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Abstract 

 
This paper is concerned with the analysis of mixed data with ordinal and continuous outcomes 

with the possibility of non-ignorable missing outcomes. A copula-based regression model is 

proposed that accounts for associations between ordinal and continuousoutcomes. Our approach 

entails specifying underlying latent variables for the mixed outcomes to indicate the latent 

mechanisms which generate the ordinal and continuous variables. Maximum likelihood 

estimation of our model parameters is implemented using standard software such as function 

nlminb in R. Results of simulations concern the relative biases of parameter estimates of joint 

and marginal models using data with non-ignorable outcomes. The proposed methodology is 

illustrated using a medical data obtained from an observational study on women with three 

correlated responses, an ordinal response of osteoporosis of the spine and two continuous 

responses of body mass index and waistline. The effect of the amount of total body calcium 

(Ca), job status (Job), type of dwelling (Ta) and age on all responses are investigated

simultaneously. 
 

 

Keywords: Nonignorable missing outcomes; Mixed outcomes; Latent Variables; Likelihood-

based; Gaussian copula. 
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1. Introduction 

 Many statistical applications involve joint analysis of multivariate data including  mixed ordinal 

and continuous outcomes with non-ignorable missing values. For example, in health studies 

pertaining to the maternal smoking effect on respiratory illnessin children, we have a continuous 

measure of the pulmonary function and anordinal measure of chronic symptoms in children. In 

medical data set of osteoporosis of the spine, correlated outcomes are the ordinal outcome of 

osteoporosis of the spine and continuous outcomes of body mass index and waistline and 

covariates that might be due to this type of job and dwelling. 

 

 For the first example, separate analysis cannot assess the effect of maternal smoking on both 

outcomes. Also, separate analysis give biased estimates for the parameters and we need to 

consider a method in which these variables can be modelled jointly. So, we need to model 

responses simultaneously. In the second example thesimultaneous effect of the type of job and 

accommodation on body mass index, waistline and osteoporosis of the spine should be modelled 

jointly considering missing mechanisms for eachoutcomes. Multivariate joint modelling of such 

missing data often leads to complications in computation due to a relative lack of standard 

models.     

 

A number of joint modelling strategies for mixed outcomes have been studied in the 

literature. The first formulation that has received much attention in mixed data literature was 

introduced by Olkin and Tate's (1961) which is called general location model. This model 

assumes multivariate normal distribution for continuous outcomes given values of discrete 

outcomes. The second formulation includes the Cox and Wermuth (1992) approach who suggest 

a logistic or probit conditional distribution for the binary variable given continuous 

outcomes. The third formulation was presented by Heckman (1978) in which a general model for 

simultaneously analysing two mixed correlated responses is introduced and Catalano and Ryan 

(1997) extended and used the model for a cluster of discrete and continuous outcomes (vide 

also, Fitzmaurice and Laird, (1995) and Fitzmaurice andLaird, (1997)). All the above references 

consider correlated nominal and continuous responses. Poon and Lee (1987) and Moustaki and 

Knott (2000) used a model for ordinal and continuous responses without considering any

covariate effect. De Leon an Carriere (2007) extended an approach similar to that of Heckman 

(1978) and Sammel et al. (1997) for jointly modelling of a nominal and a continuous variable to

joint modelling of bivariate ordinal and continuous outcomes. All the above references discuss 

identifiability with imposing some restrictions on the correlation structure. Pinto and Normand 

(2009) proposed a new parametric constrained latent variable model to have identifiability 

without restrictions on the correlation structure. 

 

In such medical studies, often some of the subjects do not respond in some occasions which 

cause for missing outcomes. Much has been written about statistical methods for handling

incomplete data. Rubin (1976) and Little andRubin (2002) define the missingmechanism as:(1) 

Missing Completely At Random (MCAR): if missingness is dependent neither on the observed 

responses nor on the missingresponses,(2) Missing At Random (MAR): if  it is not dependent 

on the missing responses (given the observedresponses), (3) Not Missing At Random (NMAR):

if it depends on the unobserved responses. MCAR and MAR are ignorable but NMAR is non-

ignorable.  
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A number of joint modelling strategies for mixed outcomes with possibility of missing values 

have been studied in the literature. Little and Schluchter (1987) proposed the general location

model with the assumption of ignoring the missing data mechanism. Ganjali (2003), used A 

model for mixed continuous and discrete binary responses with possibility of missing

responses. Bahrami Samani et al. (2008, 2010) extended the model of Ganjali. Also, Bahrami 

Samani et al. (2011) proposed a multivariate latent random effect model for mixed continuous 

and ordinal longitudinal responses with missing responses. Yang et al. (2007) investigate an 

inferential method for mixed Poisson and continuous longitudinal data with non-ignorable 

missing values. The challenge is that models for joint distributions of mixed outcomes with non-

ignorable missing values areuncommon.  

 

A recent alternative strategy involves the use of copulas, as discussed in Sklar (1959), Song et 

al. (2000), Niewiadomska-Bugaj and Kowalczyk (2005), Zimmer and Trivedi (2006), Kolev et 

al. (2006) and Song et al. (2009). A number of transition regression models for non-Gaussian

responses have been proposed in literature, vide Benjamin et al. (2003) for a review. Several 

authors have recently adopted copulas to indirectly construct mixed-outcome joint

models. Copulas have been proved to be usefulin practice when the joint distribution of interest 

is either not available or difficult to specify but marginal distributions can be specified with 

confidence like in mixed-outcome settings. Song et al. (2000) investigate some copula-based 

regression models for bivariate continuous outcomes, Zimmer and Trivedi (2006) proposed 

trivariate copulas to model sample selection and treatment effects. De Leon and Wu (2011) 

proposed copula-based regression models for bivariate mixeddiscrete and continuous outcomes. 

 

Our paper is concerned with joint regression models for correlated mixed ordinal and continuous 

outcomes with possibility of non- ignorable missing outcomes constructed by using copulas.We 

will also extend De Leon and Wu' (2011)'s approach and consider missing data of the 

outcomes, so our models are copula-based joint modelling of mixed data for bivariate and 

multivariate mixedordinal and continuous outcomes with non-ignorablemissing outcomes. 

 

This paper is organized as follows. We introduce a class of copula-based regression models and 

the full likelihood of the model for bivariate mixed outcomes with non-ignorable outcomes in 

Section 2. Simulation results on the sample properties of estimates are reported in Section 

3. Section 4 illustrates the application of the model to the medical data. Finally, the paper 

concludes in Section 5. 

 

2. Model and Likelihood 

2.1.  Bivariate Outcomes with non-ignorable missing values 

Let iX  be an ordinal outcome with D  level and iY  be a continuous outcome. These outcomes 

are recorded for N  individuals, correlated and modeled simultaneously. Some outcome values 

may be missing due to some reasons. Let
*

iX , 
*

iXR  and 
*

iYR  denote the underlying latent variables 

for ordinal outcome iX , the non-response mechanism for the ordinal variable and non-response 
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mechanism for the continuous variable, respectively. The ordinal variable of the i
th

 individual 

with D levels is defined as 
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where 
1 1D     are the cut-point parameters with 
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D   . Also, for the 

response variables for responding to X and Y are defined, respectively, as 

 

 

*1, 0,

0, . ,

i

i

X

X

R
R

o w

 
 
  

and 
*1, 0,

0, . ,

i

i

Y

Y

R
R

o w

 
 


 


*

iXR  and 
*

iYR  may be interpreted as propensity of individual i  as a latent variable to respond to 

iX  and iY , respectively. 

 

The joint model is assumed to take the form: 
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where   0.kiE    for 1,2,3,4,k   and the covariance matrix of the vector of errors 

 1 2 3 4, , ,i i i i      is 
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where , ,    and   are vectors of regression coefficients, also   includes an intercept 

parameter but   does not include any intercept. Also  1 2 3, ,i i iz z z  and 4iz  are outcome specific 

covariate vectors, and 
1 2 3, ,i i i    and 4i  are link functions specifying how the covariates are 

incorporated in the marginal means. For example, in the linear models 

 

1 1

T

i iz  ,  2 2

T

i iz  , 
3 3

T

i iz   and 
4 4

T

i iz  .  

 

Also the correlation parameters jj   for j j ,  1,2,3,j   and 2,3,4j   should be estimated. 

If one of the correlation parameters jj   for ,j j 1,2,j   and 3,4j   is found to be 

significant, then we have a NMAR mechanism and missing mechanism cannot be ignored. On 

the other hand, if jj   for j j ,  1,2,j   and 3,4j   are found to be 0s, the missing data is 

MCAR and can be ignored. In this model any multivariate distribution can be assumed for the

errors in the model. Here, a multivariate Gaussian copula isassumed. We have to restrict at least 

one parameter to obtain an identifiable model.For identifiability reasons, we assume that 

 
* * *( ) ( ) ( ) 1

i ii X YVar X Var R Var R   . 

 

To obtain the likelihood function, we used the multivariate Gaussian copula. we can specify the 

joint CDF of  
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where     is the standard normal distribution function,  3 , , ,      is the cumulative standard 

multivariate normal distribution with covariance matrix 
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and   4 , , , ;       is the cumulative standard multivariate normal distribution with matrix 

covariance  
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where the marginal distributions * * *, ,
i i Xi

X Y R
F F F  and *

Yi
R

F  are absolutely continuous distributions. 

 

To obtain joint the distribution of iX  and iY  and missing mechanism, we consider the following 

four cases:  

 

Case 1 

For the i th individual with both iX  and iY  observed the joint distribution of iX , iY  and missing 
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Case 2 

 

For the i
th

 individual neither whose iX  nor iY  is observed the joint distribution of 
iXR  and 

iYR  is 

 

 * *

* *

,
( 0, 0) ( 0, 0) (0,0).

i i i i Y Xi i
Y X Y X R R

P R R P R R F     
 

In other words, the joint distribution of 
iXR  and 

iYR  with possibility of missing for both outcomes 

is specified using bivariate Gaussian copula, as follow: 
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Case 4   

For the i
th

 individual whose iY  is observed the joint distribution of 
iXR  and 

iYR  is 
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Likelihood function is the product of the joint distribution of iX  and iY  and missing 

mechanism, for four cases and shows the simplification obtained by using the assumption of 

multivariate Gaussian copula for errors in the model.

 
2.2. Multivariate Outcomes with non-ignorable missing values 

Suppose the vector of response for the i
th

 individual is 
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where 
*

isXR  and 
*

isYR  denote the underlying latent variables of the non-response 

mechanism, respectively, for the ordinal and continuous variables. 

 

The joint model takes the form: 
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Note if one ofthe matrices 13 14 23 24, , ,       is not zero, then the missing mechanism of response 

is not at random. The vector  s   for 1,...,s p q  , includes an intercept parameter but  s  and 

s , for 1,...,s p  and s , for 1,...,s p q  , due to having cut-point parameters are assumed not 

to include any intercept.  
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the model (2) is 
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, ,

, , 1 4

{ }
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, , , 1 4

{ }

* * * *

{ }

( , , , | ,..., ) ,
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i i i i

obs
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i J
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P X R R Y C z z











    







 

where  

 
*

, { 0; , 0; }
is ij

X Y

i Mis X Mis Y MisC R s J R s J         
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2.3.  Multivariate Outcomes with ignorable missing values 

We consider model (2) for finding the condition for MAR. Let 
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( , ) ( , ),obs misW X Y W W  
* * * *( , ) ( , )obs misW X Y W W   and * * *( , )X YR R R , 

 

where  

1( ,..., )pX X X  ,  1( ,..., )p qY Y Y
 ,

* * *

1( ,..., )pX X X  ,  

 
*

obsW  is the vector of latent variables related to the observed part of ( , )W X Y , and
*

misW  is the 

vector of latent variables related to the missing part of ( , )W X Y . According to our joint 

model, the vector of responses along with the missing indicators 
* * * * *( , ) ( , , )obs misW R W W R  has a 

multivariate normaldistribution with the following covariance structure, 

 

 

*

*

* * * *

, , ,

, , ,

, , ,

,

o o o m o R

m o m m m R

R o R m R R
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*
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,
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,
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cov( , ),
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cov( , ),

co ),v( .

o o obs obs

m m mis mis

o m obs mis

obso R

R R

W W

W W

W W

W R

R R

 

 

 

 

 
 

The joint density function of *W  and *R  can also be partitioned as 

 

 
* * * * * *( , ) ( , ) ( ),mis obs obsf W R f W R W f W

 

where 
* * *( , )mis obsf W R W  and 

*( )obsf W  have, respectively, a conditional and a marginal normal 

distribution. According to the missing mechanism definitions, to have a MAR mechanism the 

covariance matrix of theabove mentioned conditional normal distribution, 

 

    

*

*

* *

* * *

* *

* * * * * *
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,

, , 1

, , ,, ,

, ,
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, , , , , ,, ,
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should satisfy the following constraint, 
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                                                            * *

1

, ,, ,
.m o o om R R o

      0                                                   (3)     

 
So, for obtaining the likelihood function, we used the multivariate Gaussian copula with 

constraint (3). 

2.4.  Estimation 

 2.4.1.  Joint Estimation 

 

Putting  ( )l  as the log-likelihood function, then let ( ) ( ) /S l     be the score function and 
2( ) ( ) /  l        the Hessian matrix, for obtaining the maximum likelihood estimate (MLE) 

̂ , we must solve the  ( ) 0S   , (joint estimation). We know that the Fisher information matrix is

 ( ) { ( )}= { ( ) ( )}I E E S S     . It can be shown that ̂  is consistent and it has asymptotically 

multivariate normal distribution with mean   and covariance matrix given by the inverse of the 

( )I  . So the standard errors (SE) for ̂  are calculated from diagonals of  
1

ˆ ˆ( ) ( )E S S 


.We used 

the function pnorm for likelihood evaluation and the function nlminb, which do not require the 

scorefunction for optimization in R. One may choose different startingvalues over multiple runs 

of the iteration procedure and then examine the results to see whether the same solution is 

obtained repeatedly. When that happens, one can conclude with some confidence that a global 

maximum has been found. For good initialvalues for our application we suggest the use of the 

results ofseparately analyzing continuous and ordinal variables. 

 

2.4.2. Marginal estimation 

 

Often the maximization of ( )l   computationally is not easy in practice, so we use the method of 

inference functions for margins (IFM). This method first estimates marginal parameters via 

margins, then only uses the copula as a basis for estimating the association parameters. In other 

words the in IFM method the marginal models and the dependence between outcomes are 

specified separately, (Marginal estimation). The IFM estimate,  , has asymptotically 

multivariate normal distribution with mean   and covariance matrix 1 1C J BJ   where J  is a 

block- diagonal matrix with symmetric diagonal blocks and B  is a symmetric block matrix. 

Standard errors (SE) of   are obtained from the diagonals of 1 1C J BJ  , where  and J B are 

the respective estimates of J  and B  obtained from  [via Joe and Xu (1996) and Harry and 

James (1998)]. 

 

3. Simulation Study 
 

In this section, the first considers a joint model for mixed ordinal and continuous outcomes under 

the five scenarios, assembled from a marginal normal specification for a marginal normal 

specification for a marginal normal distribution for the latent variable underlying the ordinal 

outcome and the continuous outcome, the second a marginal model is based under NMAR and 

MAR mechanisms for the five scenarios. In both cases, we adopt the Gaussian copula to
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construct the joint model. Theresults indicate that the joint estimation should be preferred to the 

marginal approach under  NMAR and MAR mechanisms, however, the two methods perform 

generally similarly for mixed ordinal and continuous responses with non-ignorable missing 

values.The relative biases of the joint and marginal estimates are obtained for the five scenarios 

with and without non-ignorable outcomes.The formula for the relative bias of   is as follows: 

 


ˆ

Relative bias= 100%.
 




  

3.1.  Ordinal-Normal Model with non-ignorable missing values 

Let iX  be an ordinal outcome and iY  be a continuous outcome. These are obtained for each of 

N  subjects. Some of these values may be missed. Continuous variables,
*

iX  and 

*

iYR , respectively, represent latent variables for ordinal outcome and latent variable related to 

missing mechanism of iY . We define ordinal variable iX  for the i
th

 subject as follows: 

 

 

*

1 1

*

2 1 2

*

3 2

1, if   X

2, if  X

3, if   

,

X

,

.

i

i i

i

l

X l

l



 



  


   


   

The variables 
*

iX ,  iY  and 
*

iYR  are generated by a multivariate normal distribution with zero mean 

and covariance matrix 

 

12 13

2

12 23

13 23

1

.

1

 

  

 

 
 

   
 
   

We define 
*

iYR  as 

 

*1,    0,

0. . .

i

i

Y

Y

R
R

o w

 
 
  

We assume the percentage of missing values of iY  to be 30 % . A total of =1000M  repeated 

samples 
* *( , , )

ii i XX Y R  of sizes =100N  and =200N  were generated under five scenarios, where 

1 1  ,  1 1  ,  2 1  ,  1 1   ,  2 1  ,  1 1   and  =1 , with (A) 12 13 230.1, 0.1, 0.1      (B) 

12 13 230.25, 0.25, 0.25      (C) 12 13 230.5, 0.5, 0.5      (D) 12 13 230.75, 0.75, 0.75      (E) 

12 13 230.9, 0.9, 0.9     .  

 

We analyze the following simple model 
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*

1 2

1

*

1

( )

( )

,

,

( ) ,
i

i i

i i

Y i

E X z

E Y z

E R z

 





 





 (4)

 

where the distributions of 
*

iX ,Yi  and 
*

iYR  are, respectively, 
1 2N( + z ,1)i  , 2

1N( z , )i   and 

1( ,1)iN z . We generate data by the same process as above and in estimating the parameters we 

assume MAR and NMAR mechanisms. 

3.2.  Ordinal -Normal Model with ignorable missing values 

For our simulation, we have missing values only for our continuous variable and we may have 
* *

misW X  and 
*

obsW Y .For the missing mechanism we only need to define 
* *

XR R , as wedo not 

have any missing value for our ordinal response and we consider model (4), for finding the 

condition for MAR, let 

 

 * * * *

2

, 23 , , 12 13, , ,
1, , 1,  , , .m m o o m om R R R R o

              
 

 

So, the constraint (3) will be reduced to 

 

 * *

1

, , 23 13 12, ,
0.m o o om R R o

         
 

3.3.  Results 

Table 1 presents results on the relative biases of joint and marginal estimates obtained under 

MAR and NMAR mechanisms for the five scenarios.The relative biases for joint and marginal 

estimates of 1 2 1 2 1 2 1 12 13,   ,   ,   ,   ,   ,   ,   ,    and            under MAR mechanism are generally 

larger than those for joint and marginal estimates under NMAR mechanism i.e., if data are not 

missing at random such an assumption on estimating parameters leads to have biased estimates 

ofparameters. So, if the missing mechanism is NMAR, use of model (2) which is assumed to be 

MAR may lead to biased estimates. Acomparisionof the relative biases of joint and marginal 

estimates, relative bias of joint estimates suggest that the were generally smaller than those for 

marginal estimates. 

 

Figures (1)-(3) show relative Biases of joint and marginal estimates of 

1 1 2 1 1 2,   ,   ,   ,   ,   and         under NMAR mechanism versus the values of 12 ,  23  and 

13 . Solid and dashed plots correspond to relative biases of joint estimates for 100N   and 

200N  , respectively. Dotted and dashed-dotted plots correspond to those of marginal estimates 

for 100N   and 200N  , respectively. The parameter-specific biases clearly indicates that both 

full and marginal likelihood approaches yield reasonably unbiased estimates with NMAR 

mechanism. Comparing parameter-specific estimates show that, relative biases for marginal 

estimates were generally larger than those for joint estimates. So, according to Figures (1)-(3) 
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relative biases for marginal estimates of 1 1 2 1 1 2,   ,   ,   ,   ,   and         versus the values of 

12 ,  23  and 13  are generally larger than those for joint estimates.  

 

4. Application 

4.1.  Osteoporosis of the Spine Data 

The osteoporosis of the spine data set is obtained from an observational study on women in the 

Taleghani hospital of Tehran, Iran. These data record status of osteoporosis of the spine as an 

ordinal outcome withthree levels for 5281 patients. 

 

Albrand et al., (2003) show some epidemiological studies have identified clinical factors that 

predict the risk of hip fractures in elderly women independently of the level of bone mineral 

density (BMD), such as low body weight, history of fractures, and clinical risk factors for 

falls. Also, abdominal obesity needs to be included as a risk factor for osteoporosis and bone 

loss. Their results showed that having a lot of belly fat is more detrimental to bone health than 

having more superficial fat or fat around the hips. Excess fat around the belly may increase the 

risk of women developing the brittle bone disease osteoporosis. So, a bulging waistline puts 

women at risk of osteoporosis.  

 

We shall also try to find answers for some questions, including: (1) How does the type of 

dwelling affect the level of osteoporosis, waistline and BMI of the patient?(2) Howdoes the job 

status effect the level of osteoporosis, waistline and BMI of the patient?(3) Howdo the amount 

of total body calcium and age affect the level of osteoporosis, waistline and BMI of the patient? 

 

Also we consider the body mass index (BMI) and waistline as continuous outcomes. Covariates 

which mayaffect the osteoporosis of the spine and waistline are amount of total body calcium

(Ca), job status (Job), type of the dwelling (Ta) and age.  

 

Table 2: The variable of interest and descriptive statistics for them 

Discreet Variables Type Levels Confidence interval 

Osteoporosis of the  spine Ordinal   
  None (26.2,28.2)% 

  Mild (28.1,31.3)% 

  Severe (30.8,35.3)% 

  Missing (7.3,10.11)% 

Job  status Binary   
  employee (39.2,43.4)% 

  housekeeper (56.5,60.9)% 

Type of the  dwelling Binary   
  house (29.11,35.5)% 

  apartment (64.2,68.8)% 

Continuous Variables    
Age Continuous  (45.23,48.34) year 

Amount of total body  calcium Continuous  (980.45,  1001.71)  mlgr 

waistline 

BMI 

Continuous 

Continuous  
(76.54  , 83.65)  cm 

(28.53  , 28.93)  kgr/cm2 

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 6

https://digitalcommons.pvamu.edu/aam/vol10/iss1/6



AAM: Intern. J., Vol. 10, Issue 1 (June 2015)                                                                                                         97                                                                                                              

          

 

Table 2 shows the list, type and descriptive statisticsof variables under study. This Table shows 

that the percentage of severe and mild osteoporosis are more than that of none level. Also 

67.4%  of women live in apartment and 58.7%  of women are housekeeper. A frequency table 

for the osteoporosis of the spineshows that 39%  of values are missing  

The Pearson correlation between osteoporosis of the spine and BMI responses, osteoporosis of 

the spine and waistline responses and BMI and waistline are 
OS,Waistliner = 0.245 ,  OS,BMIr = 0.208  and 

BMI,Waistliner = 0.323. Basedon the results our simulation study, we can expect to finda higher value of  

correlation by our model. These three variables, osteoporosis of thespine, BMI and waistline are 

endogenous correlated variables, and they have to be modeled simultaneously. Taking into

account the correlation, leads us to obtain a more precise estimation of standard errors of 

estimates and so a betterinference. 

These three outcomes, osteoporosis of the spine, waistline and the indicator variable for missing 

mechanism of Osteoporosis of the spine are endogenous correlated variables, and theyhave to be 

modeled simultaneously. The joint model for these data is  

 

*

1 2 3 4 1

0 1 2 3 4 2

*

1 2 3 4 3

0 1 2 3 4 4

,

,

,

.

i

i i i i i i

i i i i i i

OS i i i i i

i i i i i i

OS age Ca Ta Job

Waist age Ca Ta Job

R age Ca Ta Job

BMI age Ca Ta Job

    

     

    

     

   

     

   

     




 (5) 

 

The covariance matrix of the vector of errors 1 2 3 4( , , , )i i i i      for model (3) is 

 

1 12 13 2 14

2

1 12 1 1 23 1 2 24

13 1 23 2 34

2

2 14 1 2 24 2 34 2

1

.
1

 

    

       

    

       

 
 
  
 
 
   

Here,  

1 4( ,..., ) ,  
0 4( ,..., ) ,  

1 4( ,..., ) ,  
0 4( ,..., ) ,    

2 2

1 2 1 2 12 13 14 23 24,   ,   ,   ,   ,   ,   ,   ,           and 34  

are parameters that should be estimated. A joint model to use the marginal and joint estimation 

for model (3) is specified by a multivariate Gaussian copula.  

For our application, we have missing values only for our ordinal variable and we may have 
* *

misW OS  and 
* ( , )obsW BMI Waist  .For missing mechanism we only need to define 

* *

OSR R , as 

wedo not have any missing value for our continuous responses, and 
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* * *

*

2

1 1 2 24

, 13 , 2, ,

1 2 24 2

, 1 12 2 14 1 23 2 34,

1, , 1, ,

( , ) ,  ( , ) ,

m m o om R R R

m o R o

   


   

       

 
         

 

    
 

so that the needed constraint will be reduced to 

 

 * *

1 23 12 23 24 12 23 24 12 34 12
, , 13 2, ,

24

0.
1

m o o om R R o

         




    
      


 

4.2.  Results for Data 

Results of analysis the marginal and joint estimation for model (5) with missing mechanism are 

given in Table 3. For comparative purposes, four models are considered.The first model (model 

I) and the second model (model II) consider the joint estimation with NMAR and MAR 

mechanism for model (5). Also, The third model (model III) and fourth model (model IV) uses 

the marginal estimation with NMAR and MAR mechanism for model (5). 

 

Model (I) shows a significant effect of Ca, Ta and age on the value of osteoporosis of the spine 

and significant effect of Ta on waistline and shows a weak significant effect of age on 

BMI. From these effects we can infer that the older the patient the lower the value of 

osteoporosis of the spine; people who live in apartment have higher low value of osteoporosis of 

the spine than that of people who live in a house and the more the amount of calcium of the 

body of the patient the higher is the low value of osteoporosis of the spine. None of the 

explanatory variableshas any effect on the missing indicator for osteoporosis of thespine. 

 

For model (I)correlation parameters 12 13 14  ,   ,      and 24  are stronglysignificant. They show a 

positivecorrelation between waistline and osteoporosis of thespine ( 12̂ ) and itshows a positive 

correlation between waistline and BMI ( 24̂ ) and a positive correlation between osteoporosis and 

the missing indicator for thespine ( 13̂ ). This leads to have a NMAR mechanism. 

Model (II), model (III) and model (IV) give the same results as model (I). To compare model (I) 

and model (II) we have deviance =126.011,(p-value < 0.001). So one may prefer model (I). For 

model (II),the estimated variance of waist and BMI (
2

1̂  and 
2

2̂ ) obtained by model (I) are less 

than those ofmodel (II). 

To compare model (I) and model (III) we have deviance =101.08 (P-value < 0.001). Also, for 

model (I) and model (IV) we have deviance =165.04 (p-value < 0.001). So one may prefer model 

(I). Also comparing parameter-specific estimates for model (I), model (III), model (II) and model 

(IV) show that,  loglikelihoods  for marginal modelling are generally larger than those of joint 

modelling. 
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5. Conclusion 

 
We have extended copula-based regression models for mixed outcomes with non-ignorable 

missing values. For obtaining joint distribution of discrete and continuous outcomes with 

possibility of missing values, we consider four cases then using bivariate and multivariate 

Gaussian copulas we mixed-outcome marginal regression models. Two likelihood estimation 

strategies are proposed, one method uses full likelihood function to estimate parameters 

simultaneously, the other applies the IFM method to estimate parameters marginally and shared 

parameters jointly. A generalization of our model for longitudinal studies is still an ongoing 

research on our part.  
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Table 1: Relative  bias of joint (J)  and marginal  (M) estimates  of parameters with NMAR and  

MAR  mechanisms  under  five  different  scenarios   

 Parameter 

Scenario           

(J)  N 
          

α1 β1 β2 σ ρ12 ρ23 ρ13 γ1 θ1 θ2 

A  100 
 
 

0.06 0.11 -0.13 -1.42 -0.56 0.38 1.73 0.21 -0.02 0.13 

 NMAR            

  200 0:01 0:04 -0.01 -0.19 -0.043 0.16 0.09 0.14 0.21 0.02 

  100 0.21 0.15 0.31 −0 92 −0 66 − 1.83 0.18 0.31 0.34 

 MAR            

  200 0.23 0.09 0.02 −0 04 −0 071 − 0.12 0.23 0.02 0.29 

 
B  100 0.12 −0 15 0.23 −1 12 0.23 −0 41 0.12 −0 11 −0 12 0.28 

 NMAR            

  200 −0 21 0.12 0.34 −0 82 0.04 0.07 0.27 0.25 0.19 −0 01 

  100 0.18 0.20 0.22 −1 01 0.31 − −0 52 −0 04 0.11 −0 02 

 MAR            

  200 0.31 0.14 0.41 −0 71 −0 01 − 0.31 0.24 −0 02 0.1 

C  100 0.04 0.17 −0 08 −1 51 −0 15 0.33 0.21 0.03 0.13 0.21 

 NMAR            

  200 −0 01 −0 03 0.06 −0 08 0.22 −0 15 0.33 −0 01 0.04 0.33 

  100 0.14 0.14 0.13 −0 05 0.02 − 0.25 0.12 0.39 0.41 

 MAR            
  200 0.22 0.02 0.08 −0 09 0.12 − −0 09 0.05 −0.01 0.45 

D  100 0.1 0.02 0.23 −0 98 0.44 −0 08 0.42 0.14 −0 2 0.08 

 NMAR            
  200 0.24 0.13 0.17 −1 45 0.56 0.52 0.11 0.28 −0 13 0.05 

  100 0.08 −0 01 0.32 −0 72 0.71 − 0.51 0.39 0.01 0.12 

 MAR            

  200 0.27 0.25 0.15 −1 13 0.62 − 0.01 0.22 0.51 0.21 

E  100 0.11 0.17 0.12 −1 09 −0 01 0.42 −0 23 0.12 0.32 0.02 

 NMAR            

  200 0.35 0.08 −0 02 −0 81 0.10 0.12 −0 11 −0 01 0.43 −0 03 

  100 0.47 0.26 0.28 −0 52 0.02 − −0 05 0.25 0.58 0.22 

 MAR            

  200 0.28 0.14 0.09 −0.96 −0 13 − 0.12 0.05 0.42 −0 02 

 Parameter 

Scenario           

(M)  N 
          

α1 β1 β2 σ ρ12 ρ23 ρ13 γ1 θ1 θ2 
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Table 1 (Continues) 

 
A  100 0.12 0.41 −0 04 −1 05 0.06 0.49 0.11 0.44 −0 28 0.25 

 NMAR            
  200 0.11 0.08 0.02 −0 89 −0 11 0.23 0.09 0.31 −0 03 0.12 

  100 0.31 0.18 0.29 −0 81 0.11 − 0.13 0.59 0.48 0.41 

 MAR            

  200 0.28 0.30 062 −0 01 0.42 − 0.44 0.48 0.29 0.39 

B  100 0.14 0.19 0.81 −1 01 0.44 0.52 −0 02 0.19 0.14 0.52 

 NMAR            

  200 0.12 −0 01 0.25 −0 68 0.14 0.47 0.56 −0 18 0.54 0.11 

  100 0.32 0.64 0.83 −0 82 0.58 − 0.23 0.39 0.19 −0 01 

 MAR            

  200 0.43 0.29 0.44 −0 51 0.22 − 0.59 0.81 0.65 −0 12 

C  100 0.14 0.31 0.11 −1 00 0.16 0.31 0.28 0.05 0.24 0.45 

 NMAR            

  200 0.13 0.89 0.15 −0 29 0.33 0.52 0.45 0.22 0.02 0.59 

  100 0.32 0.65 0.91 −0 93 −0 11 − 0.23 0.26 −0 20 0.52 

 MAR            
  200 0.43 0.85 0.42 −0 09 0.58 − 0.02 0.43 0.38 0.63 

D  100 −0 12 0.03 0.21 −0 62 0.51 0.18 0.39 −0 08 0.14 0.11 

 NMAR            
  200 0.48 0.64 0.48 −1 22 0.61 −0 03 0.13 −0 11 0.25 0.24 

  100 0.29 −0 02 0.84 −0 41 0.59 − 0.48 0.18 019 0.17 

 MAR            

  200 0.51 0.86 0.66 −0 91 0.85 − 0.56 0.69 0.36 0.32 

E  100 0.31 0.28 −0 04 −0 86 0.02 0.52 −0 12 0.31 0.61 0.12 

 NMAR            

  200 0.42 0.17 −0 05 −0 42 −0 05 0.37 −0 10 0.48 0.52 0.16 

  100 0.64 0.39 0.34 −1 03 0.12 − 0.15 0.28 0.79 0.33 

 MAR            

  200 0.71 0.42 0.19 −0 54 0.48 − 0.53 0.52 0.49 0.01 

 

Table 3: The marginal and joint estimation for model (3) with NMAR and MAR mechanisms. 

 

Parameter 

OS∗ 

 

Age(α1 ) Ca(α2 ) Ta (α3 ) Job (α4 ) Cut point (θ1 ) Cut point(θ2 ) 

Joint  Es.t. 0.09∗∗ 0.11∗∗ 0.07∗∗ −0.53 0.18 0.47 

  S. E. 0.02 0.03 0.01 0.41 0.13 0.17 

  Es.t. 0.11∗∗ 0.17∗∗ 0.13∗∗ −0.03 0.22 0.28 

  S. E. 0.05 0.06 0.04 0.65 0.14 0.18 

Marginal  Es.t. 0.010∗∗ 0.14∗∗ 0.05∗∗ −0.43 0.24 0.41 

  S. E. 0.03 0.08 0.02 0.48 0.17 0.19 

  Es.t. 0.13∗∗ 0.21∗∗ 0.15∗∗ −0.05 0.19 0.22 

  S. E. 0.06 0.07 0.05 0.12 0.22 0.25 

Waist 
 

Constant(β0 ) Age(β1 ) Ca(β2 ) Ta(β3) Job(β4) σ1
2 

Joint  Es.t. 35.12∗∗ 0.08 0.15 0.33∗∗ −0.14 21.9∗∗ 

  S. E. 6.15 0.09 0.08 0.12 0.11 0.25 

  Es.t. 35.76∗∗ 0.12 0.20 0.28∗∗ −0.08 22.01∗∗ 

  S. E. 7.01 0.08 0.14 0.13 0.10 0.26 
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Marginal  Es.t. 36.33∗∗ 0.09 0.13 0.34∗∗ −0.12 24.6∗∗ 

  S. E. 6.55 0.08 0.07 0.14 0.13 0.23 

  Es.t. 36.65∗∗ 0.11 0.23 0.24∗∗ −0.06 23.41∗∗ 

  S. E. 7.44 0.05 0.16 0.12 0.11 0.23 

BM I 
 

Constant(β0 ) Age(β1 ) Ca(β2 ) Ta(β3 ) Job(β4 ) σ2
2 

Joint  Es.t. 33.11∗∗ −1.06∗∗ 0.11 0.65 0.45 27.3∗∗ 

  S. E. 5.05 0.41 0.03 0.12 0.67 0.53 

  Es.t. 35.32∗∗ −1.02∗∗ 0.12 0.42 0.28 28.01∗∗ 

  S. E. 5.65 0.58 0.13 0.16 0.29 0.67 

Marginal  Es.t. 32.08∗∗ −1.09∗∗ 0.15 0.47 0.34 29.87∗∗ 

  S. E. 6.05 0.09 0.16 0.30 0.23 0.65 

  Es.t. 34.11∗∗ −1.11∗∗ 0.20 0.41 0.36 29.41∗∗ 

  S. E. 6.42 0.03 0.21 0.13 0.14 0.63 

R*
OS 

      
Age(γ1 ) Ca(γ2 ) Ta (γ3 ) Job (γ4 ) 

Joint  Es.t. 0.23 0.37 0.12 0.25 

 NMAR      

  S. E. 0.19 0.21 0.13 0.23 

 
 

MAR 
Es.t. 0.16 0.22 0.20 0.19 

       

  S. E. 0.21 0.23 0.19 0.16 

Marginal NMAR Es.t. 0.31 0.11 0.16 0.23 

  S. E. 0.12 0.15 0.10 0.07 

 MAR Es.t. 0.10 0.25 0.21 0.19 

       

 S. E. 0.13 0.34 0.44 0.15 

Correlation 
      

ρ12 ρ23 ρ14 ρ23 ρ24 ρ34 

Joint  Es.t. 0.49∗∗ 0.20∗∗ 0.34∗∗ 0.16 0.45∗∗ 0.10 

 NMAR        

  S. E. 0.05 0.01 0.09 0.10 0.09 0.11 

 
 

MAR 
Es.t. 0.47∗∗ − 0.32∗∗ 0.15 0.46∗∗ 0.12 

 S. E. 0.08 − 0.11 0.16 0.11 0.11 

Marginal  Es. t. 0.48∗∗ 0.19∗∗ 0.33∗∗ 0.14 0.52∗∗ 0.12 

 NMAR        

  S. E. 0.07 0.03 0.08 0.13 0.21 0.15 

  Es.t. 0.46∗∗ − 0.38 0.15 0.43∗∗ 0.16 

  S. E. 0.09 − 0.22 0.14 0.10 0.14 

Models   -log-likelihood 

 

Model I  Joint 1302.44 

 NMAR   

Model II  Marginal 1365.45 

Model III  Joint 1352.98 

 MAR   

Model IV  Marginal 1384.96 
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Figure 1: Relative Biases of joint and marginal estimates of 1 ,  1 ,  2 ,  1 ,  ,  1  and 2  versus 

12( 12)Rho  with NMAR mechanism 

 

 

Figure 2: Relative Biases of joint and marginal estimates of 1 ,  1 ,  2 ,  1 ,  ,  1  and 2  versus 

13( 13)Rho  with NMAR mechanism 
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Figure 3: Relative Biases of joint and marginal estimates of 1 ,  1 ,  2 ,  1 ,  ,  1  and 2  versus 

23( 23)Rho  with NMAR mechanism 

 

 
 

 

25

Jafari et al.: Gaussian Copula Mixed Models with Non-Ignorable

Published by Digital Commons @PVAMU, 2015


	Gaussian Copula Mixed Models with Non-Ignorable Missing Outcomes
	Recommended Citation

	The Singular Perturbation in the Analysis of Mode I Fracture

