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Abstract

In this paper we deal with nonparametric estimate of the conditional hazard function, when

the covariate is functional. Kernel type estimators for the conditional hazard function of a scalar

response variable Y given a Hilbertian random variable X are introduced, where the observations

are linked with a single-index structure. We establish the pointwise almost complete convergence

and the uniform almost complete convergence (with the rate) of the kernel estimate of this

model in various situations, including censored and non-censored data. The rates of convergence

emphasize the crucial role played by the small ball probabilities with respect to the distribution

of the explanatory functional variable.

Keywords: Censored data; conditional hazard function; functional single-index process; nonpara-

metric estimation; small ball probability
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1. Introduction

Estimation of hazard rate is an important issue in statistics; it is the topic that should be

approached from several angles depending on the complexity of the problem. This may include

possible presence of censorship in the observed sample (a common phenomenon in medical

applications), possible presence of dependency between the observed variables (a common phe-

nomenon in applications seismic or econometric) or presence of explanatory variable. Many

techniques have been studied in the literature to deal with these different situations, but all of

them deal only with real explanatory random variables or multi-dimensional.

Technical progress in the collection and storage of data allows us to have increasing access

to functional statistics: curves, images, tables, etc. These data are modeled as realizations of a

random variable taking its values in an abstract infinite dimensional space. In recent years the

scientific community has naturally become interested in the development of statistical tools that

are capable to handle this type of sample.

The single-index models are becoming increasingly popular, and have been paid considerable

attention recently because of their importance in several areas of science such as econometrics,

biostatistics, medicine, financial econometric and so on.

Thus, the estimation of a hazard rate in the presence of functional explanatory variables when

the observations are linked with a single-index structure is a topical issue to which this paper

proposes to make an initial response.

The layout of the paper is as follows: After a brief literature presented in Section -A, conditional

Hazard in the case of explanatory functional is introduced in Section -B; models of the hazard rate

for functional single-index in the case of non-censored-censored data are presented in Sections

-C and -D. Estimators that we define are based on the techniques of convolution kernel.

The first asymptotic properties in the fixed functional single-model were obtained by (Ferraty

et al., 2003), where the authors established the almost complete convergence, in the i.i.d. case,

of the link regression function of this model. Their results were extended to the case of the

conditional distribution where Kernel type estimators for the conditional cumulative distribution

function and the successive derivatives of the conditional density by (Bouchentouf et al., 2014)

was discussed. The authors established the pointwise almost complete convergence and the

uniform almost complete convergence (with the rate) of the kernel estimate of this model. They

are applied to the estimations of the conditional mode.

In this paper, we propose to study the asymptotic behavior of these models, first, we suppose

that the explanatory variable is valued in Hilbert space (infinite dimension) and we consider the

conditional hazard function estimation via kernel approach. We establish its asymptotic properties;

pointwise and almost complete convergence (with rate) in the independent case of non-censored

data -E and the uniform almost complete convergence (with the rate) -G.

Next, incomplete data is modeled via the presence of right right censored data. In this context

we consider the conditional hazard function estimation via the kernel approach by censored data

2
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-F and we establish the pointwise and the uniform almost complete convergence (with rate) -H

of the kernel estimator of the conditional hazard function.

In the non-censored case, properties of the estimator of the conditional hazard function are

obtained relatively easily from the known literature in estimating the distribution function and

conditional density literature. Thus, the proof of the results of Section -D will be presented

synthetically using up the existing literature. Contrariwise, the most interesting part of censored

variables, these asymptotic properties are not obtained directly and to improve the readability of

Sections -F and -H, technical details of the proofs contained are shown at the end of paper.

2. Setting the problem

A. Bibliographic context

If X is a random variable associated to a lifetime (ie, a random variable with values in R
+, the

hazard rate of X (sometimes called the hazard function, failure or survival rate ) is defined at

point x as the instantaneous probability that life ends at time x. Specifically, we have:

h(x) = lim
∆x−→0

P (X ≤ x + ∆x|X ≥ x)

∆x
, (x > 0). (1)

When X has a density f with respect to the measure of Lebesgue, it is easy to see that the

hazard rate can be written, as follows:

h(x) =
f(x)

S(x)
, for all x such that F (x) < 1, (2)

where F denotes the distribution function of X and S = 1 − F the survival function of X.

In many practical situations, we may have an explanatory variable Z and the main issue is to

estimate the conditional random rate defined as

hZ(x) = lim
∆x−→0

P (X ≤ x + ∆x|X > x, Z)

∆x
, for x > 0,

which can be written naturally as follows:

hZ(x) =
fZ(x)

SZ(x)
, once F Z(x) < 1. (3)

The study of functions h and hZ is of obvious interest in many fields of science (biology, medicine,

reliability, seismology, econometrics...) and many authors are interested in the construction of

nonparametric estimators of h . One of the most common techniques for building estimators of

h (resp. hZ ) is based on (2) (resp. (3)) and consist in studying a quotient between the estimator

of f (resp. fZ ) and that of S (resp. SZ). (Patil et al., 1994) presented an overview of these

estimation techniques. Nonparametric methods based on the ideas of the convolution kernel,

which are known for their good behavior in density estimation (conditional or not) problems are

widely used in nonparametric estimation of the hazard function. A wide range of literature in this

area is provided in bibliographic reviews (Singpurwalla and Wong, 1983; Hassani et al., 1986;

Izenman, 1991; Gefeller and Michels, 1992; Pascu and Vaduva, 2003; Ferraty et al., 2008).

3
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B. Conditional Hazard in the case of explanatory functional

The progress of data collection methods offers opportunities for statisticians to increasingly

provide observations of functional variables. (Ramsay and Silverman, 2005; Ferraty and Vieu,

2006) offered a wide range of statistics methods, parametric or nonparametric, recently developed

to treat various estimation problems which occur in functional random variables (ie with values

in a space of infinite dimension). Until now such statistical developments for functional variables

in single functional index have never existed in the context of estimating a hazard function.

Let (Xi, Zi)1≤i≤n be n random variables, identically distributed as the random pair (X, Z) with

values in R × H, where H is a separable real Hilbert space with the norm ‖ · ‖ generated by

an inner product < ·, · >. We consider the semi metric dθ, associated to the single index θ ∈ H

defined by ∀ z1, z2 ∈ H: dθ(z1, z2) := | < z1 − z2, θ > |. Under such a topological structure and

for a fixed functional θ, we give the conditional hazard function of X given Z = z denoted by

hz(·) exists and is given by

∀ x ∈ R, hz
θ(x) =: h(x| < z, θ >).

Clearly, the identifiability of the model is assured, and we have for all z ∈ H,

h1(·| < z, θ1 >) = h2(·| < z, θ2 >) =⇒ h1 ≡ h2 and θ1 = θ2.

For more details see (A. Aı̈t Saidi et al., 2008). In the following, we denote by h(θ, ·, Z), the

conditional hazard function of X given < z, θ >.

The objective of this paper is to study a model in which the conditional random explanatory

variable Z is not necessarily real or multi-dimensional but only assumed to be values in an abstract

space H provided a scalar product < ·, · >. As with any problem of non-parametric estimation,

the dimension of the space H plays an important role in the properties of concentration of the

variable X. Thus, when the dimension is not necessarily finite, the probability functions defined

by small balls of:

φθ,z(h) = P (Z ∈ Bθ(z, h)) = P (Z ∈ {z′ ∈ H, 0 < | < z − z′, θ > |) < h}) ,

intervene directly in the asymptotic behavior of any functional non-parametric estimator (see

(Ferraty and Vieu, 2006). The asymptotic results presented later in this article on the estimation

of the function h(θ, x, Z) does not escape this rule. From now, z denotes a fixed element of the

functional space H, Nz denotes a fixed neighborhood of z and SR is a fixed compact of R
+.

Now, we should make some assumptions on the concentration function φθ,z:

(H1) ∀ h > 0, φθ,z(h) > 0.

The non-parametric model on the estimated function hZ will be determined by the regularity

conditions on the conditional distribution of X knowing Z. These conditions are the following:

(H2) ∃ Aθ,z < ∞, ∃ b1, b2 > 0, ∀ (x1, x2) ∈ S2
R
, ∀ (z1, z2) ∈ N 2

z :

|F (θ, x1, z1) − F (θ, x2, z2)| ≤ Aθ,z

(
‖z1, z2‖

b1 + |x1 − x2|
b2
)
,

|f(θ, x1, z1) − f(θ, x2, z2)| ≤ Aθ,z

(
‖z1, z2‖

b1 + |x1 − x2|
b2
)
.

4
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(H3) ∃ ν < ∞, ∀ (x, z′) ∈ SR ×Nz, f(θ, x, z′) ≤ ν;

(H4) ∃ β > 0, ∀ (x, z′) ∈ SR ×Nz, F (θ, x, z′) ≤ 1 − β.

C. Construction of the estimator in the case of non-censured data

Let (Xi, Zi)1≤i≤n be random variables, each following the same law of a couple (X, Z) where

X is valued in R and Z has values in the Hilbert space (H, < ·, · >). In this Section we will

suppose that Xi and Zi are observed.

Recent advances in non-parametric statistics for functional variables, as presented in (Ferraty and

Vieu, 2006) show that the techniques based on convolution kernels are easily transposed to the

context of functional variables. Moreover, these kernel techniques have good properties in the

problems of estimation of the hazard function when the variables are of finite-dimensional. The

reader may consult the work (Ferraty et al., 2008) a pioneering paper on the subject, and that of

(del Rio, 2008) for the more recent results in this area.

Drawing on these ideas, it is natural to try to construct an estimator of the function h(θ, ·, Z).

To estimate the conditional distribution function and the conditional density in the presence of

functional the variable Z, (Bouchentouf et al., 2014) proposed the following functional kernel

estimators:

F̂ (θ, x, z) =

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
)
H
(
h−1

H (x − Xi)
)

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
)

,

and

f̂(θ, x, z) =

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
)
H ′
(
h−1

H (x −Xi)
)

hH

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
)

,

where K is a kernel, H is a distribution function and hK = hK,n (resp. hH = hH,n) is a sequence

of positive real numbers, a kernel estimator of the functional conditional hazard function h(θ, ·, Z)

may therefore be constructed in the following way:

ĥ(θ, x, Z) =
f̂ (θ, x, Z)

1 − F̂ (θ, x, Z)
. (4)

The assumptions we need later for the parameters of the estimator, ie on K, H, hH and hK are

not restrictive. Indeed, on one hand, they are not specific to the problem of estimating h(θ, x, Z)

(but rather inherent to the estimation problems of F (θ, x, Z) and f(θ, x, Z)), and on the other

hand they correspond to the assumptions usually made in the context of non-functional variables.

More precisely, we introduce the following conditions which guarantee the good behavior of the

estimators F̂ (θ, x, Z) and f̂(θ, x, Z) (see (Ferraty and Vieu, 2006).

5
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(H5) H is a bounded Lipschitz continuous function, such that

∫
H ′(t)dt = 1,

∫
|t|b2H(t)dt < ∞, and

∫
H2(t)dt < ∞

(H6) K is positive bounded function with support [−1, 1].

(H7) The bandwidth hK has to satisfy

lim
n→∞

hK = 0 and lim
n→∞

log n

nhHφθ,x(hK)
= 0.

(H8) The bandwidth hH has to satisfy

lim
n→∞

hH = 0 et ∃ a > 0, lim
n→∞

na hH = ∞.

Under these general conditions, we will establish in -E the pointwise convergence of the kernel

estimator ĥ(θ, x, z) of the functional conditional hazard function h(θ, x, z) when the observed

sample is not censored. In Section -F, these results will be generalized to include censored

variables.

D. Estimation in censored case

Estimation of the hazard function when the data are censored is an important problem in medical

research. So, in practice, in medical applications, it can be in the presence of variables censored.

This problem is usually modeled by considering a positive variable called C and the observed

random variables are not the couples (Xi, Zi) but only the (Ti, ∆i, Zi) where Ti = min(Xi, Ci)

and ∆i = IXi≤Ci
. In the following we use the notations F1(θ, ·, Z) and f1(θ, ·, Z) to describe

the distribution function and conditional density of C knowing Z and we use the notation

S1(θ, ·, Z) = 1 − F1(θ, ·, Z). Models such censorship where abundantly studied in the literature

for real or multi-dimensional random variables and in the nonparametric case kernel’s techniques

are particularly used (see (Tanner and Wong, 1983; Padgett, 1988; Lecoutre and Ould-Saı̈d, 1995;

Keilegom and Veraverbeke, 2001)). For functional variables see (Ferraty et al., 2008).

The aim of this Section, is to adapt these ideas as part of an explanatory variable Z functional

and build a kernel estimator function type of conditional random h(θ, ·, Z) adapted to the

censored data. If we introduce the notation L(θ, ·, Z) = 1−S1(θ, ·, Z)S(θ, ·, Z) and ϕ(θ, ·, Z) =

f(θ, ·, Z)S1(θ, ·, Z), we can reformulate the expression (3) as follows:

h(θ, t, Z) =
ϕ(θ, t, Z)

1 − L(θ, t, Z)
, ∀ t, L(θ, t, Z) < 1. (5)

So, we can define function estimators ϕ(θ, ·, Z) and L(θ, ·, Z) by setting

L̂(θ, t, Z) =

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
)
H
(
h−1

H (t − Ti)
)

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
)

6
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and

ϕ̂(θ, t, Z) =

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
)
∆iH

′
(
h−1

H (t − Ti)
)

hH

n∑

i=1

K
(
h−1

K (< z − Zi, θ >)
) .

Finally the hazard function estimator is given as:

h̃(θ, t, Z) =
ϕ̂(θ, t, Z)

1 − L̂(θ, t, Z)
. (6)

In addition to the assumptions introduced in Section -C, we need additional conditions. These

assumptions are identical to those found in the classical literature for non-functional variables

(see previous references), these additional hypotheses are as follows:

(H9) Conditionally to Z, the variables X and C are independent.

(H10) ∃ Aθ,z < ∞, ∃ b1, b2 > 0, ∀ (t1, t2) ∈ S2
R
, ∀ (z1, z2) ∈ N 2

z :

|L(θ, t1, z1) − L(θ, t2, z2)| ≤ Aθ,z

(
‖z1 − z2‖

b1 + |t1 − t2|
b2
)

|ϕ(θ, t1, z1) − ϕ(θ, t2, z2)| ≤ Aθ,z

(
‖z1 − z2‖

b1 + |t1 − t2|
b2
)
.

(H11) ∃ µ < ∞, ϕ(θ, t, z′) < µ, ∀ (t, z′) ∈ R+ ×Nz,

(H12) ∃ η > 0, L(θ, t, z′) ≤ 1 − η, ∀ (t, z′) ∈ R+ ×Nz.

Under these very general conditions, we establish in Section -E the rates of convergence of the

kernel estimator h̃(θ, ·, z) of the functional conditional hazard function h(θ, ·, z) when couples

of variables (Xi, Zi)i=1,...,n are independents. In Section -E these results will be generalized by

dispensing with the condition of censored data.

3. Pointwise almost complete Convergence

E. Case of non censored data

We begin by studying statistical samples satisfying a classical assumption of independence,

couples (Xi, Zi) are i.i.d,

Theorem 0.1: Under hypotheses (H1)-(H8), we have:

sup
x∈SR

|ĥ(θ, x, z) − h(θ, x, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.

(√
log n

nhH φθ,z(hK)

)
.

Proof:

7
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The proof is based on the following decomposition, valid for any x ∈ SR:

ĥ(θ, x, z) − h(θ, x, z) =
1

(1 − F̂ (θ, x, z))(1− F (θ, x, z))

(
f̂(θ, x, z)− f(θ, x, z)

)

+
f(θ, x, z)

(1 − F̂ (θ, x, z))(1 − F (θ, x, z))

(
F̂ (θ, x, z)− F (θ, x, z)

)

−
F (θ, x, z)

(1 − F̂ (θ, x, z))(1 − F (θ, x, z))

(
f̂ (θ, x, z)− f(θ, x, z)

)
,

=
1

1 − F̂ (θ, x, z)

(
f̂(θ, x, z) − f(θ, x, z)

)

+
h(θ, x, z)

1 − F̂ (θ, x, z)

(
F̂ (θ, x, z) − F (θ, x, z)

)
,

hence

sup
x∈SR

∣∣∣ĥ(θ, x, z)− h(θ, x, z)
∣∣∣ ≤

1

inf
x∈SR

∣∣∣1 − F̂ (θ, x, z)
∣∣∣

(
sup
x∈SR

∣∣∣f̂(θ, x, z)− f(θ, x, z)
∣∣∣
)

+

sup
x∈SR

|h(θ, x, z)|

inf
x∈SR

∣∣∣1 − F̂ (θ, x, z)
∣∣∣

(
sup
x∈SR

∣∣∣F̂ (θ, x, z)− F (θ, x, z)
∣∣∣
)

,

which leads to a constant C < ∞:

sup
x∈SR

∣∣∣ĥ(θ, x, z)− h(θ, x, z)
∣∣∣ ≤ C

{
supx∈SR

(∣∣∣f̂ (θ, x, z)− f(θ, x, z)
∣∣∣+
∣∣∣F̂ (θ, x, z)− F (θ, x, z)

∣∣∣
)}

infx∈SR

∣∣∣1 − F̂ (θ, x, z)
∣∣∣

.

And conventionally (see for instance the Proposition A6ii of (Ferraty and Vieu, 2006) the

announced result follows directly from the following properties:

sup
x∈SR

|F (θ, x, z)− F̂ (θ, x, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co

(√
log n

nφθ,z(hK)

)
, (7)

and

sup
x∈SR

|f(θ, x, z) − f̂(θ, x, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.

(√
log n

nhH φθ,z(hK)

)
, (8)

and from the next result which is a consequence of property (7).

Corollary 0.2: Under the conditions of Theorem 0.1, we have

∃ δ > 0 such that

∞∑

n=1

P

{
inf

x∈SR

∣∣∣1 − F̂ (θ, x, z)
∣∣∣ < δ

}
< ∞.

The results (7) and (8) are known results (see for instance (Ferraty and Vieu, 2006, Propositions

6.19 and 6.20).

2
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F. Estimation with censored data

The goal now is to take these asymptotic properties in the broader context of a censored sample

as described in Section -D. We will begin in this Section by discussing the case censored. Obvi-

ously, obtaining these results require more sophistication than those presented under uncensored

technical developments. For good readability, in this Section -F, the presentation of these technical

details will come later in Paragraph -H.

We begin by studying statistical samples satisfying a standard assumption of independence, ie.

triples (Xi, Ci, Zi) are i.i.d.

Theorem 0.3: Under assumptions (H1)-(H2), and (H5)-(H12), we have:

sup
t∈SR

|h̃(θ, t, z)− h(θ, t, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.

(√
log n

nhH φθ,z(hK)

)
.

Proof:

The result is based on the bellow decomposition, where in C is a real constant strictly positive:

sup
t∈SR

∣∣∣h̃(θ, t, z) − h(θ, t, z)
∣∣∣ ≤

1

inf
t∈SR

∣∣∣1 − L̂(θ, t, z)
∣∣∣

{
sup
t∈SR

|ϕ̂(θ, t, z)− ϕ(θ, t, z)|

}

+

sup
t∈SR

|h(θ, t, z)|

inf
t∈SR

∣∣∣1 − L̂(θ, t, z)
∣∣∣

{
sup
t∈SR

∣∣∣L̂(θ, t, z)− L(θ, t, z)
∣∣∣
}

.

≤ C

sup
t∈SR

{
|ϕ̂(θ, t, z) − ϕ(θ, t, z)| +

∣∣∣L(θ, t, z) − L̂(θ, t, z)
∣∣∣
}

inf
t∈SR

∣∣∣1 − L̂(θ, t, z)
∣∣∣

, (9)

which is obtained from (3) and (5) proceeding as to establish (17). Since L̂(θ, t, Z) is none other

than the kernel estimator of the conditional distribution function of T knowing Z is obtained

directly (see (Ferraty and Vieu, 2006, Proposition 6.19) that:

sup
t∈SR

∣∣∣L̂(θ, t, Z)− L(θ, t, Z)
∣∣∣ = O

(
hb1

K + hb2
H

)
+ Oa.co.

(√
log n

nφθ,z(hK)

)
. (10)

The proprieties of the estimator ϕ̂(θ, ·, Z) are given in Lemma 0.4, the desired result is obtained

directly from (9)-(12).

Lemma 0.4: Under hypotheses of Theorem 0.3, we have:

sup
t∈SR

|ϕ̂(θ, t, Z)− ϕ(θ, t, Z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.

(√
log n

nhH φθ,z(hK)

)
. (11)

The next result which is a consequence of property (10).
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Corollary 0.5: Under the conditions of Theorem 0.3, we have

∃ δ > 0 such that

∞∑

n=1

P

{
inf

x∈SR

∣∣∣1 − L̂(θ, x, z)
∣∣∣ < δ

}
< ∞. (12)

2

4. Uniform almost complete convergence

In this party we derive the uniform version of Theorem 0.1. The study of the uniform consistency

is motivated by the fact that the latter is an indispensable tool for studying the asymptotic

properties of all estimates of the functional index if is unknown. Noting that, in the multivariate

case, the uniform consistency is a standard extension of the pointwise one, however, in our

functional case, it requires some additional tools and topological conditions (see Ferraty et al.

(2010), for more discussion on the uniform convergence in nonparametric functional statistics).

Thus, in addition to the conditions introduced previously, we need the following ones. Firstly,

consider

SH ⊂
d
SH
n⋃

k=1

B(xk, rn) and ΘH ⊂
d
ΘH
n⋃

j=1

B(tj, rn),

with xk (resp. tj) ∈ H and rn, d
SH

n , dΘH

n are sequences of positive real numbers which tend to

infinity as n goes to infinity.

G. Non censored data

Thereafter we propose to study the uniform almost complete convergence of our estimator defined

above (4) for this, we need the following assumptions:

(A1) There exists a differentiable function φ(·) such that ∀ z ∈ SH and for all θ ∈ ΘH,

0 < Cφ(h) ≤ φθ,z(h) ≤ C ′φ(h) < ∞ and ∃ η0 > 0, ∀ η < η0, φ′(η) < C,

(A2) ∀ (x1, x2) ∈ SR × SR, ∀ (z1, z2) ∈ SH × SH and ∀ θ ∈ ΘH,

|F (θ, x1, z1) − F (θ, x2, z2)| ≤ A
(
‖z1, z2‖

b1 + |x1 − x2|
b2
)
,

|f(θ, x1, z1) − f(θ, x2, z2)| ≤ A
(
‖z1, z2‖

b1 + |x1 − x2|
b2
)
.

(A3) ∃ ν < ∞, ∀ (x, z′) ∈ SR ×Nz, ∀ θ ∈ ΘH, f(θ, x, z′) ≤ ν.

(A4) ∃ β > 0, ∀ (x, z′) ∈ SR ×Nz, ∀ θ ∈ ΘH, F (θ, x, z′) ≤ 1 − β.

(A5) The kernel K satisfy (H3) and Lipschitz’s condition holds

|K(u)− K(v)| ≤ C‖u− v‖.

(A6) For rn = O
(

log n
n

)
the sequences dSH

n and dΘH

n satisfy:

(log n)2

nφ(hK)
< log dSH

n + log dΘH

n <
nφ(hK)

log n
,

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 8

https://digitalcommons.pvamu.edu/aam/vol10/iss1/8



124 O. Belabbaci et al.

and

∞∑

n=1

n1/2b2(dSH

n dΘH

n )1−β < ∞ for some β > 1.

(A7) For some γ ∈ (0, 1), lim
n→∞

nγhH = ∞, and for rn = O
(

log n
n

)
the sequences dSF

n and dΘF

n

satisfy:
(log n)2

nhHφ(hK)
< log dSF

n + log dΘF

n <
nhHφ(hK)

log n
,

and

∞∑

n=1

n(3γ+1)/2(dSF

n dΘF

n )1−β < ∞, for some β > 1.

Remark 0.6: Note that Assumptions (A1)-(A4) are, respectively, the uniform version of (H1)-

(H4). Assumptions (A1) and (A6) are linked with the the topological structure of the functional

variable, see Ferraty et al. (2010).

Theorem 0.7: Under hypotheses (A1)-(A7) and (H5), we have:

sup
θ∈ΘH

sup
z∈SH

sup
x∈SR

|ĥ(θ, x, z)− h(θ, x, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.




√

log dSH
n + log dΘH

n

nhHφ(hK)



 .

In the particular case, where the functional single-index is fixed we get the following result.

Corollary 0.8: Under Assumptions (A1)-(A7) and (H4), as n goes to infinity, we have

sup
z∈SH

sup
x∈SR

|ĥ(θ, x, z)− h(θ, x, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.




√

log dSH
n

nhHφ(hK)



 .

Proof:

Clearly The proofs of these two results namely the Theorem 0.7 and Corollary 0.8 can be deduced

from the following intermediate results which are only uniform version of properties (7) and (8).

sup
θ∈ΘH

sup
z∈SH

sup
x∈SR

|F̂ (θ, x, z)−F (θ, x, z)| = O
(
hb1

K + hb2
H

)
+Oa.co.




√

log dSH
n + log dΘH

n

nφ(hK)



 , (13)

and

sup
θ∈ΘH

sup
z∈SH

sup
x∈SR

|f̂(θ, x, z) − f(θ, x, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.




√

log dSH
n + log dΘH

n

nhHφ(hK)



 , (14)

and from the next result which is a consequence of property (13).

Corollary 0.9: Under the conditions of Theorem 0.7, we have

∃ δ > 0 such that

∞∑

n=1

P

{
inf

z∈SH

inf
x∈SR

|1 − F̂ (θ, x, z)| < δ

}
< ∞.

The results (13) and (14) are known results (see for example (Bouchentouf et al., 2014).

2
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H. Censored data

Thereafter we propose to study the uniform almost complete convergence of our estimator defined

above (6) for this, we need the following assumptions:

(A2a) ∀ (t1, t2) ∈ SR × SR, ∀ (z1, z2) ∈ SH × SH and ∀ θ ∈ ΘH,

|L(θ, t1, z1) − L(θ, t2, z2)| ≤ A
(
‖z1, z2‖

b1 + |t1 − t2|
b2
)
,

|ϕ(θ, t1, z1) − ϕ(θ, t2, z2)| ≤ A
(
‖z1, z2‖

b1 + |t1 − t2|
b2
)
.

(A3a) ∃ ν < ∞, ∀ (t, z′) ∈ SR ×Nz, ∀ θ ∈ ΘH, ϕ(θ, t, z′) ≤ ν.

(A4a) ∃ β > 0, ∀ (t, z′) ∈ SR ×Nz, ∀ θ ∈ ΘH, L(θ, t, z′) ≤ 1 − β.

Theorem 0.10: Under hypotheses (A1), (A5)-(A7) and (A2a)-(A4a), we get:

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR

|h̃(θ, t, z) − h(θ, t, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.




√

log dSH
n + log dΘH

n

nhHφ(hK)



 .

In the particular case, where the functional single-index is fixed we get the following result.

Corollary 0.11: Under Assumptions (A1), (A5)-(A7), (A2a)-(A4a) and (H4), as n goes to infinity,

we have

sup
z∈SH

sup
t∈SR

|h̃(θ, t, z) − h(θ, t, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.



√

log dSH
n

nhHφ(hK)


 .

Proof:

The result is based on the decomposition (9). Clearly The proofs of these two results namely the

Theorem 0.10 and Corollary 0.11 can be deduced from the following intermediate results which

are only uniform version of properties (10) and (11). The properties of the estimators L̂(θ, ·, z)

and ϕ̂(θ, ·, z) are given in the following Lemma 0.12. Finally, the desired result is obtained

directly from (9), (15) and (16).

Lemma 0.12: Under hypotheses of Theorem 0.10, we have:

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR

|L̂(θ, t, z)− L(θ, t, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.




√

log dSH
n + log dΘH

n

nφ(hK)



 , (15)

and

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR

|ϕ̂(θ, t, z)− ϕ(θ, t, z)| = O
(
hb1

K + hb2
H

)
+ Oa.co.




√

log dSH
n + log dΘH

n

nhHφ(hK)



 . (16)

The next result which is a consequence of property (15).

Corollary 0.13: Under the conditions of Theorem 0.10, we have

∃ δ > 0 such that

∞∑

n=1

P

{
inf

z∈SH

inf
t∈SR

|1 − L̂(θ, t, z)| < δ

}
< ∞.
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Sketch of Proof of Lemma 0.12:

The proof of (15) is based on some results depending on the following decomposition:

L̂(θ, t, z)− L(θ, t, z) =
1

ϕ̂D(θ, z)

{(
L̂N(θ, t, z) − EL̂N (θ, t, z)

)
−
(
L(θ, t, z) − EL̂N (θ, t, z)

)}

+
L(θ, t, z)

ϕ̂D(θ, z)
{1 − ϕ̂D(θ, z)} .

Then the rest of the proof is similar the one given in (Bouchentouf et al., 2014), where, it

is sufficient to replace F̂D(θ, z), F (θ, t, z) and E(F̂N(θ, t, z)) (Lemma 4.4, Corollary 4.5 and

Lemma 4.7) by ϕ̂D(θ, z), L(θ, t, z) and E(L̂N (θ, t, z)) respectively, for detailed explanations the

proof will be presented in shorter fashion at the end of paper. Then the rest is deduced directly

from Lemma 0.15, Lemma 0.16 and Corollary 0.14.

Corollary 0.14: Under Assumptions (A1), (A5) and (A6), we have as n → ∞

sup
θ∈ΘH

sup
z∈SH

|ϕ̂D(θ, z) − 1| = Oa.co




√

log dSH
n + log dΘH

n

nφ(hK)



 , (17)

and
∞∑

n=1

P

(
inf

θ∈ΘH

inf
z∈SH

ϕ̂D(θ, z) <
1

2

)
< ∞. (18)

Lemma 0.15: Under Assumptions (A1), (A2) and (H5), we have, as n goes to infinity

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR

|L(θ, t, z)− E(L̂N (θ, t, z))| = O(hb1
K + hb2

H). (19)

Lemma 0.16: Under assumptions (A1), (A5)-(A7) and (A2a)-(A4a) we have, as n goes to infinity

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR

|L̂N(θ, t, z) − E

[
L̂N (θ, t, z)

]
| = Oa.co.




√

log dSH
n + log dΘH

n

nφ(hK)



 . (20)

Concerning (16) the proof is based at first on the following decomposition:

ϕ̂(θ, t, z)− ϕ(θ, t, z) =
1

ϕ̂D(θ, z)
(ϕ̂N (θ, t, z)− E(ϕ̂N(θ, t, z))

−
1

ϕ̂D(θ, z)
(ϕ(θ, t, z)− Eϕ̂N (θ, t, z))

+
ϕ(θ, t, z)

ϕ̂D(θ, z)
(1 − ϕ̂D(θ, z)) .

The rest is deduced directly from Lemma 0.17, Lemma 0.18 and Corollary 0.14.

Lemma 0.17: Under Assumptions (A1), (A2a) and (H5), we have, as n goes to infinity

sup
θ∈ΘF

sup
z∈SF

sup
t∈SR

|ϕ(θ, t, z)− E(ϕ̂N (θ, t, z))| = O(hb1
K + hb2

H). (21)
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Lemma 0.18: Under the assumptions (A1), (A5) ,(A2a), (A7) and (H5), we have, as n goes to

infinity

sup
θ∈ΘF

sup
z∈SF

sup
t∈SR

|ϕ̂N(θ, t, z)] − E [ϕ̂N (θ, t, z)]| = Oa.co.




√

log dSF
n + log dΘF

n

nhHφθ,z(hK)



 . (22)

2

5. Proofs of technical lemmas

In what follows C and C ′ denote generic strictly positive real constants. Furthermore, the

following notation are introduced:

Ki(θ, z) = K(h−1
K (< z − Zi, θ >)), H ′

i(t) = H ′
(
h−1

H (t − Ti)
)
,

ϕ̂N (θ, t, z) =
1

nhHEK1(θ, z)

n∑

i=1

Ki(θ, z)H ′
i(t)∆i,

ϕ̂D(θ, z) =
1

nEK1(z)

n∑

i=1

Ki(θ, z),

Vi =
1

EK1(θ, z)
Ki(θ, z),

Wi =
1

hHEK1(θ, z)
Ki(θ, z)H ′

i(t)∆i.

Proof of Corollary 0.2:

It is clear that

inf
x∈SR

|1 − F̂ (θ, x, z)| ≤

(
1 − sup

x∈SR

F (θ, x, z)

)/
2

⇒ sup
x∈SR

|F̂ (θ, x, z)− F (θ, x, z)| ≥

(
1 − sup

x∈SR

F (θ, x, z)

)/
2,

which implies that

∑

n=1

P

{
inf

x∈SR

|1 − F̂ (θ, x, z)| ≤

(
1 − sup

x∈SR

F (θ, x, z)

)/
2

}

≤
∑

n=1

P

{
sup
x∈SR

|F̂ (θ, x, z)− F (θ, x, z)| ≥

(
1 − sup

x∈SR

F (θ, x, z)

)/
2

}
< ∞.

We deduce from property (7) that

∑

n=1

P

{
inf

x∈SR

|1 − F̂ (θ, x, z)| ≤

(
1 − sup

x∈SR

F (θ, x, z)

)/
2

}
< ∞.

This proof is achieved by taking δ = (1 − supx∈SR
F (θ, x, z))/2 which is strictly positive.
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2

Proof of Lemma 0.4:

By using the following decomposition:

ϕ̂(θ, t, z) − ϕ(θ, t, z) =
(ϕ̂N (θ, t, z)− ϕN (θ, t, z))ϕD(θ, z) − (ϕ̂D(θ, z)− ϕD(θ, z))ϕN (θ, t, z)

ϕ̂D(θ, z)ϕD(θ, z)
,

and under the Proposition A6ii de (Ferraty and Vieu, 2006), the result of Lemma 0.4 will follow

directly following three properties:

|ϕ̂D(θ, z) − 1| = Oa.co.

(√
log n

nhH φθ,z(hK)

)
. (23)

sup
t∈SR

|Eϕ̂N (θ, t, z)− ϕ(θ, t, z)| = O(hb1
K + hb2

H ), (24)

and

1

ϕ̂D(z)
supt∈SR

|ϕ̂N(θ, t, z) − Eϕ̂N (θ, t, z)| = Oa.co.

(√
log n

nhH φθ,z(hK)

)
. (25)

• Proof of (23) It suffices to note that we can write

ϕ̂D(θ, z) =
1

n

n∑

i=1

Vi,

with

|Vi| = O

(
1

φθ,z(h)

)
, (26)

and

EV 2
i = O

(
1

φθ,z(h)

)
. (27)

By applying an exponential inequality for bounded variables (for example Corollary A9i of

(Ferraty and Vieu, 2006) and taking into account the results (26) et (27), we arrive at

P

[
|ϕ̂D(θ, z) − Eϕ̂D(θ, z)| > ε

√
log n

nφθ,z(hK)

]
= O(n−Cε2

).

Now simply choose ε large enough to get the result (23).

• Proof of (24). We have, for any t ∈ SR:

Eϕ̂N (θ, t, z) =
1

hHEK1(θ, z)
E (K1(θ, z)H ′

1(t)∆1)

=
1

hHEK1(θ, z)
E
(
K1(θ, z)E

(
H ′

1(t)IX1≤C1

∣∣ < Z1, θ >
))

=
1

hHEK1(θ, z)
E (K1(z)E(H1(t)S1(θ, X1, Z1)| < Z1, θ >)) , (28)
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the last equality arising of conditional independence between C1 and X1 introduced into

(H9), furthermore we have

E(H1(t)S1(θ, X1, z)| < Z1, θ >) =

∫
H ′(

t − u

hH
)S1(θ, u, Z1)f(θ, u, Z1)du

= hH

∫
H ′(v)ϕ(θ, t − vhH, Z1)dv

= hH

(
ϕ(θ, t, z) + o(hb2

H + hb1
K)
)
, (29)

the last equality resulting from the property of the Lipschitz function ϕz introduced in (H10)

and the fact that H ′ is a probability density. It should be noted, again because of the condition

(H10), that o() involved in the result (29) are uniform for t ∈ SR. Thus, the result (24) is

an immediate consequence of (28) and (29).

• Proof of (25). The compactness of the set SR can be covered by the un disjoint intervals

as follows:

SR ⊂ ∪un

m=1[τm − ln, τm + ln[,

where τ1, . . . , τun
are points of SR and where ln and un are chosen such that

∃ C > 0, ∃ α > 0, ln = Cu−1
n = n−α. (30)

For each t ∈ SR noting τt the single τm such as t ∈ [τm − ln, τm + ln[. Finally, (25) can be

easily deduced from the following results:

1

ϕ̂D(θ, z)
sup
t∈SR

|ϕ̂N(θ, t, z)− ϕ̂N (θ, τt, z)| = Oa.co.

(√
log n

nhH φθ,z(hK)

)
, (31)

1

ϕ̂D(θ, z)
sup
t∈SR

|Eϕ̂N (θ, t, z)− Eϕ̂N (θ, τt, z)| = Oa.co.

(√
log n

nhH φθ,z(hK)

)
, (32)

and

1

ϕ̂D(θ, z)
sup
t∈SR

|ϕ̂N(θ, τt, z) − Eϕ̂N (θ, τt, z)| = Oa.co.

(√
log n

nhH φθ,z(hK)

)
. (33)

• Proof of (31). Because of the condition (H5), there exists a finite constant C such that for

all t ∈ SR:

|ϕ̂N (θ, t, z)− ϕ̂N(θ, τt, z)| =
1

nhHEK1(θ, z)

n∑

i=1

∆iKi(z) (H ′
i(t) − H ′

i(τt))

≤
C

nhHEK1(θ, z)

n∑

i=1

Ki(θ, z)
|t− τt|

hH

≤ Cϕ̂D(θ, z)lnh
−2
H . (34)

By using (30) and choosing α large enough, we obtain directly (31).

• Proof of (32). This result is obtained directly from (23) and (34) using Proposition A6ii of

(Ferraty and Vieu, 2006).
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• Proof of (33). Obtaining (33) is based on the use of an exponential inequality. Specifically,

it suffices to note that we can write

ϕ̂N (θ, t, z) =
1

n

n∑

i=1

Wi,

with

|Wi| = O

(
1

hHφθ,z(h)

)
, (35)

and:

EW 2
i =

1

h2
H(EK1(θ, z))2

EK2
i (θ, z)H

′2
i (t)∆2

i

≤ C
1

h2
H(EK1(θ, z))2

E

(
K2

i (θ, z)E(H
′2
i (t))

∣∣ < Zi, θ >
)

≤ C
1

hHφθ,z(h)2
E

(
K2

i (θ, z)

∫
1

hH
H ′

(
t − u

hH

)2

f(θ, u, Zi)du

)

= O

(
1

hHφθ,z(h)

)
. (36)

By using the condition (30) we arrive at

P

[
sup
x∈SR

|ϕ̂N(θ, τt, z) − Eϕ̂N (θ, τt, z)| > ε

√
log n

nhH φθ,z(hK)

]
≤

nα max
m=1,...un

P

[
|ϕ̂N(θ, τm, z)− Eϕ̂N (θ, τm, z)| > ε

√
log n

nhH φθ,z(hK)

]
.(37)

Moreover, by applying an exponential inequality to bounded variables (for example the

corollary A9i by (Ferraty and Vieu, 2006) and taking into account the results (35) and (36),

we arrive at

P

[
|ϕ̂N(θ, τm, z) − Eϕ̂N (θ, τm, z)| > ε

√
log n

nhH φθz(hK)

]
= O(n−Cε2

). (38)

It suffices now to choose ε large enough to directly obtain the desired result from (37) and

from (38).

The results (31), (32) and (33) are sufficient to conclude the proof of the result (25). Finally,

Lemma 0.4 is a consequence of (23), (24) and (25) and decomposition (-H).

2

Proof of Corollary 0.14:

• Concerning (17) For all z ∈ SH and θ ∈ ΘH, we set

k(z) = arg min
k∈{1...rn}

‖z − zk‖ and j(θ) = arg min
j∈{1...ln}

‖θ − tj‖.
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Let us consider the following decomposition

sup
θ∈SH

sup
Θ∈SH

|ϕ̂D(θ, z) − E (ϕ̂D(θ, z))| ≤ sup
θ∈SH

sup
Θ∈SH

∣∣ϕ̂D(θ, z) − (ϕ̂D(θ, zk(z))
∣∣

︸ ︷︷ ︸
Π1

+ sup
θ∈SH

sup
Θ∈SH

∣∣ϕ̂D(θ, zk(z)) − ϕ̂D(tj(θ), zk(z))
∣∣

︸ ︷︷ ︸
Π2

+ sup
θ∈SH

sup
Θ∈SH

∣∣ϕ̂D(tj(θ), zk(z)) − E
(
ϕ̂D(tj(θ), zk(z))

)∣∣
︸ ︷︷ ︸

Π3

+ sup
θ∈SH

sup
Θ∈SH

∣∣E
(
ϕ̂D(tj(θ), zk(z))

)
− E

(
ϕ̂D(θ, zk(z))

)∣∣
︸ ︷︷ ︸

Π4

+ sup
θ∈SH

sup
Θ∈SH

∣∣E
(
ϕ̂D(θ, zk(z))

)
− E (ϕ̂D(θ, z))

∣∣
︸ ︷︷ ︸

Π5

For Π1 and Π2, we employe the Hölder continuity condition on K, Cauchy Schwartz’s and

the Bernstein’s inequalities, we get

Π1 = O




√

log dSH
n + log dΘH

n

nφ(hK)



 , Π2 = O




√

log dSH
n + log dΘH

n

nφ(hK)



 . (39)

Then, by using the fact that Π4 ≤ Π1 and Π5 ≤ Π2, we get for n tending to infinity

Π4 = O



√

log dSH
n + log dΘH

n

nφ(hK)


 , Π5 = O



√

log dSH
n + log dΘH

n

nφ(hK)


 . (40)

Now, we deal with Π3, for all η > 0, we have

P



Π3 > η




√

log dSH
n + log dΘH

n

nφ(hK)









≤ dSH

n dΘH

n max
k∈{1...d

SH
n }

max
j∈{1...d

ΘH
n }

P



∣∣ϕ̂D(tj(θ), zk(z)) − E
(
ϕ̂D(tj(θ), zk(z))

)∣∣ > η




√

log dSH
n + log dΘH

n

nφ(hK)







 .

Applying Bernstein’s exponential inequality to

1

φ(hK)

(
Ki(tj(θ), zk(z)) − E

(
Ki(tj(θ), zk(z))

))
,

then under (A7), we get

Π3 = O



√

log dSH
n + log dΘH

n

nφ(hK)


 .

Lastly the result will be easily deduced from the latter together with (39) and (40).
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• Concerninig (18) It is easy to see that, inf
θ∈ΘH

inf
z∈SH

|ϕ̂D(θ, z)| ≤ 1/2 =⇒ ∃ z ∈ SH, ∃ θ ∈ ΘH,

such that

1 − ϕ̂D(θ, z) ≥ 1/2 =⇒ sup
θ∈ΘH

sup
z∈SH

|1 − ϕ̂D(θ, z)| ≥ 1/2.

We deduce from (17) the following inequality

P

(
inf

θ∈ΘH

inf
z∈SH

|ϕ̂D(θ, z)| ≤ 1/2

)
≤ P

(
sup
θ∈ΘH

sup
z∈SH

|1 − ϕ̂D(θ, z)| ≤ 1/2

)
.

Consequently,
∞∑

n=1

P

(
inf

θ∈ΘH

inf
z∈SH

ϕ̂D(θ, z) <
1

2

)
< ∞.

2

Proof of Lemma 0.12:

• Concerning (19), one has

EL̂N (θ, t, z) − L(θ, t, z) =
1

EK1(z, θ)
E

[
n∑

i=1

Ki(z, θ)Hi(t)

]
− L(θ, t, z)

=
1

EK1(z, θ)
E (K1(z, θ) [E (H1(t)| < Z1, θ >) − L(θ, t, z)]) .(41)

Moreover, we have

E (H1(t)| < Z1, θ >) =

∫

R

H
(
h−1

H (t − z)
)
f(θ, z, Z1)dz,

now, integrating by parts and using the fact that H is a cdf, we obtain

E (H1(t)| < Z1, θ >) =

∫

R

H ′(t)L(θ, t − hHt, Z1)dt.

Thus, we have

|E (H1(t)| < Z1, θ >) − L(θ, t, z)| ≤

∫

R

H(1)(t) |L(θ, t − hHt, Z1) − L(θ, t, z)|dt.

Finally, the use of (A2) implies that

|E (H1(t)| < Z1, θ >) − L(θ, t, z)| ≤ C

∫

R

H ′(t)
(
hb1

K + |t|b2hb2
H

)
dt. (42)

Because this inequality is uniform on (θ, t, z) ∈ ΘH × SH × SR and because of (H5), (19)

is a direct consequence of (41), (42) and (18).

• Concerning (20), we keep the notation of the Corollary 0.14 and we use the compact of

SR, we can write that, for some, t1, . . . , tun
∈ SR, SR ⊂

un⋃

m=1

(tm − ln, tm + ln) with ln =

19
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n
− 1

2b2 and un ≤ Cn
1

2b2 . Taking m(t) = arg min
{1,2,...,un}

|t − tm|. Thus, we have the following

decomposition:
∣∣∣L̂N (θ, t, z)− E

(
L̂N (θ, t, z)

)∣∣∣ ≤
∣∣∣L̂N (θ, t, z)− L̂N (θ, t, zk(z))

∣∣∣
︸ ︷︷ ︸

Γ1

+
∣∣∣L̂N (θ, t, zk(z)) − E

(
L̂N (θ, t, zk(z))

)∣∣∣
︸ ︷︷ ︸

Γ2

+2
∣∣∣L̂N(tj(θ), t, zk(z)) − L̂N (tj(θ), tm(t), zk(z))

∣∣∣
︸ ︷︷ ︸

Γ3

+2
∣∣∣E
(
L̂N (tj(θ), t, zk(z))

)
− E

(
L̂N (tj(θ), tm(t), zk(z))

)∣∣∣
︸ ︷︷ ︸

Γ4

+
∣∣∣E
(
L̂N (θ, t, zk(z))

)
− E

(
L̂N (θ, t, z)

)∣∣∣
︸ ︷︷ ︸

Γ5

.

↪→ Concerning Γ1 we have

∣∣∣L̂N (θ, t, z)− L̂N (θ, t, zk(z))
∣∣∣ ≤

1

n

n∑

i=1

∣∣∣∣
1

EK1(θ, z)
Ki(θ, z)Hi(t) −

1

EK1(θ, zk(z))
Ki(θ, zk(z))Hi(t)

∣∣∣∣ .

We use the Hölder continuity condition on K, the Cauchy-Schwartz inequality, the Bern-

stein’s inequality and the boundness of H (assumption (H5)). This allows us to get:

∣∣∣L̂N (θ, t, z)− L̂N (θ, t, zk(z))
∣∣∣ ≤

C

φ(hK)

1

n

n∑

i=1

∣∣Ki(θ, z)Hi(t)− Ki(θ, zk(z))Hi(t)
∣∣

≤
C

φ(hK)

1

n

n∑

i=1

|Hi(t)|
∣∣Ki(θ, z)− Ki(θ, zk(z))

∣∣

≤
C ′rn

φ(hK)
.

↪→ Concerning Γ2, the monotony of the functions EL̂N (θ, ·, z) and L̂N (θ, ·, z) permits to

write, ∀ m ≤ un, ∀ z ∈ SH, ∀ θ ∈ ΘH,

EL̂N (θ, tm(t) − ln, zk(z)) ≤ sup
t∈(tm(t)−ln,tm(t)+ln)

EL̂N (θ, t, z) ≤ EL̂N (θ, tm(t) + ln, zk(z))

L̂N (θ, tm(t) − ln, zk(z)) ≤ sup
t∈(tm(t)−ln,tm(t)+ln)

L̂N (θ, t, z) ≤ L̂N (θ, tm(t) + ln, zk(z)).

Next, we use the Hölder’s condition on L(θ, t, z) and we show that, for any t1, t2 ∈ SR and

for all z ∈ SH, θ ∈ ΘH,

∣∣∣EL̂N (θ, t1, z) − EL̂N (θ, t2, z)
∣∣∣ =

1

EK1(z, θ)
|E (K1(z, θ)L(θ, t1, Z1)) − E (K1(z, θ)L(θ, t2, Z1))|

≤ C|t1 − t2|
b2.

20

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 8

https://digitalcommons.pvamu.edu/aam/vol10/iss1/8



134 O. Belabbaci et al.

Now, we have, for all η > 0

P



 sup
j∈{1...d

ΘH
n }

sup
k∈{1...d

SH
n }

sup
1≤m≤un

∣∣∣L̂N(θ, t, zk(z)) − EL̂N (θ, t, zk(z))
∣∣∣ > η

√
log dSH

n dΘH
n

nφ(hK)





=

P



 max
j∈{1...d

ΘH
n }

max
k∈{1...d

SH
n }

max
1≤m≤un

∣∣∣L̂N(θ, t, zk(z)) − EL̂N (θ, t, zk(z))
∣∣∣ > η

√
log dSH

n dΘH
n

nφ(hK)





≤

undSH

n dΘH

n max
j∈{1...d

ΘH
n }

max
k∈{1...d

SH
n }

max
1≤m≤un

P




∣∣∣L̂N(θ, t, zk(z)) − EL̂N (θ, t, zk(z))

∣∣∣ > η

√
log dSH

n dΘH
n

nφ(hK)





≤

2und
SH

n dΘH

n exp
(
−Cη2 log dSH

n dΘH

n

)
,

choosing un = O (l−1
n ) = O

(
n

1
2b2

)
, we get

E




∣∣∣L̂N (θ, t, zk(z)) − EL̂N (θ, t, zk(z))

∣∣∣ > η

√
log dSH

n dΘH
n

nφ(hK)



 ≤ C ′un

(
dSH

n dΘH

n

)1−Cη2

,

putting Cη2 = β and using (A4), we get

Γ2 = Oa.co




√

log dSL
n dΘL

n

nφ(hK)



 .

↪→ Concerning the terms Γ3 and Γ4, using Lipschitz’s condition on the kernel H, one can

write

∣∣∣L̂N (tj(θ), t, zk(z)) − L̂N (tj(θ), tm(t), zk(z))
∣∣∣ ≤ C

1

nφ(hK)

n∑

i=1

Ki(tj(θ), zk(z))
∣∣Hi(t)− Hi(tm(t))

∣∣

≤
Cln

nhHφ(hK)

n∑

i=1

Ki(tj(θ), zk(z)).

Once again a standard exponential inequality for a sum of bounded variables allows us to

write

L̂N (tj(θ), t, zk(z)) − L̂N (tj(θ), tm(t), zk(z)) = O

(
ln
hH

)
+ Oa.co

(
ln
hH

√
log n

nφz(hK)

)
.

Now, the fact that lim
n→∞

nγhH = ∞ and ln = n−1/2b2 imply that:

ln
hHφ(hK)

= o



√

log dSH
n dΘH

n

nφ(hK)


 ,
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then

Γ3 = Oa.co



√

log dSH
n dΘH

n

nφ(hK)


 .

Hence, for n large enough, we have

Γ3 ≤ Γ4 = Oa.co




√

log dSH
n dΘH

n

nφ(hK)



 .

↪→ Concerning Γ5, we have

E

(
L̂N (θ, t, zk(z))

)
− E

(
L̂N (θ, t, z)

)
≤ sup

z∈SH

∣∣∣L̂N(θ, t, z) − L̂N(θ, t, zk(z))
∣∣∣ ,

then following similar proof used in the study of Γ1 and using the same idea as for

E
(
ϕ̂D(θ, zk(z))

)
− E (ϕ̂D(θ, z)) we get, for n tending to infinity,

Γ5 = Oa.co



√

log dSH
n dΘH

n

nφ(hK)


 .

The proof of these for points are similar to those given in (Bouchentouf et al., 2014), so

it is sufficient to replace F̂D(θ, z), F (θ, t, z) and E(F̂N(θ, t, z)) (Lemma 6, corollary 3 and

Lemma 7) by ϕ̂D(θ, z), L(θ, t, z) and E(L̂N (θ, t, z)) respectively.

• Concerning(21), let H
′

i(t) = H
′
(
h−1

H (t − Ti)
)
, note that

Eϕ̂N (θ, t, z)−ϕ(θ, t, z) =
1

hH EK1(z, θ)
E (K1(z, θ) [E (H ′

1(t)IX1≤C1 | < Z1, θ >) − hHϕ(θ, t, z)]) .

Moreover,

E (H ′
1(t)S1(θ, X1, z)| < Z1, θ >) =

∫

R

H ′
(
h−1

H (t − w)
)
S1(θ, w, Z1)f(θ, w, Z1)dw,

= hH

∫

R

H ′
(
h−1

H (t − w)
)
ϕ(θ, w, Z1)dw

= hH

∫

R

H ′(v)ϕ(θ, t − vhH, Z1)dv.

Under condition (H10) we can write:

|E (H ′
1(t)S1(θ, X1, z)| < Z1, θ >) − hHϕ(θ, t, z)| ≤ hH

∫

R

H ′(t) |ϕ(θ, t − hHt, Z1) − ϕ(θ, t, z)|dt.

Finally, (A2a) allows to write

|E (H ′
1(t)S1(θ, X1, z)| < Z1, θ >) − hHϕ(θ, t, z)| ≤ ChH

∫

R

H ′(t)
(
hb1

K + |t|b2hb2
H

)
dt.

This inequality is uniform on (θ, t, z) ∈ ΘH×SH×SR, and, to finish the proof, it is sufficient

to use (H5).
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• Concerning (22), let us keep the definition of k(z) (resp. j(θ)) as in Corollary 0.14. The

compactness of SR permits us to write that SR ⊂
un⋃

m=1

(tm − ln, tm + ln) with ln = n− 3
2
γ− 1

2

and un ≤ Cn
3
2
γ+ 1

2 . Taking m(t) = arg min
{1...un}

|t−tm|. Consider the following decomposition

|ϕ̂N (θ, t, z)− E (ϕ̂N(θ, t, z))| =
∣∣ϕ̂N (θ, t, z)− ϕ̂N(θ, t, zk(z))

∣∣
︸ ︷︷ ︸

∆1

+
∣∣ϕ̂N (θ, t, zk(z)) − E

(
ϕ̂N(θ, t, zk(z))

)∣∣
︸ ︷︷ ︸

∆2

+2
∣∣ϕ̂N(tj(θ), t, zk(z)) − ϕ̂N (tj(θ), tj(t), zk(z))

∣∣
︸ ︷︷ ︸

∆3

+2
∣∣E
(
ϕ̂N (tj(θ), t, zk(z))

)
− E

(
ϕ̂N (tj(θ), tj(t), zk(z))

)∣∣
︸ ︷︷ ︸

∆4

+
∣∣E
(
ϕ̂N(θ, t, zk(z))

)
− E (ϕ̂N (θ, t, z))

∣∣
︸ ︷︷ ︸

∆5

.

 Concerning ∆1, we use the Hölder continuity condition on K, the Cauchy-Schwartz’s

inequality and the Bernstein’s inequality. With theses arguments we get

∆1 = O




√

log dSH
n + log dΘH

n

nhHφ(hK)



 .

Then using the fact that ∆5 ≤ ∆1, we obtain

∆5 ≤ ∆1 = O



√

log dSH
n + log dΘH

n

nhHφ(hK)


 . (43)

 For ∆2, we follow the same idea given for Γ2, we get

∆2 = O



√

log dSH
n + log dΘH

n

nhHφ(hK)




 Concerning ∆3 and ∆4, using Lipschitz’s condition on the kernel H,

∣∣ϕ̂N(tj(θ), t, zk(z)) − ϕ̂N (tj(θ), tm(t), zk(z))
∣∣ ≤ ln

h2
Hφ(hk)

,

using the fact that lim
n→∞

nγhH = ∞ and choosing ln = n− 3
2
γ− 1

2 implies

ln
h2

Hφ(hk)
= o




√

log dSH
n + log dΘH

n

nhHφ(hK)



 .

So, for n large enough, we have

∆3 = Oa.co



√

log dSH
n + log dΘH

n

nhHφ(hK)


 ,
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and as ∆4 ≤ ∆3, we obtain

∆4 ≤ ∆3 = Oa.co




√

log dSH
n + log dΘH

n

nhHφ(hK)



 . (44)

Finally, the lemma can be easily deduced from (43) and (44).

2

6. Conclusion

In this paper, we propose to study some functional parameters when the data are generated from

a model of regression to a single index. We study two functional parameters.

Firstly, we suppose that the explanatory variable takes its values in Hilbert space (infinite dimen-

sional space) and we consider the estimate of the conditional hazard by the kernel method.

We establish some asymptotic properties of this estimator in both non-censored and censored cases

where the observations are independent identically distributed (i.i.d.), we obtain the pointwise

and uniform almost complete convergence with rate of the estimator.

We point to the fact that these model studied in this paper could be used for the estimation of

the single index of the model when the latter is unknown, by using the method of M-estimation

or the pseudo-maximum likelihood method which is a particular case of the first method.

Our asymptotic results exploit the topological structure of the functional space for the observa-

tions. We note that all the rates of convergence are based on an hypothesis of concentration of the

measure of probability of the functional variable on the small balls and also on the Kolmogorov’s

entropy which measures the number of the balls necessary to cover some set.
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