationary in small windows of time. We determine

the size of each window as a proportion of the sample size T which means that the time series is

almost stationary within windows of width uT where u ∈ [0, 1]. Using the spectral representation,

the covariance function of X at lag τ is defined by

cX(u, τ ) := cov(Xt,T , Xt+τ,T ) =

∫ π

−π

fX(u, λ)eiλτdλ, (1)

for all t = 1, . . . , T where fX(u, λ) denotes the local spectral density function of {Xt,T}t.

Let cX(u, τ ) and cY (u, τ ) be the covariance functions of {Xt,T}t and {Yt,T}t, respectively. Our

purpose is testing
{

H0 : cX(u, τ ) = cY (u, τ ), for all τ,

H1 : cX(u, τ ) 6= cY (u, τ ), for at least one τ.
(2)

Since the covariance function is studied only for τ ∈ N, the test is semi-parametric. For the same

problem and under the stationary assumption, (Lund et al., 2009) employed the periodogram as

an estimator of the spectral density, that is

IX(λj) =
1

2πT

∣∣∣∣∣

T∑

t=1

Xte
−itλj

∣∣∣∣∣ ,

where λj = 2πj/T denote the Fourier frequencies. Thus, the restriction of the test statistic

Rj =
IX(λj)/fX(λj)

IY (λj)/fY (λj)
,

to the null hypothesis is

Rj

∣∣∣
H0

=
IX(λj)

IY (λj)
,

3
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where fX and fY are the stationary unknown spectral density functions. The distribution of Rj

∣∣∣
H0

does not depend on unknown parameters and it is used as a pivotal quantity for test. Using an

appropriate estimate of fX(u, λ), we hope to extend this idea to L-S time series. According to

the lack of closed form for the distribution of local peridogram, it is not advisable to simple use

of Rj for L-S time series. Thus, we present a test statistic by use of the limiting distribution

of bootstrap estimator of the spectral density function introduced by (Sergides and Paparoditis,

2007).

The outline of the paper is structured as follows. Some notations and definitions for L-S time

series and the bootstrap estimator are reviewed in Section . Using the limit distribution of the

bootstrapped periodogram in Section , we present two test statistics. The performances of the

purposed tests are evaluated using simulation studies in Section . The mortality rate modeling is

also studied as a practical problem in this section.

2. Preliminaries

The family of L-S time series has been introduced by (Dahlhaus, 1997). A time series {Xt,T}t

belongs to this family if for any t = 1, . . . , T there exists the sequence {αt,T (j)}j in such a way

that Xt,T satisfies the representation

Xt,T =
∞∑

j=−∞

αt,T (j)εt−j, (3)

where {εt}t ∼ IID(0, 1). Moreover, for any j ∈ Z there exists a positive constant k and a

sequence {l(j)}j∈Z where

sup
t

|αt,T (j)| ≤ k

l(j)
,

such that

∞∑

j=−∞

|j|
l(j)

< ∞,

and there exists a function α(·, j) : (0, 1] −→ R satisfying

sup
u

|α(u, j)| ≤ k

l(j)
,

sup
t

∣∣∣∣αt,T (j) − α(
t

T
, j)

∣∣∣∣ ≤
k

T l(j)
,

|α(u, j) − α(v, j)| ≤ k |u − v|
l(j)

.

This is the simple causal representation of time series which links the observed values to the pure

sequence of a white noise. For stationary causal time series, the sequence of functions {αt,T (j)}j

is replaced by an absolute summable sequence of real numbers not depending on t.

4
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372 Z. Teimouri & A.R. Taheriyoun

For clearance, let us to discuss about a very typical example. When the observed path behaves

like an ARMA(p, q) stationary time series in all small windows of width uT , then we can model

the observation as a L-S version of ARMA processes, called time varying autoregressive moving

average (abbreviated by tvARMA) models with bounded variation coefficient functions (Dahlhaus

and Polonik, 2009). Formally, {Xt,T}t is a tvARMA(p, q) process if it has the representation

Xt,T −
p∑

j=1

φj,p(
t

T
)Xt−j,T =

q∑

k=0

θk,q(
t

T
)σ(

t− k

T
)εt−k, (4)

where σ(·), θk,q(·) and φj,p(·) are smooth functions of t. Note that the function σ controls the

oscillation of variance of Xt,T . Also, {εt} is an iid sequence of zero mean random variables

and θ0,q(s) ≡ φ0,p(s) ≡ 1, θj,q(s) ≡ θj,q(0) and φj,p(s) ≡ φj,p(0) for s < 0. Consequently, the

tvAR(p) and tvMA(q) are obtained from tvARMA(p, q) process by setting q = 0 and p = 0,

respectively.

Using the representation (3) and similar to the stationary case, the local spectral density function

of {Xt,T}t at frequency λ and time scaling parameter u is given by

fX(u, λ) =
1

2π
|A(u, λ)|2,

where

A(u, λ) =
∞∑

j=−∞

α(u, j)e−iλj,

and then (1) holds true for τ = 1, . . . , [T/2]. For instance, the local spectral density of a tvAR(p)

is

ftvAR(u, λ) =
σ2

2π

∣∣∣∣∣1 −
p∑

j=1

φj,p(u)e−iλj

∣∣∣∣∣

−2

. (5)

This function was used in the bootstrap estimator of fX(u, ·). The discrete Fourier transform and

consequently the periodogram is an intrinsic estimator of local spectral density function which

is inconsistent (Mikosch and Norvaiša, 1997) but asymptotically unbiased (Brockwell and Davis,

1991, Chapter 11). Thus, it seems that the estimator proposed by (Sergides and Paparoditis, 2007)

is a more appropriate starting point. Let X1,T , X2,T , . . . , XT,T be observations from a L-S time

series. The local periodogram is the periodogram of a segment of length N , as a sub window of

[0, T ] around the time buT c, at frequency λ which is defined by

IN(u, λ) =
1

2πN

∣∣∣∣∣

N−1∑

s=0

XbuT c−N/2+s+1,Te−iλs

∣∣∣∣∣

2

.

However, because of the closed form (5) for tvAR models, the estimator of local spectral density

of this model is given by

f̂tvAR(u, λ) =
σ̂2

p

2π

∣∣∣∣∣1 −
p∑

r=1

φ̂r(u)e−iλr

∣∣∣∣∣

2

.
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The coefficients vector φ̂u(p) =
(
φ̂1(u), . . . , φ̂p(u)

)′

is the solution of the estimating equation

C(u, p)φ̂u(p) = c(u, p), (6)

where C(u, p) = [c(u, i − j)]p−1
i,j=0 and c(u, p) = (c(u, 1), . . . , c(u, p))′. The unknown covariances

are estimated using the simple moment estimators

Ĉ(u, p) =
1

N − p

N∑

j=p

Xj(u, p)X′
j(u, p),

and

ĉ(u, p) =
1

N − p

N∑

j=p

Xj(u, p)XbuT c−N/2+j,T ,

where

Xj(u, p) = (XbuT c−N/2+j−1,T , . . . , XbuT c−N/2+j−p,T )′.

The moment estimate of σ2
p(u) is also considered as

σ̂2
p(u) =

1

N − p

N∑

j=p

X2
buT c−N/2+j,T − (φ̂u(p))

′ĉ(u, p).

Two estimators of the local spectral density function introduced by (Sergides and Paparoditis,

2007) are reviewed here: (i)

(1) f̃ (u, λ): Fit a tvAR(p) to the observation. The coefficients of this model are obtained

from the Yule-Walker type equations (6). The order parameter, p, is estimated using the

minimum AIC; however the estimator is robust against the changes of p. Estimate the

parameter q(u, λ) = fX(u, λ)/ftvAR(u, λ) using the kernel smoothed estimator

q̂(u, λ) =
1

N

N/2∑

j=−N/2

K

(
λ − λj

h

)
IN(u, λj)

f̂tvAR(u, λj)
,

where K is a kernel function and h is the bandwidth of smoothing. Then, the smoothed

estimator of the local spectral density function is

f̃ (u, λ) = q̂(u, λ)f̂tvAR(u, λ).

(2) I∗
N(u, λ): This is the bootsrapped local periodogram of the L-S time series. Fit again an

tvAR(p) to the data and compute f̂tvAR(u, λ). Generate the Gaussian pseudo observations

X+
1,T , . . . , X+

T,T according to f̂tvAR(u, ·) and then compute the local periodogram of these

observations for all possible frequencies λ and call it I+
N,tvAR(p)(u, λ). The bootsrapped local

periodogram as the estimator of the local spectral density function is

I∗
N(u, λ) = q̂(u, λ)I+

N,tvAR(p)(u, λ).

We use the asymptotic distribution of the estimators to create the test statistic.

6
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374 Z. Teimouri & A.R. Taheriyoun

3. Test Statistic

Two independent sample paths X1,T , . . . , XT,T and Y1,T . . . , YT,T , are observed from two L-S time

series for testing the hypotheses (2) at level α. Under the null hypothesis fX(u, λ) = fY (u, λ),

for all λ, we expect the same feature for the estimates of fX and fY . We need to define a distance

for the estimates of spectral densities and create a rejection area based on large enough values

of the distance function. Let

Dj,X =
√

N

(∫ π

−π

eiλjI∗
N,X(u, λ)dλ −

∫ π

−π

eiλj f̃X(u, λ)dλ

)
,

be the distance of the estimated local covariance functions with respect to f̃(u, ·) and I∗
N,X(u, ·)

at lags j = 1, . . . , bT/2c and define DT,X =
(
D1,X , . . . , DbT/2c,X

)′
as the vector of distances.

The normality of DT,X needs two more assumptions: ASSUMPTION 1.

(1) The window width N satisfies N → ∞ such that N3/2/T → 0 as N → ∞.

(2) The smoothing bandwidth h is defined as a function of N satisfies h → 0 such that

Nh → ∞ as N → ∞.

Under the assumptions 1 and 2 (Sergides and Paparoditis, 2007)

DT,X
P−→ N(0, WX), (7)

as T → ∞, where WX = [Wηζ,X]η,ζ, η, ζ = 1, . . . , bT/2c is a covariance matrix with components

Wηζ,X = cov(Dη,X , Dζ,X)

= 2π

{∫ π

−π

eiλη
{
eiλζ + e−iλζ

}
f2

X(u, λ)dλ

+ κ4(p)

∫ π

−π

∫ π

−π

eiληe−iµζfX(u, λ)fX(u, µ)dλdµ

}
,

and

κ4(p) =
1

σ4
p(u)

∫ 1

0

E

[
X̃p(u) −

p∑

j=1

φ̂j(u)X̃p−j(u)

]4

− 3,

where

X̃t(u) =

∞∑

j=−∞

α(u, j)εt−j.

With appropriate notation for the time series {Yt,T}t, we have

W
−1/2
X DT,X

P−→ N(0, IbT/2c),

W
−1/2
Y DT,Y

P−→ N(0, IbT/2c),

independently as T → ∞ where Ik is the identity matrix of order k. Thus, define

Rτ =

(
Dτ,X/Wττ,X

Dτ,Y /Wττ,Y

)2

,

7
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for τ = 1, . . . bT/2c where the restriction of Rτ to the parameter space induced by the null

hypothesis is

Rτ

∣∣
H0

=

(
Dτ,X

Dτ,Y

)2

. (8)

Rτ

∣∣
H0

is asymptotically distributed as F1,1 and many goodness of fit approaches are opened to

solve the testing problem. One may simply employ the nonparametric tests such as Kolmogorov-

Smirnov or Pearson tests. Notice that {Rτ

∣∣
H0
}τ is the sequence of dependent random variables

and using the mentioned methods requires replication in observations. Therefore, these methods

have the lower powers in comparison to the methods introduced here. Our rejection methods for

simultaneous hypotheses testing (2) are obtained by using the marginal quantiles of Rτ

∣∣
H0

:

Test based on the pivotal quantity (8): We reject the null hypothesis for the large deviations of

(8) from 1. Using the Bonferroni’s method, reject the null hypothesis at level α when Rτ

∣∣
H0

exceeds (1 − α/(2bT/2c))’th quantile or is smaller from the α/(2bT/2c)’th quantile of the F1,1

distribution.

Test based on the Fisher’s Z: The expected value of (8) does not exist and has a heavier tail in

comparison with

1

2
Vτ =

1

2
log Rτ

∣∣
H0

∼ F isher′sz(1, 1).

Thus, the type I error of the other rejection area

|Vτ | > F1−α/(2bT/2c);z(1,1), at least for one τ = 1, . . . , bT/2c,

does not exceed α, where Fp;z(m,n) is the p’th quantile of the Fisher’s Z distribution with m and

n degrees of freedom (Aroian, 1941). The quantiles are generated using the Monte Carlo method.

4. Numerical results

Theoretic conclusions are examined in two numeric studies. The first one is a simulation study

and the second is a mortality rate modeling problem.

A. Simulation study

Consider a tvAR(1) model with equation

Xt,T = 0.9 cos (1.5 − cos(4πt/T ))Xt−1,T + εt, (9)

where {εt}t is a standard Gaussian white noise. A realization of this time series is given in

Figure 1. In the first step, we consider two independent sample paths {Xt,T}t and {Yt,T}t of

length T = 512 from this model and then examine the empirical type I error of the tests. To

compute q̂ we use the Bartlett-Priestley’s kernel given by

K(x) =

{
3(4π)−1 (1 − (x/π)2), |x| ≤ π

0, otherwise.

8
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376 Z. Teimouri & A.R. Taheriyoun

The bandwidth h is set to 0.2, p is equal to one and the window length N is 40. This setting of

simulation is replicated 100 times. The true decision is not to reject the null hypothesis in this

case. All of the resulted Rτ

∣∣
H0

’s belong to the interval (F0.05/512;1,1, F1−0.05/512;1,1) an thus the

empirical type I error is equal to zero. The same results take place for testing based on Vτ and both

tests are at level 0.05. In comparison to (Sergides and Paparoditis, 2009) which implemented the

same simulation study, the type I error is controlled at level .05 in both methods. The distance of

0 100 200 300 400 500

−
4

−
3

−
2

−
1

0
1

2
3

t

X

Fig. 1: A realization from (9) with T = 512 observations.

the empirical type I error and α = 0.05 is due to the use of Bonferroni method in the simultaneous

hypotheses testing. At this step, the procedure is also repeated for two independent observations

from a tvMA(1) model with corresponding difference equation

Xt,T = 1.1 cos (1.5 − cos(4πt/T )) εt−1 + εt, (10)

and a realization of this model is shown in Figure 2. In this case the empirical type I error based

on Rτ

∣∣
H0

exceeds the level 0.05 and is equal to 0.06; while the empirical type I error of the

second approach is 0.04.

In the second step we examine the empirical powers of tests along the sensitivity of tests using

the sample paths of two different L-S time series. Let {Xt,T}t and {Yt,T}t be two independent

tvAR(1) and tvMA(1) time series respectively. According to Figures 1 and 2, these two time

series are structurally different and we expect the tests to simply detect the differences. The tests

based on Rτ

∣∣
H0

and Vτ achieve the empirical powers .93 and 0.94, respectively. Now suppose

that the tvAR model is accepted in the background and we want to check the sensitivity of tests

to the order of tvAR model. Again we simulate a realization under the model (9) and let {Yt,T}t,

is a sample path from tvAR(2) satisfying

Yt,T = 0.9 cos(1.5 − cos(4πt/T ))Yt−1,T

+ 0.3 cos(1 − cos(4πt/T ))Yt−2,T + εt. (11)

A realization of {Yt,T} is shown in Figure 3. In this case, the empirical powers based on Rτ

∣∣
H0
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Fig. 2: A realization from (10) with T = 512 observations.

0 100 200 300 400 500

−
8

−
6

−
4

−
2

0
2

4

t

Y

Fig. 3: A realization from (11) with T = 512 observations.

and Vτ are improved to the values 0.95 and 0.96, respectively. Returning to Figures 1 and 3,

two models (9) and (11) are different in the local oscillation and the bootsrapped periodogram

I∗
N,X(u, λ) is the size of induced oscillation with respect to this particular frequency and this fact

causes the improvements in the powers. Since the visual differences in tvAR(1) and tvAR(2)

is the size of their local oscillations, then I∗
N,X’s are quite different which verifies the results

of tests. (Sergides and Paparoditis, 2009) examined a tvAR(1) versus tvAR(2) with different

parameters to compute the empirical power and type I error of the test; while we examine both

differences in parameters and differences in the orders of models. In other words, in the first

setting we examine two tvAR(1) with different parameters and in the second setting we test

the order of a tvAR(p) model with known parameters. They achieved the power equal to .96 in

testing a tvAR(1) versus another tvAR(1) with different parameter.
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Regarding Figure 3, one may suggest the use of SETAR models to explain the piecewise behavior

of the mean function. Visually, the hypothesis H0 : True model is AR is rejected versus H1 :

True model is SETAR or theoretically use (Tsay, 1989) to this end which tends to the p-value

equal to 0.030. However, constructing a theoretic testing procedure to compare the efficiency of

SETAR with tvAR is not as easy as the previous schematic decision and we only compare the

squared sum of residuals (SSE) of the fitted models. The SSE of fitted 2 and 3-regimes SETAR

models are 1091.66 and 1032.19, respectively while the SSE of tvAR(2) model is 648.49 which

shows the efficiency of tvAR models against SETAR in analyzing the data in Figure 3.

We also provide a step 3 in simulation study which tests the mentioned L-S time series versus

ARIMA models. Using minimum AIC, ARIMA(2, 2, 1) and ARIMA(0, 1, 2) are fitted to the

sample paths plotted in Figures 2 and 3, respectively. Using the test provided by (Lund et al.,

2009) we examine the performance of ARIMA models in explanation of these two models.

Thus, let X1,T+d, . . . , XT+d,T+d be the generated sample path from models (9) or (10) and we

want to test the hypotheses H0 : ARIMA(p, d, q) versus H1 : not H0 with the known estimated

parameters. We generate the observation Y1, . . . , YT+d under H0 and define Wt := (1−B)dXt,T+d

and Zt := (1−B)dYt where B is the backward operator. Thus,under the null hypothesis the series

{Wt} and {Zt} are two independent ARMA(p, q) time series with the same parameters and we

can test the equality of covariance functions of these two stationary time series using the methods

introduced by (Lund et al., 2009). We replicate this procedure for 100 sample paths from (9) and

(10) and the null is rejected 98 and 97 times for these models, respectively.

B. A real data

A rectangular mortality data array is constructed by unit squares of size one year by triplets

(dX t, eX t, ωX t), for ages X = X1, . . . ,Xk and periods t = t0 + 1, . . . , t0 + T where t0 is the base

year, dX t is reported number of deaths, , eX t is the exposure to the risk of death and ωX t is used

to indicate the empty data cells. A rectangular data array for a generation is depicted in Figure 4.

The observations gathered in a rectangular data array are the essentials of life table which is the

basis to compute many quantities in life insurances such as optimum premiums, life expectancy

and many other demographic indexes. Employing the demography package in R, we have the

life table and hence the rectangular data array of France within 1950–2006. We hope to analyze

the stochastic process {eX t}t as a sample path of a time series. Under the normality assumption,

we need to testify the covariance function of this time series to estimate the predicted number

of the exposure to risk. It is prevalent to look at the reported number of deaths or exposure to

the risk via the central mortality rate which is define by mX ,t = dX t/eX t. To predict mX t and

so eX t in actuarial problems, m is participated in a generalized linear model such as (Lee and

Carter, 1992)

ζX t = βXκt,

where ζX t = E[mX ,t], βX is the age effect and κt is the period effect. The estimated period effects

{κ̂t}t construct a time series realization and ̂̂κt0+T+1 is the predicted value of period effect in

the next year. This prediction is a critical value in forecasting the mortality rate of the next year.
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Fig. 4: A schematic diagram of a rectangular age-period data array. The rectangle with solid line determines the

territory of the observed values on the life table. The observations for each generation contain the triplets

(dX t, eX t, ωX t) which are located on an oblique line. The rectangle with dashed edges represents the prediction

space.

Typically, {κ̂t}t is modeled as a realization of an ARIMA(p, 1, q) time series. (Haberman and

Renshaw, 2012) introduced the improvement mortality rate

ZX = 2
1 − mX t/mX ,t−1

1 + mX t/mX ,t−1
,

and employed the generalized linear model

ηX t = βXκ∗
t , (12)

where ηX t = E[ZX ,t] and κ∗
t is the derivative of κt and hence we expect an ARMA(p, q) model

for {κ̂∗
t}t. We compute κ̂∗

t for the mortality data of France within 1950–2006. The computed

values are very sensitive to the initial values of the Newton-Raphson algorithm and according to

the computation restrictions we did not control the convergence rules stringently. Figure 5 shows

the values of κ̂∗
t for this data. Time varying properties are obvious in this time plot; however,

using the both testing methods in Section ,the hypothesis H0 : tvAR(1) model versus H1 : not

H0 is not rejected. Therefore, comparing the SSE of the tvAR and ARMA models which are

respectively equal to 62.684 and 67.508, we prefer the use of tvAR models instead of other

stationary models.

5. Conclusion

There are many methods to test the equality of covariance functions under the stationary as-

sumption. Among them, we focus on the methods introduced by (Coates and Diggle, 1986)

and developed by (Lund et al., 2009). We first choose an appropriate estimator of the local

spectral density function. Then, under the normality assumption we use the fact of the same

local spectral density then the same local covariance function. Based on this idea, two pivotal
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Fig. 5: Estimated values of κ∗
t for the mortality rate data of France under the model (12).

quantities R and V are introduced which under the null hypothesis H0 : cX(u, τ ) = cY (u, τ ), for

all τ , their densities do not depend on the unknown parameters. The simulation study confirms

the domination of the first test function by the second one in view of the empirical power. We

also study the empirical type I error of both tests to remove the danger of ever-rejection in high

power tests.

This inference is used in a classic actuarial problem of the prediction of mortality rate. Typically,

the observed time effects of the Lee-Carter type models for the improved mortality rate are

considered as stationary and usually an ARMA time series. The observed time effects in literatures

(including our results in this paper) usually have a time varying structures particularly in the

variance. According to the presented testing methods, we show the preference of the L-S time

series in comparison to the ARMA models.
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