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Abstract 
 

We investigate the problem of unsteady fluid flow in growing solid tumors. We develop a 

mathematical model for a growing tumor whose boundary is taken as a sphere, and the 

unsteady fluid flow within the tumor is assumed to be two dimensional with respect to 

the radial distance and the latitudinal angle in spherical coordinates. The expressions for 

the time, radial and latitudinal variations of the flow velocity, pressure, and the two 

investigated drug concentrations within the tumor were determined analytically. We 

calculated these quantities in the tumor as well as in a corresponding normal tissue. We 

find, in particular, that blood pressure in the tumor would be higher than that in the 

normal tissue, and there could be blood flow circulation in the tumor. For a given spatial 

location in the tumor, the amount of drug delivered to the growing tumor decreases first 

with time, but then the rate of decrease reduces with further increase in time.  The 

Therapeutic Index, which is a measure of the efficiency of drug delivery in the tumor in 

the biomedical science, is determined for different values of the parameters and discussed 

in the absence or presence of the drugs’ interactions which may exist in the presence of 

the two drugs in the tumor. The main results of our model agree with the available 

experiments.   

 

Keywords:  Tumor; Brain tumor; Spherical tumor; Drug concentration; Fluid flow; 

Drug delivery; Solid tumor 
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1. Introduction 

Cancer is the second leading cause of death in the American continent (Jain 2005). The 

most major treatment is surgical removal of the tumor, but there could be residual tumor 

cells and the re-growth of these tumor cells, a is very common occurance. In order to 

prevent the reoccurrence of tumor cells anticancer drugs are prescribed. Hence the 

successful cure is an efficient distribution of anticancer drugs within targeted areas after 

surgery. As can be indicated from the medical and experimental observations, the drugs’ 

most noticeable limitation is their inability to reach the targeted area. The two most 

important considerations in effective cancer treatment, from a mathematical point of 

view, are drug transportation to the affected area and drug change or reaction at the tumor 

site. Many drugs cannot be delivered to their targets because of the observed 

transportation limitations. An important process in drug delivery is an inward convection 

and diffusion of the injected drug concentration in the presence or absence of another 

drug concentration within the solid tumor system. Some investigated numerical 

simulations have provided some understanding of the mechanisms of the fluid transport 

in the tumors (Baxter and Jain, 1989, 1990, 1991; Saltzman and Radomsky, 1991; Tan et 

al., 2003; Soltani and Chen, 2011; Stylianopoulos and Jain, 2013; Zhan and Xu, 2013; 

Sefidgar et al., 2014; Sriraman et al., 2014).  

      

The above studies as well as additional ones (Wang and Li, 1998; Byrne and Preziosi, 

2003; Teo et al., 2005; Zhao et al., 2007) have been mostly about solid tumors in the 

brain. Despite many experimental or computational investigations on the tumors that 

have been carried out in the past including those referred to here, there is still little 

information available about the mechanism that operates for drug interactions when more 

than one drug concentrations are transported in the patient’s body to effectively reduces 

the negative effects of malignant tumors. 

 

Very recently Riahi and Roy (2014) developed a one dimensional mathematical model of 

a stationary brain tumor, and they considered steady state features of the fluid flow within 

the non-growing tumor, which was assumed to be only in one-dimensional direction of 

the radial distance from the center of the tumor to a location within the tumor. The 

authors determined the radial velocity and the pressure as functions of the distance from 

the center of tumor, and, in addition, the radial variations of a drug concentration in the 

presence or absence of another drug within the systems. However, it should be noted that 

purely one-dimensional dependence of the flow quantities and the drug concentration as 

considered in Riahi and Roy (2014) is rather too simplistic and not realistic in the 

biomedical applications. In addition, the authors ignored the singularity at the center of 

the tumor that existed in their equation for the pressure, which cannot be justified in 

general. Earlier Roy and Riahi (2013) considered the same one-dimensional case and did 

some time-dependent computation, but again the model was too idealistic and incomplete 

as in their work in  (2014).  

   

The present investigation develops a two-dimensional unsteady model by significantly 

extending the one-dimensional work of Riahi and Roy (2013), where the velocity vector 

is considered to have, in general, two components along with radial and latitudinal 
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direction, and all the dependent variables for the flow velocity, pressure and drug 

concentrations are assumed to depend on time as well as on both radial and latitudinal 

variables. In addition, we apply the proper mathematical method of approach to take into 

account effectively for the singularity effect that exists at the center of tumor for the 

governing equations for the pressure and the drug concentrations. This is the first  

theoretical investigation of its kind to probe a for such new mathematical model in order 

to obtain information about the mechanism of the drug delivery and drug interactions in 

the growing tumor system and drug dependence on more precise locations in the tumor. 

Furthermore, our present results can help to improve understanding of the drug transport 

mechanisms in the growing solid tumors which can consequently help to improve drug 

delivery schemes to such tumors. We found a number of interesting results that cannot be 

detected by a one-dimensional model of the type due to Riahi and Roy (2013). For 

example, we detected existence of blood flow circulation in the tumor, and the amount of 

drug delivered to the tumor was found to decrease as the tumor grows in time, but then 

the rate of decrease reduces as time goes on. We also determined the efficiency of the 

drug delivery in the growing tumor system in the absence or presence of another drug 

delivery in the system. Such applied mathematical results can provide some 

understanding of the cause for the decrease or increase of the drug effectiveness within 

the patient’s body which can be useful as further guiding tools for the specialists and 

doctors to improve chances for the patient’s health recovery. 

  

2. Governing system  

We consider a tumor in the shape of a sphere with radius R` (t`) and a spherical 

coordinate system whose origin lies at the center of tumor, with the radial r`-axis 

positively outward from the origin and latitudinal angle , which is measured with 

respect to the polar axis of the sphere. Here t` is a time variable. Figure 1 presents a 

spherical tumor whose center is at the origin O of the shown three-dimensional 

coordinate system, where a point P on the surface boundary of the tumor and its vertical 

projection on the xoy-plane are also shown.  

 

   

  

  

 
 

 

 

                 

 

 

 

 

 

Figure 1. Geometry of the spherical tumor and coordinate system.  
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The non-dimensional radius and the radial coordinate of the spherical tumor are 

designated by R and r, respectively, while the latitudinal and azimuthal angles of the 

spherical coordinates are designated by  and , respectively. 

 

We assume that the growth rate of the tumor is small and positive (0<R` /t`<<1). We 

consider the governing equations for the fluid flow in the tumor or the corresponding 

normal tissue (Tan et al., 2003; Soltani and Chen, 2011), which basically are the Darcy-

momentum equation, the mass continuity equation in the presence of sinks and sources, 

that may be appropriate for the fluid in the tumor (Baxter and Jain, 1989) and the sources 

and sinks part is based on the Starling’s law and the fluid productions by cells due to 

metabolism (Tan et al., 2003), and the equations for the  concentrations of two drugs. 

These governing equations with the necessary boundary conditions, which turn out to be 

needed in the present analytical procedure, are given below 

 

                                               (/k)u`= -P`,            (1a) 

                         .u`=a1–a2 P`,           (1b) 

    ( /t` + u`. )C1=D1
2
C1 –a3 C1 –a4 C2,         (1c) 

   (/t` + u`.)C2 =D2 
2
 C2 –a5 C1 –a6 C2,         (1d) 

                   P` =PB`, Ci =CBi` at r` =R`(t`), (i=1, 2),                    (1e)    

where u` is the fluid velocity vector in the tumor, P` is the associated pressure, PB` is a 

non-zero quantity, which can be a constant for a function of ,  is dynamic viscosity, k 

the permeability, a1 and a2 constants whose expressions are given in Tan et al. (2003). 

The Ci (i=1, 2) are the concentrations of the two drugs with diffusion coefficients Di, CBi` 

constants, and ai (i = 3, …, 6) represent source or sink terms in the concentration 

equations, which can be due to the presence of either one or two drugs and, in general, 

can be variable (Jackiewicz et al., 2009).  As explained in Tan et al. (2003), such source 

and sink terms may undergo chemical elimination by the drug degradation in the cavity 

or by metabolic reactions in the tumor and normal tissues as well as drug gain from the 

blood capillaries in the tumor or tissue. Following the best known model for the volume 

of a tumor as a function of the time variable (Steel, 1977; Kansal, et al., 2000), we derive 

the following model for the time-dependent radius of the slowly growing tumor as 

 

                       R`(t`)=R0 exp{[1-exp(-`t`)]},                   (1f) 

where  is a small parameter (<<1) of the order of magnitude of the relative growth rate 

of the tumor, R0 is the constant radius of the tumor in the absence of its growth and ` is 

a constant quantity per unit time whose value can affect the relative growth rate. We have 

assumed that the tumor grows slowly in time, so that (1/ R`)R` /t` = o()<<1. 
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We consider the two-dimensional axisymmetric case of the flow system where the spatial 

variation is along the latitudinal and radial directions, and the velocity vector has non-

zero components along the latitudinal and radial directions. The flow system is 

axisymmetric with respect to the azimuthal direction of the spherical coordinate system. 

We make the governing system (1) dimensionless by using length scale R0, time scale 

R0
2
/(), where  / is kinematic viscosity and  is fluid density, velocity scale /R0 

and pressure scale 
2
 /k, so that the dimensional forms of the variables and R are related 

to their non-dimensional counterpart by  

  

                    (r`, t`, u`, P`, R`)={R0 r, [R0
2
/()]t, (/R0)u, (

2
/k)P, R0 R}.         (2) 

We now want to apply a perturbation expansion in powers of small  (<<1) by assuming 

that the growth rate of increase of the tumor’s radius with respect to time is small. This 

implies that we can apply a Taylor series expansion for R(t) about R=1 and keep only the 

leading order terms up to the second order in , this gives 

 

             R(t)=1+[1-exp(-t)]+o(
2
),         (3a) 

 

where =` R0
2
/ is a non-dimensional constant. As can be seen from (1a), (1e) and (3a), 

the boundary conditions for the dependent variables at r =R can be in terms of the steady 

part and unsteady part. The form of (3a) then dictates that the solution for the time 

dependent parts of the dependent variables should be of the form of the unsteady part for 

R given in (3a). Hence, applying the perturbation expansion in powers of  of the 

dependent variables, R can be in the form 

 

         (u, P, C1, C2, R) = [us(r, ), Ps(r, ), C1s (r, ), C2s (r, ), 1] 

                                       + [uu(r, ), Pu (r, ), C1u (r, ), C2u (r, ), 1][1-exp(- t)] +o(
2
),  

(3b)                             

 

where the subscript “s” and “u” refer to the leading order steady part and the unsteady 

part, respectively, for each dependent variable.  

 

3. Analysis and solutions for steady parts 
 

In this section, since we assume that the growth rate of the tumor is small (<<1) due to 

the slow time scale for such growth, then to the leading order approximation, which 

corresponds to the lowest order in  (<<1) in (3), we analyze and determine the solutions 

for the steady state parts of the flow quantities. Thus, we set =0 in (3) and then use (3) 

together with (2) in (1) to find the following simplified non-dimensional form of the 

axisymmetric system in the spherical coordinates that will be investigated in the first part 

of this paper: 

 

                 -Ps /r =us,          (4a) 
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                     -(1/r)(Ps /) = vs,                  (4b)  

                    [(/r)(r
2
 sin us)+(/)(r sin vs)]=b1 –b2 Ps,                             (4c)  

                 usC1/r +(vs/r)( C1s /  

                         = L1 {[(1/r
2
)(/r)(r

2
 C1s/r)] + [1/(r

2
sin)] (/)[sin(/) ]C1s} 

                                                                                                         -b3
^
 C1s –b4

^
 C2s,      (4d) 

 

                   usC2s/r +(vs/r)( C2s/  

                          = L2{[(1/r
2
)(/r)(r

2
 C2s /r)]+[1/(r

2
sin)](/)[sin(/) ]C2s} 

                                                                                                          -b5
^
 C1s –b6

^
 C2s,    (4e) 

                                 Ps=PB
^
, Cis  = CBi at r=1, (i=1, 2),                    (4f) 

 

where us is the steady part of the radial component of the velocity, vs is the steady part of  

the latitudinal component of u, Ps is the steady part of the pressure, L1 =D1 / and L2 =D2 

/ are the non-dimensional diffusion parameters for the two drug concentrations, and C1s 

and C2s are the leading steady parts of the two concentrations, respectively, b1=a1 R0
2
 /, 

bi
^
 = ai R0

2
/ (i =3, 4, 5, 6), b2 =a2R0

2
/k , PB

^
= PB` k/(

2
) and CBi are the boundary 

conditions for the  leading parts of the concentrations. 

  

Using (4a-b) in (4c), we found the equation for the steady part of the fluid pressure which 

simplified to the form 

 

                      (1/r
2
)(/r)(r

2
Ps/r)+(cot/r

2
)(Ps/)+(1/r)(

2
Ps/

2
)=-b1+b2Ps.        (5) 

This is a second order linear partial differential equation for Ps in r and  whose 

coefficients depend on the r and  and, thus, are variable. We have searched for the 

solution of (5) using analytical approaches and the successful one was detected to be 

based on a new mathematical procedure, which can be classified as a type of the method 

of separation of variables. We assume Ps =S(r )+T(r )Q(), where S, T and Q are 

unknown functions. We use such a form for Ps in (5) and found the equation for S 

separates from that for TQ. The resulting ordinary differential equation for S is then given 

below by (7a). For the remaining equation for TQ, we divide the equation by Q() and 

simplify the resulting equation. We find that it leads to an ordinary differential equation 

for T but with r- and -dependent coefficient for T. Since the solution for T should 

depend only on r, we need to assume that the -dependent part of this coefficient is a 

constant. This leads to a linear ordinary differential equation for Q in  whose solution is 

found to be cos. Thus, the equation (5) admits solution in the form  

 

                              Ps(r, ) = S(r )+T(r )cos,           (6) 

6
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where the unknown functions S and T need to be determined. Using (6) in (5), we obtain 

the following equations for these functions 

 

                          (d
2
S/dr

2
)+(2/r)(dS/dr)-b2S=-b1,         (7a) 

       (d
2
T/d r

2
)+(2/r)(dT/d r)+[-b2 +2/(r

2
)]T=0.         (7b) 

 

The ordinary differential equations (7a-b) have the so-called regular singular points at the 

center of the tumor (r=0), and, hence, the well-known method of Frobenius can be used 

to determine their solutions (Zill, 2013). This method represents a power series solution 

for the dependent variable satisfying the respective differential equation. Applying the 

method of Frobenius for (7a-b), we find the solutions for S(r) and T(r) and, hence for 

Ps(r, ). Due to the result that the coefficients in the power series representations of the 

solutions for S and T are found to be all proportional to the coefficient b2 or its positive-

integer powers, and since b2 is generally quite small of O(10
-7

) or smaller as evidenced in 

the experimental and biomedical applications (Tan et al., 2003), a very good 

approximated solution for Ps(r, ) is then given by 

 

          Ps(r, ) = e0 [1+(b2/6)r
2
 +(b2

2
/120)r

4
]+e1 [r+(b2/10)r

3
 +(b2

2
/280)r

5
]cos,            (8a) 

where the constants e0 and e1 are to be determined by the boundary condition PB
^
 on the 

outer surface of the solid tumor for Ps.  

 

In the simplest form the fluid pressure boundary condition for the steady part at r=1 can 

be a constant. However, in more realistic cases, one may expect that the value of the  

pressure at the surface of the spherical type tumor to vary also with respect to the 

latitudinal angle  or at least in a weak manner. In accordance with the solution for the 

pressure in the form (6) and for the present analytical study we consider the pressure 

condition on the boundary to be a weakly varying function with respect to  in the form 

  

                                                      PB
^
=PB (1+cos).          (8b) 

Here  is a sufficiently small constant parameter (<<1). Using (8b) in (8a), we find 

              e0=[PB –(b1 /b2 )]/[1+(b2 /6)+(b2
2
 /120)], e1=PB/[1+(b2 /10)+(b2

2
 /280)].      (8c) 

Using (8a-c) in (4a-b), we find the following expressions for the radial and latitudinal 

components of the flow velocity: 

 

           us(r, ) =e0 [(b2 /3)r +(b2
2
 /30)r

3
 ] + e1 [1+(3 b2 /10)r

2
 +(5 b2

2
 /280)r

4
]cos,     (9a) 

   vs(r, )=e1 [-1-(b2 /10)r
2
 – (b2

2
 /280)]sin.        (9b) 

 

Next, we consider the equations (4d-e) for the drug concentrations. Using (9a-b) in these 

equations and to the leading order in , the equations (4d-e) become linear partial 

7
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differential equations with coefficients that can vary with respect to r and . Following 

our mathematical method of approach for finding the analytical solution that we applied 

for the equation (5) for Ps, which turned out to be under the category of the method based 

on the separation of variables, we apply a similar approach by considering the solutions 

for C1 and C2 to be in the form 

   

                         (C1s, C2s)=[C3(r), C5 (r )]cos+[C4(r ), C6(r )],          (10) 

where Ci (i=3, 4, 5, 6) are unknown functions of r. Using (10) in (4d-e), following similar 

approach to that of the equation (5) for Ps and simplifying to the leading order terms in  

(<<1), we find the following ordinary differential equations for Ci (i=3, 4, 5, 6): 

 

                          (-u2 r +u3 r
3
) DC3=L1 [(2/r)D+D

2
-(2/r

2
)-(b3

^
)]C3-b4

^
 C5,     (11a) 

       (-u2 r +u3 r
3
) DC4=L1 [(2/r)D+D

2
 –b3

^
]C4 –b4

^
 C6,     (11b) 

               (-u2 r +u3 r
3
)DC5 =L2 [(2/r)D + D

2
-(2/ r

2
)-b6

^
 ]C5 –b5

^
 C3,     (11c)  

        (-u2 r +u3 r
3
)DC6 =L [(2/r)D+ D

2
 –b6

^
 ]C6 –b5

^
 C4,     (11d) 

where D(/r) and 

  (u2, u3)(-1, b2 /10)(b2 /3)[PB –(b1 /b2)]/[1+(b2 /6)+( b2
2
 /120)].    (11e) 

We now notice that equations (11a-d) are basically of the sort of equations containing 

regular singular point at r=0, and so we apply again the method of Frobenius to find the 

solutions for these equations (11a-d). First for the case of zero interaction between the 

two drugs, we have to set b4
^
 =b5

^
=0 and then rescale bi

^
 =bi /r

2
 (i=3, 6), where bi are 

constants. The above rescaling y was based on the observation that the sources can be 

variable (Jackiewicz et al., 2009), and it is found that such rescaling could be reasonable 

to obtain the only possible non-trivial analytical solutions whose results agree 

qualitatively with the experimental observations (Tan et al., 2003). Similar to the 

reasoning described before to find the solutions for S and T and consequently for Ps in 

(8a), the solutions for Cis  (i=3, 4, 5, 6) are then determined as given below 

 

 C3(r) = 2 e2 r
L3

 (1+L4 r
2
),  

  L3   [-L1 + (9 L1
2
 +4 b3 L1)

0.5
]/(2 L1),  

                                      L4 -u2 L3 /[L1 (L3 +2)(L3 +3)-(2L1 +b3)],                  (12a) 

 

  C4(r)=2 e3 r
L5

 (1+L6 r
2
),  

   L5 [-L1 +(L1
2
 +4 L1 b3 )

0.5
]/(2 L1),  

         L6 -u2 L5 /[L1(L5 +2)(L5 +3)-b3 ],        (12b) 
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    C5(r)=2 e4 r
L7

 (1+ L8 r
2
),  

     L7 [-L2 +(9 L2
2
 +4 L2 b6 )

05
]/(2 L2 ),  

      L8 -u2 L7 /[L2 (L7 +2)(L7 +3)- (2 L2 +b6 )],    (12c) 

 

      C6(r )=2 e5 r
L9

 (1+L10 r
2
),  

       L9 [-L2 +(L2
2
 +4 L2 b6 )

0.5 
]/(2 L2),  

       L10 -u2 L9 /[L2 (L9 +2)(L9 +3)-b6 ].      (12d) 

 

Using (12a-d) in (10), we find the solution for the drug concentrations C1 and C2.in the 

absence of interactions between them. 

 

Next, for the case of non-zero interactions between the two drugs, we need to consider 

non-zero values for b4
^ 

and b5
^
, and following the same arguments made earlier for 

rescaling b3
^
 and b6

^
, we rescale b4

^
 =b4 r

-2+L3-L7
 and b5

^
 =b5 r

-2+L9-L5
, where bi (i=4, 5) are 

given constants. Using these in (11a-d), we find that the same solutions given by (12a-d) 

are valid, provided we replace b3 and b6 in the expressions for these solutions by (b3 +b4) 

and [b6 +b5 (e5 /e3)], respectively. 

 

4. Analysis and solutions for unsteady parts 

Using (2) and (3b) in (1a)-(1e), considering the non-dimensional system to the first order 

in  and applying a Taylor series expansion about r=1 for the boundary conditions at the 

outer surface of the tumor or normal tissue, which we assume to have the same spherical 

boundary as in the case of tumor, we find the following equations and boundary 

conditions at the order  for the unsteady parts of the dependent variables: 

 

    -Pu/r =uu,         (13a) 

          -(1/r)(Pu/) = vu,        (13b) 

 [1/(r
2
 sin)][(/r)(r

2
sin uu)+(/)(r sin vu)] = -b2 Pu,      (13c) 

usC1u/r +uuC1s/r +(vs/r)C1u/+vuC1s /r  

= L1{(1/r
2
)(/r)(r

2
/r)+[1/(r

2
 sin)] (/)(sin/)}C1u 

         –b3^ C1u–b4^ C2u,    (13d) 

us C2u/r +uu C2s/r+(vs /r)C2u/+vuC2s/r  

= L2 {(1/ r
2
)(/r)(r

2
 /r)+[1/(r

2
sin)] (/)(sin/)}C2u  

 –b5^ C1u –b6^ C2u,    (13e) 

                         Pu +Ps/r =C1u +C1s/r =C2u +C1s/r =0 at r =1.       (13f) 
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Similar to the procedure and the mathematical method described in detail in section 3 for 

the steady parts, we also are able to obtain the solutions for the unsteady parts of the 

dependent variables, which are too lengthy and will not be given here. We then use these 

solutions as well as the solutions for the steady parts of the dependent variables given in 

the section 3 in (3b) to find the results for the total quantities which we refer to for P, u, 

v, C1 and C2. The results for the total quantities are then presented and discussed in the 

next section 5. 

   

5. Results and discussion 

We calculated the main quantities in (3), the velocity, the pressure and the concentrations 

for two drugs, by using the prescribed numerical values for the non-dimensional constant 

coefficients bi (i =1, …, 6) and for the non-dimensional parameters Li, and we evaluated 

the necessary constants such as the arbitrary constants ei (i=0, 1, 2, 3, 4, 5) in the steady 

parts of the solutions (8a), (9a-b), (10) and (12a-d) by using the boundary values PB and 

CBi (i=1, 2). These numerical values were chosen based on the dimensional values of the 

corresponding quantities, which were collected mainly from relevant literatures on 

biomedical applications (Jain and Baxter, 1988; Boucher and Jain, 1992; Zhang, Luck, 

Dewhirst and Yuen, 2000; Tan et al., 2003; Soltani and Chen, 2011). The non-

dimensional values of the constant coefficients bi (i=1, …, 6), the boundary values PB , 

CBi (i=1, 2) and the diffusion parameters Li (i=1, 2) are given in Table 1. 

  

       Table 1.  Non-dimensional values of the quantities that are used in the calculation 

Quantities Tumor values Normal tissue values 

b1 2.218032(10
-7

) 2.92248(10
-5

) 

b2 4.22(10
-7

) 0.54 (10
-7

) 

b3 1.662 0.212 

b4 0.01662 0.00212 

b5 1.662 0.212 

b6 0.01662 0.00212 

CB1 0.01 0.01 

CB2 0.01 0.01 

L1 1.4175(10
-6

) 0.525(10
-6

) 

L2 1.4175(10
-8

) 0.525(10
-8

) 

PB 0.25 0.25 

 

The value of the constants  and  given in (3b) are set, respectively as 1 and 0.1. For the 

two drug concentrations we chose etanidazole, which is used for cancer patients to 

regulate the level of oxygen concentration in the tissue so that radiotherapy would be 

applicable to destroy the malignant cells, and cisplatin which is a kind of chemotherapy 

drug. 

 

Figure 2 presents the fluid pressure versus the radial variable for the case where the 

latitudinal angle is /2 and for both tumor and normal tissue. 
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            Figure 2. Pressure versus r for tumor and 

normal tissue with =/2  
 

It can be seen from this figure that the pressure increases with decreasing of the radial 

variable, and it has a maximum at the center of both tumor and normal tissue, which 

indicates that no significant radial flow can exist very close to the center of tumor or 

normal tissue. In addition, the pressure in the tumor is higher than that in the normal 

tissue, which is an indication of extra problem due to the presence of the tumor. The 

magnitude of the rate of change of the pressure is found to decrease with decreasing of 

the radial variable for both cases of tumor and normal tissue. We also generated the 

results for the pressure versus r but for different values of the latitudinal angle such as . 

= 3/4 and find similar behavior to the case of  = /2 but with smaller values for both 

cases in the tumor and in the normal tissue. 

 

Figure 3 presents the radial velocity of the flow versus the radial variable for both tumor 

and normal tissue and for  = /2.  

 
Figure 3.   Radial velocity versus r for tumor and 

normal tissue with  = /2 

 

As can be seen from this figure, u < 0 which is due to the fact that the flow enters into the 

tumor or normal tissue from the boundary surface. The velocity profile appears to be 

linear in the domain for r (0< r <1), and its magnitude for tumor is higher than that for 

the tissue. It is also seen that |u0|0 as r0 which is reasonable since the high pressure 

at the center put the motion into rest there. We also generated data for the radial velocity 

versus radial variable and for different values of the latitudinal angle such as  = 3/4 and 
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found that the magnitude of the latitudinal velocity is higher as compared to the 

corresponding magnitude for  = /2. 

 

Figure 4 presents the latitudinal component of the velocity of the flow versus the radial 

variable for both tumor and normal tissue at  = /2. It can be seen from this figure that 

the magnitude of the latitudinal velocity in the tumor is higher than the corresponding one 

in the normal tissue, and the value of the latitudinal velocity is negative and its magnitude 

increases with decreasing radial variable. These results for the radial and latitudinal 

velocity components indicate that the flow is mainly rotational and circulatory around the 

center of either tumor or normal tissue. We also generated data for the latitudinal velocity 

versus the radial variable and for different values of the latitudinal angle such as  = 3/4 

and found that magnitude of velocity component reduces as compared to the 

corresponding value for  = /2. 

 
Figure 4. Latitudinal velocity versus r for tumor 

and normal tissue at =/2 
 

Figure 5 presents etanidazole drug transport in tumor versus the radial variable for 

several values of the latitudinal angle  and in the absence of another drug transport.  

  

 
Figure 5. Etanidazole concentration in tumor versus r in the 

absence of the other drug concentration and for 

several values of  = 0, /2 & 2/3 
 

It can be seen from this figure that the amount of transported drug decreases quickly with 

decreasing radial variables and the amount is zero at the center of tumor. This result, 

which also agrees with the biomedical evidence (Soltani and Chen, 2011), indicates that 
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etanidazole is consumed mostly by the tumor near its boundary surface and not much is 

left to be transported more close to the center of the tumor. It is also apparent from this 

figure that the transported drug at a high latitude domain is higher than either in mid- or 

low-latitude domain. The rate of change of the concentration with respect to the radial 

variable decreases with decreasing  radial variable, which is consistent due to the fact that 

the amount of drug delivery is less in the regions closer to the center of tumor. 

 

We also generated data for etanidazole concentration in normal tissue versus radial 

variable and for several values of the latitudinal angle. Again as in the case of tumor the 

amount of transported drug decreases quickly with decreasing radial variable and the 

amount diminishes to zero at the center of the tissue. In addition, the amount transported 

in the normal tissue in a high latitude region is higher than those transported in the mid- 

or low-latitude region, and the rate of decrease of the drug reduces as it approaches the 

center. However, a comparison of our calculated data for tumor and normal tissue 

indicated that the amount transported by this drug is lower in the normal tissue than in the 

tumor, which may be due contributed to the complexity of the tumor structure absorbing 

higher amount of drug than normal tissue.  

 

Figures 6 presents drug concentration of cisplatin in tumor versus radial variable and for 

several values of the latitudinal angle. 

   
Figure 6.  The same as in figure 5 but for cisplatin 

concentration 
 

It can be seen from this figure, as well as from our additional generated data for the 

corresponding normal tissue that the amount of concentration diminishes quickly as it 

approaches the center of the tumor tissue. The amount of delivery of cisplatin in high 

latitude is higher than those in mid or low latitude. Also closer inspection of our 

generated data indicated that the amount of cisplatin concentration in the normal tissue is 

higher than the one in the tumor, which indicated that the amount of drug consumed by 

either tumor or normal tissue depends on the type of drug concentration in such tissues. 

The results based on the generated data for the cisplatin concentration in each of the 2 

tissues indicated that the amount of cisplatin drug in the normal tissue is higher than that 

in the tumor. Hence, the factors that can affect the amount of drug concentration in a 

tissue depend not only on the type of drug but also on the competing effect of the drug 

type versus tissue type. A comparison with the generated data for the etanidazole 

transport in each of the two tissues indicated that for the tumor the amount of cisplatin 

concentration is less than that of etanidazole, while in the normal tissue the amount of 

13

Gracia et al.: Modeling of Two-dimensional Unsteady Flow in Growing Tumor

Published by Digital Commons @PVAMU, 2015



AAM: Intern. J., Vol. 10, Issue 1 (June 2015)                                                                                         243 

 

cisplatin concentration is higher than that of etanidazole, and so the result is based on the 

dominating effect of higher diffusivity of the drug as well as the structure of the type of 

tissue which is consumed by the drug. 

 

 Figures 7-9 present respectively pressure, radial velocity and latitudinal velocity versus 

the time variable for tumor for different values of the radial variable r and for the 

latitudinal angle  = 3/4 in the case of Figure 7 and  = /2 in the cases of Figures 8-9. 

It can be seen from Figure 7 that the pressure increases with time inside the tumor, which 

indicates that the interstitial pressure builds up with time in the growing tumor. The 

results shown in Figures 8 indicate that the radial velocity is negative, so that the radial 

flow is toward the tumor’s center, and the magnitude of u increases with t. The results 

shown in Figure 9 indicate that the latitudinal velocity is negative, so that the latitudinal 

flow is toward tumor’s South-pole, and the magnitude of v decreases with increasing t. 

Our additional generated data for these quantities at different values of latitudinal angle 

such as  = /2 for pressure and  = 3/4 in the cases of the velocity components indicate 

similar behavior but with higher value of the magnitude of pressure and lower values of 

the magnitudes of both  = 3/4. Our additional generated data for the velocity 

components at several different values of r and  indicate flow circulation in the tumor. 

In addition, our additional generated data for these quantities in the normal tissue case 

indicate that the magnitude of the pressure and the velocity components are higher in the 

tumor than in the normal tissue, but the qualitative features of the results in the normal 

tissue are similar to those in the tumor.  

 
Figure 7.  Pressure versus t for 

tumor at  = 3/4 

 
Figure 8.  The same as in Figure 7 

but for radial velocity 

 
Figure 9.  The same as in figure 7 but for latitudinal velocity 
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Our results for the pressure, the velocity and drug concentration that we described so far 

agree qualitatively with the available experimental results and biomedical evidence (Jain, 

1987; Baxter and Jain, 1989; Boucher et al., 1990; Jain et al., 2007; Soltani and Chen, 

2011). 

  

Figures 10 and 11 present respectively concentrations of etanidazole and cisplatin in the 

tumor versus time for several values of r and  = /2.  

 

 
Figure 10. Etanidazole concentration in 

the tumor versus time at  = /2 

 
Figure 11. The same as in figure 10 but for cisplatin 

concentration 

 

It can be seen from these figures that the drug concentrations appear to decrease with 

time in the tumor, but the rate of decrease reduces with increasing time. Our additional 

generated data for these drug concentrations in the normal tissue indicated similar results, 

but the values of the concentrations in the normal tissue are slightly less than the 

corresponding ones in the tumor. Also our additional generated data for these quantities 

at  = 3/4 indicate similar behavior but with smaller values of the magnitude of the 

quantities.  

 

We also calculated the concentrations of drugs when both drugs are present in both tumor 

and normal tissues. Our generated data indicated that both concentrations again decrease 

with decreasing radial variable and the value and the radial rate of change of each 

concentration is higher in the normal tissue than in the tumor. Similar to the results 

presented before for the case in the absence of drug interaction, we found that the radial 

rate of change of each of these concentrations is higher close to the spherical boundary. 

Also these drug concentrations decrease with increasing time in both tumor and normal 

tissue. 

 

Additional inspection of our generated data for both drugs and in the presence of drug 

interactions indicated that the amount of etanidazole concentration in the tumor is higher 

than that in the normal tissue, while the amount of cisplatin in the normal tissue is higher 

than that in the tumor. In addition, concentration of etanidazole in both tissues is higher 

than that of cisplatin. We also find that the values of both concentrations in tumor are less 

in the presence of drug interactions, while values of these concentrations in the normal 

tissue are higher in the presence of such interactions. This result indicates that in the 

actual drug delivery mechanism to the patients, there can be a case where providing a 
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secondary drug to the patient could adversely affect the transport of the primary drug to 

the patient’s tumor and thereby could adversely affect the patient’s health conditions.  

 

We should also refer to the efficacy of a drug delivery system (Tan et al. 2003) that for a 

given radius it can depend, in particular, on the ratio of the values of the concentration for 

the tumor to that for the normal tissue. This ratio referred to as the Therapeutic Index (TI) 

can be found in the relevant biomedical literature (Tan et al., 2003). Thus, TI is a measure 

of the efficiency of the drug delivery, so that a higher value of TI indicates that higher 

amount of drug delivers to the tumor than to the normal tissue. In our results based on our 

generated data for TI in the cases of etanidazole or cisplatin delivery, we conclude that 

drug delivery is more efficient in the tumor system if a second drug delivery does not 

takes place simultaneously in the same tumor system. In the case of etanidazole or 

cisplatin, the TI increases with decreasing radial distance from the center, and it also 

increases with the latitudinal angle. In addition, TI is much higher for etanidazole as 

compared to the case of cisplatin implying that etanidazole delivery is much more 

efficient which is due to its higher diffusivity parameter L1 as compared to the diffusivity 

parameter L2 for cisplatin. Hence, value of the diffusivity coefficient for each drug can be 

an important factor for the efficiency of the corresponding drug delivery in the tumor. 

          

6. Conclusion 

We have investigated the problem of fluid flow in a growing solid tumor by developing 

an axisymmetric mathematical model for an assumed spherical tumor or normal tissue 

under the assumption that the growth rate of the tumor is small but non-zero. We, thus, 

calculated the results for the main quantities such as the fluid pressure, the radial and 

latitudinal components of the fluid flow velocity vector and the concentrations of two 

different drugs in the tumor or normal tissue. We found that the pressure in the tumor is, 

in general, higher than that in the normal tissue, and the pressure increases with time in 

both tumor and normal tissue. The magnitude of the fluid velocity vector was also found 

to be higher in the tumor than in the normal tissue, and it is found that the magnitude of 

the velocity vector decreases with increasing time in both tumor and normal tissue. Our 

results indicated, in general, the presence of fluid flow circulation in the tumor and to a 

lesser intensity in the normal tissue. The values of the drug concentration for either 

etanidazole or cisplatin decrease rapidly with decreasing radial distance from the center 

of the tissue, and the value of each drug concentration is very close to zero very near the 

center of either tumor or normal tissue. These results for the pressure, velocity and drug 

concentrations agree generally with the available experimental observations and 

biomedical data (Jain, 1987; Baxter and Jain, 1989; Boucher et al., 1990; Jain et al., 

2007; Soltani and Chen, 2011).  

 

Our additional new finding indicated that for a particular set of non-uniform boundary 

conditions for the pressure which led to smaller value of the pressure at the center of the 

tumor or normal tissue, the amount of drug concentration in the tumor or normal tissue 

can exdure more near the center of these tissues. This result may indicate a possible new 

procedure to improve the drug delivery to such tissues. We also calculated the values of 
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concentrations of two drugs in the presence of both drugs versus time and found, in 

particular, that both drug concentrations decrease with increasing time but the rate of 

such decrease reduces with increasing time. The amount of etanidazole concentration at 

any internal location of tumor or normal tissue is found to be higher than the 

corresponding value of the cisplatin concentration. The amount of etanidazole or cisplatin 

concentration at any internal location of the tumor is found to be higher than the 

corresponding one in the normal tissue. The presence of both drug concentrations that can 

produce interactive effects can reduce the efficiency of the drug delivery in the tumor 

system, while the value of the therapeutic index is increased if only one drug is delivered. 

Also the value of the diffusivity coefficient for a drug has important complications  on 

the efficiency of the drug delivery in the tumor system.  

  

The mathematical model developed and investigated here can be further extended to 

apply to fully three dimensional solid tumors and normal tissues in terms of properties 

and geometrical configurations. Another extension can be the ability to predict the effect 

that the drug delivery note to the tumor site can have on the tumor growth for actual 

operating and drug conditions in various  medical cases for solid tumor patients. 
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