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Abstract

The incomplete tribonacci polynomials, denoted by T
(s)
n (x), generalize the usual tribonacci

polynomials Tn(x) and have been shown to satisfy several algebraic identities. In this paper, we

provide a combinatorial interpretation for T
(s)
n (x) in terms of weighted linear tilings involving

three types of tiles. This allows one not only to supply combinatorial proofs of earlier identities

for T
(s)
n (x) but also to derive new ones. In the final section, we provide a formula for the ordinary

generating function of the sequence T
(s)
n (x) for a fixed s, as previously requested. Our derivation

is combinatorial in nature and makes use of an identity relating T
(s)
n (x) to Tn(x).

Keywords: Combinatorial proof; incomplete tribonacci polynomials; tribonacci numbers

MSC 2010 No.: 05A19; 05A15

1. Introduction

The tribonacci numbers tn are defined by the recurrence relation tn = tn−1 + tn−2 + tn−3 if

n ≥ 3, with initial values t0 = 0 and t1 = t2 = 1. See sequence A000073 in (Sloane, 2010). The

tribonacci numbers are given equivalently by the explicit formula

tn+1 =

bn

2
c

∑

i=0

B(n − i, i), n ≥ 0, (1)

40
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where B(n, i) =
∑i

j=0

(

i
j

)(

n−j
i

)

, as shown in (Barry, 2006). The number B(n, i) is the n-th

row, i-th column entry of the tribonacci triangle, see (Alladi and V.E. Hoggatt, 1977). Note that

B(n, i) = D(n − i, i), where D(a, b) denotes the Delannoy number sequence, and the reader is

referred to A008288 in (Sloane, 2010).

The tribonacci polynomials Tn(x) were introduced in (V.E. Hoggatt and Bicknell, 1973) and are

defined by the recurrence Tn(x) = x2Tn−1(x)+xTn−2(x)+Tn−3(x) if n ≥ 3, with initial values

T0(x) = 0, T1(x) = 1, and T2(x) = x2. In analogy to (1), the tribonacci polynomials are given

by the following explicit formula (Ramı́rez and Sirvent, 2014):

Tn+1(x) =

bn

2
c

∑

i=0

i
∑

j=0

(

i

j

)(

n − i − j

i

)

x2n−3(i+j). (2)

The incomplete tribonacci polynomials T
(s)
n (x) were considered in (Ramı́rez and Sirvent, 2014)

and are defined as

T
(s)
n+1(x) =

s
∑

i=0

i
∑

j=0

(

i

j

)(

n − i − j

i

)

x2n−3(i+j), 0 ≤ s ≤
⌊n

2

⌋

. (3)

Note that the incomplete tribonacci polynomials generalize the ordinary ones and reduce to them

when s =
⌊

n
2

⌋

. The incomplete tribonacci number, denoted by t
(s)
n , is defined as the value of

T
(s)
n (x) at x = 1. Incomplete Fibonacci numbers and polynomials have also been considered and

are defined in a comparable fashion; see, e.g., (Filipponi, 1996) and (Ramı́rez, 2013b). Some

combinatorial identities for the incomplete Fibonacci numbers were given in (Belbachir and

Belkhir, 2014) and a bi-periodic generalization was studied in (Ramı́rez, 2013a).

In (Ramı́rez and Sirvent, 2014), several identities were found for the incomplete tribonacci

numbers and polynomials using various algebraic methods. In this paper, we supply combinatorial

proofs of these identities using a weighted tiling interpretation of T
(s)
n (x) (described in Theorem

0.1 below). In some cases, a further generalization of an identity can be given. In addition, using

our interpretation, one also can find other relations not given in (Ramı́rez and Sirvent, 2014) that

are satisfied by T
(s)
n (x). In the final section, we provide an explicit formula for the generating

function of T
(s)
n (x), as requested in (Ramı́rez and Sirvent, 2014). Our derivation is combinatorial

in nature and makes use of some identities involving Tn(x).

2. Combinatorial interpretation for T
(s)
n (x)

We will use the following terminology. By a square, domino, or tromino, we will mean, respec-

tively, a 1 × 1, 2 × 1, or 3 × 1 rectangular tile. A (linear) tiling of length n is a covering of

the numbers 1, 2, . . . , n written in a row by squares, dominos, and trominos, where tiles of the

same kind are indistinguishable. Note that such tilings may be identified as compositions of n

with parts of size 1, 2, or 3; see, e.g., (Heubach and Mansour, 2009). Let Tn denote the set of

all tilings of length n. It is well known that Tn has cardinality tn+1; see, e.g., (Benjamin and

Quinn, 2003, p. 36). We will often represent squares, dominos, and trominos by the letters r, d,

2
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and t, respectively. Thus, a member of Tn may be regarded as a word in the alphabet {r, d, t}

in which there are n − 2i − 3j, i, and j occurrences of the letters r, d, and t, respectively, for

some i and j.

By a longer piece within a member of Tn, we will mean one that is either a domino or a tromino.

Given 0 ≤ s ≤
⌊

n
2

⌋

, let T
(s)

n denote the subset of Tn whose members contain at most s longer

pieces. For example, if n = 5 and s = 1, then

T
(1)

5 = {r5, dr3, rdr2, r2dr, r3d, tr2, rtr, r2t}.

Note that T
(s)

n is all of Tn when s =
⌊

n
2

⌋

. By a square-and-domino tiling, we will mean a member

of Tn that contains no trominos.

Given π ∈ T
(s)

n , let δ(π) and ν(π) record the number of squares and dominos, respectively, in

π. We now provide a combinatorial interpretation of the polynomial T
(s)
n+1(x) in terms of linear

tilings.

Theorem 0.1: The polynomial T
(s)
n+1(x) is the distribution for the statistic 2δ + µ on T

(s)
n .

Proof: First note that T
(s)
n+1(x) may be written as

T
(s)
n+1(x) =

s
∑

i=0

B(n − i, i)(x), (4)

where B(n, i)(x) =
∑i

j=0

(

i
j

)(

n−j
i

)

x2n−i−3j . We next observe that when x = 1, the polynomial

B(n, i)(x) gives the cardinality of the set Bn,i consisting of square-and-domino tilings of length

n in which the squares come in two colors, black and white, and containing i dominos and white

squares combined. To see this, note that members of Bn,i containing exactly j dominos are in

one-to-one correspondence with words in the alphabet {D, W, B} containing j D’s, i − j W ’s,

and n − i − j B’s and thus have cardinality
(

n − j

j, i − j, n − i− j

)

=
(n − j)!

j!(i − j)!(n − i − j)!
=

(

n − j

i

)(

i

j

)

.

Summing over j gives

|Bn,i| =

i
∑

j=0

(

i

j

)(

n − j

i

)

.

Given π ∈ Bn,i, let δ1(π) and δ2(π) record the number of black and white squares, respectively.

Thus, if π ∈ Bn,i has j dominos, then

2δ1(π) + δ2(π) = 2(n − i− j) + i − j = 2n − i− 3j.

Considering all j, this implies B(n, i)(x) is the distribution polynomial on Bn,i for the statistic

2δ1(π) + δ2(π). Suppose now λ ∈ Bn−i,i is given and contains j dominos for some j, where

0 ≤ i ≤ s. We replace each domino of λ with a tromino and each white square with a domino.

The resulting tiling λ′ belongs to T
(s)

n and has j trominos, i− j dominos, and n−2i− j squares.

Thus we have

2δ(λ′) + ν(λ′) = 2δ1(λ) + δ2(λ)

3
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for all λ ∈ Bn−i,i. By (4), it follows that T
(s)
n+1(x) is the distribution on ∪s

i=0Bn−i,i for 2δ1 + δ2,

equivalently, for the distribution of 2δ + ν on T
(s)

n .

Remark: Taking x = 1 in the prior theorem shows that the cardinality of T
(s)

n is t
(s)
n+1. Taking

s =
⌊

n
2

⌋

shows that Tn+1(x) is the distribution polynomial for 2δ + µ on all of Tn.

Using our interpretation for T
(s)
n (x), one obtains the following recurrence formula from (Ramı́rez

and Sirvent, 2014) as a corollary.

Corollary 0.2: If n ≥ 2s + 1, then

T
(s)
n+3(x) = x2T

(s)
n+2(x) + xT

(s)
n+1(x) + T (s)

n (x)− (xB(n − s, s)(x) + B(n − 1 − s, s)(x)). (5)

Proof: We will show that the right-hand side of (5) gives the weighted sum of all the

members of T
(s)

n+2 with respect to the statistic 2δ +ν by considering the final piece. The first term

clearly accounts for all tilings ending in a square. On the other hand, if a member of T
(s)

n+2 ends

in a longer piece, then there can be at most s − 1 additional longer pieces. From the proof of

Theorem 0.1 above, we have for each m that B(m − s, s)(x) gives the weight of all members

of T
(s)

m containing exactly s longer pieces. Note that addition of a longer piece to the end of a

tiling already containing s longer pieces is not allowed. Thus, by subtraction, the total weight of

all members of T
(s)

n+2 ending in a domino is given by x(T
(s)
n+1(x)−B(n− s, s)(x)) and the weight

of those ending in a tromino by T
(s)
n (x) −B(n − 1 − s, s)(x), which completes the proof.

3. Some identities of T
(s)
n (x)

In this section, we first generalize some previous identities for T
(s)
n , which were shown by

algebraic methods, using our combinatorial interpretation for T
(s)
n (x). We also consider some

further identities for T
(s)
n (x) that can be obtained using Theorem 0.1. In this section and the

next, by the weight of a subset S of Tn or T
(s)

n , we will mean the sum
∑

λ∈S x2δ(λ)+ν(λ).

The x = 1 case of the following identity was shown in (Ramı́rez and Sirvent, 2014) algebraically

using induction.

Identity 0.3: If h ≥ 1 and n ≥ 2s + 2, then

h−1
∑

i=0

x2(h−i−1)T
(s)
n+i(x) =

1

1 + x3

(

T
(s+1)
n+h+2(x) − x2hT

(s+1)
n+2 (x) + x2h+1T (s)

n (x) − xT
(s)
n+h(x)

)

. (6)

Proof: We show, equivalently,

T
(s+1)
n+h+2(x) = (1 + x3)

h−1
∑

i=0

x2(h−i−1)T
(s)
n+i(x) + x2hT

(s+1)
n+2 (x) + xT

(s)
n+h(x)− x2h+1T (s)

n (x).

For this, we’ll argue that the right-hand side gives the total weight of all the members of T
(s+1)

n+h+1 .

First note that x2hT
(s+1)
n+2 (x) gives the weight of the members of T

(s+1)
n+h+1 in which positions n+2

through n+h+1 are covered by squares (i.e., the right-most longer piece ends at position n+1 or

before). On the other hand, the weight of all members of T
(s+1)

n+h+1 whose right-most longer piece

4
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starts at position n + i − 1 for some 0 ≤ i ≤ h − 1 is given by
(

x2(h−i)+1 + x2(h−i−1)
)

T
(s)
n+i(x)

since such tilings λ are of the form λ = λ′drh−i or λ = λ′trh−i−1 for some tiling λ′ of length

n + i − 1, where rm denotes a sequence of m squares. Note that λ′ ∈ T
(s)

n+i−1 since the number

of longer pieces in λ′ is limited to s. Summing over 0 ≤ i ≤ h − 1 gives the indexed sum on

the right-hand side. Next, the term xT
(s)
n+h(x) accounts for all members of T

(s+1)
n+h+1 whose final

piece is a domino which were missed in the sum. Finally, members of T
(s+1)

n+h+1 of the form λ′drh,

where λ′ has length n − 1, were accounted for by both the x2hT
(s+1)
n+2 (x) term and by the i = 0

term of the indexed sum; hence, we must subtract their weight, x2h+1T
(s)
n (x), to correct for this

double count. Combining all of the cases above completes the proof.

The following identity from (Ramı́rez and Sirvent, 2014) gives a formula for the sum of all the

incomplete tribonacci polynomials of a fixed order.

Identity 0.4: If n ≥ 1, then

∑̀

s=0

T
(s)
n+1(x) = (` + 1)Tn+1(x) −

∑̀

i=0

i
∑

j=0

i

(

i

j

)(

n − i − j

i

)

x2n−3(i+j), (7)

where ` =
⌊

n
2

⌋

.

Proof: Let λ ∈ Tn and suppose that it contains exactly k longer pieces, where 0 ≤ k ≤ `.

Then the weight of λ is counted by each summand of
∑`

s=0 T
(s)
n+1(x) such that s ≥ k. That is,

the tiling λ is counted ` + 1− k times by this sum. The proof of Theorem 0.1 above shows that

the total weight of all members of Tn containing exactly k longer pieces is given by

k
∑

j=0

(

k

j

)(

n − k − j

k

)

x2n−3(k+j),

upon considering the number j of dominos. Thus, the only inner sum in the double sum on

the right-hand side of (7) in which λ is counted occurs when i = k and here it is counted k

times (due to the extra factor of i = k). Since λ is clearly counted ` + 1 times by the term

(` + 1)Tn+1(x), we have by subtraction that λ is counted ` + 1 − k times by the right-hand side

of (7) as well. Since λ was arbitrary, the identity follows.

The x = 1 case of the next identity was conjectured in (Ramı́rez and Sirvent, 2014) and follows

from the generating function proof given in (Kiliç and Prodinger, 2014).

Identity 0.5: If n ≥ 1, then

∑̀

s=0

T
(s)
n+1(x) = (` + 1)Tn+1(x)−

n−1
∑

j=1

(xTj(x) + Tj−1(x))Tn−j(x), (8)

where ` =
⌊

n
2

⌋

.

Proof: Suppose λ ∈ Tn has exactly k longer pieces. By the proof of the preceding identity,

we need only show that the weight of λ is counted k times by the sum on the right-hand side of

(8). Note that xTj(x)Tn−j(x) gives the weight of all members of Tn in which a domino covers

positions j and j +1, while Tj−1(x)Tn−j(x) gives the weight of those in which a tromino covers

5
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positions j − 1, j, and j + 1. Thus, for each longer piece of λ, there is a term in the sum that

counts the weight of λ, which implies that λ is counted k times by the sum, as desired.

Remark: Comparing the x = 1 cases of the preceding two identities, it follows that

∑

n≥1

anzn =
z2 + z3

(1 − z − z2 − z3)2
,

where

an =

bn

2
c

∑

i=0

i
∑

j=0

i

(

i

j

)(

n − i − j

i

)

,

which can also be shown directly using the methods of (Wilf, 2005, Section 4.3), as was done

in (Kiliç and Prodinger, 2014).

The following three identities do not occur in (Ramı́rez and Sirvent, 2014) but are a consequence

of the combinatorial interpretation of T
(s)
n (x) given in Theorem 0.1.

Identity 0.6: If n ≥ 2s + 1, then

T
(s)
n+1(x) =

s
∑

i=0

(xi+2T
(s−i)
n−2i (x) + xiT

(s−i−1)
n−2i−2 (x)). (9)

Proof: Suppose a member of T
(s)

n ends in exactly i dominos, where 0 ≤ i ≤ s. If the

right-most piece that is not a domino is a square, then the tiles coming to the left of this square

constitute a member of T
(s−i)

n−2i−1 and thus the weight of the corresponding subset of T
(s)

n is

xi+2T
(s−i)
n−2i (x). On the other hand, if the right-most non-domino piece is a tromino, then the tiles

to the left of this tromino form a member of T
(s−i−1)

n−2i−3 and thus the weight of the corresponding

subset is xiT
(s−i−1)
n−2i−2 (x). Considering all possible i gives (9).

Our next formula relates the incomplete tribonacci polynomials to the trinomial coefficients.

Identity 0.7: If n ≥ 3s + 1, then

T (s)
n (x) =

s
∑

i=0

s−i
∑

j=0

(

s

i, j, s − i − j

)

x2s−i−2jT
(s−i−j)
n−s−i−2j (x). (10)

Proof: Suppose that there are i dominos and j trominos among the final s tiles within

a member of T
(s)

n−1, where n ≥ 3s + 1. Then there are
(

s
i,j,s−i−j

)

ways to arrange these tiles,

which contribute x2(s−i−j)+i towards the weight, with the remaining tiles forming a member of

T
(s−i−j)

n−s−i−2j−1 . Considering all possible i and j gives (10).

The incomplete Fibonacci polynomials introduced in (Ramı́rez, 2013a) are given as

F (s)
n (x) =

s
∑

r=0

(

n − r − 1

r

)

xn−2r−1, 0 ≤ s ≤

⌊

n − 1

2

⌋

.

Our next identity relates the incomplete Fibonacci and tribonacci polynomials.

6
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Identity 0.8: If n ≥ 2s, then

T
(s)
n+1(x) = xn/2F

(s)
n+1(x

3/2) +
n−2
∑

i=1

x(i−1)/2
s−1
∑

j=0

(T
(j)
n−i−1(x) − T

(j−1)
n−i−1(x))F

(s−j−1)
i (x3/2). (11)

Proof: First note that the weight of all members of T
(s)

n that contain no trominos is given

by
s
∑

r=0

(

n − r

r

)

x2n−3r = xn/2F
(s)
n+1(x

3/2).

So assume a member of T
(s)

n contains at least one tromino and that the left-most tromino covers

positions i through i +2. Suppose further that there are exactly r dominos to the left of the left-

most tromino. Then the weight of all such members of T
(s)

n is given by
(

i−r−1
r

)

x2i−3r−2T
(s−r−1)
n−i−1 (x).

Summing over the possible i and r implies that the total weight of all the members of T
(s)

n

containing at least one tromino is

n−2
∑

i=1

s−1
∑

r=0

(

i − r − 1

r

)

x2i−3r−2T
(s−r−1)
n−i−1 (x).

To obtain the expression in (11), we write T
(s−r−1)
n−i−1 as

∑s−r−1
j=0 (T

(j)
n−i−1−T

(j−1)
n−i−1), where T

(−1)
n−i−1 =

0. We then obtain a total weight formula of

n−2
∑

i=1

s−1
∑

r=0

(

i− r − 1

r

)

x2i−3r−2

s−r−1
∑

j=0

(T
(j)
n−i−1 − T

(j−1)
n−i−1)

=
n−2
∑

i=1

s−1
∑

j=0

(T
(j)
n−i−1 − T

(j−1)
n−i−1)

s−j−1
∑

r=0

(

i − r − 1

r

)

x2i−3r−2

=

n−2
∑

i=1

s−1
∑

j=0

(T
(j)
n−i−1 − T

(j−1)
n−i−1)x

(i−1)/2F
(s−j−1)
i (x3/2),

which gives (11).

4. Generating function formula for T
(s)
n (x)

The generating function formula for the incomplete tribonacci numbers was found in (Ramı́rez

and Sirvent, 2014) and a formula was requested for the corresponding polynomials. The next

result provides such a formula. We remark that our method is more combinatorial than that used

in (Ramı́rez and Sirvent, 2014) in the case x = 1 and thus supplies an alternate proof in that

case.

Theorem 0.9: Let Qs(z) be the generating function for the incomplete tribonacci polynomials

T
(s)
n (x), where n ≥ 2s + 1. Then

Qs(z)

z2s+1
=

T2s+1(x) + (T2s−1(x) + xT2s(x))z + T2s(x)z2 − z2
(

x+z
1−x2z

)s+1

1 − x2z − xz2 − z3
. (12)

7
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Proof: Let rn = rn(x) be given by

rn =
s
∑

j=0

(

s

j

)(

n + s − j − 2

s

)

x2n+s−3j−3 +
s
∑

j=0

(

s

j

)(

n + s − j − 3

s

)

x2n+s−3j−6, n ≥ 3,

with r0 = r1 = 0 and r2 = xs+1.

We claim that ri(x) gives the total weight with respect to the statistic 2δ + ν of all the members

of Ti+2s containing exactly s+1 longer pieces and ending in a longer piece, the subset of which

we will denote by A. To show this, first note that ri(x) evaluated at x = 1 is seen to give the

number of square-and-domino tilings of length i + s− 2 or i + s− 3 in which squares are black

or white and having exactly s white squares and dominos combined. We then increase the length

of each white square and each domino by one and add a domino to the end if the original tiling

had length i + s − 2 and add a tromino to the end if it had length i + s − 3. This yields all

members of A in a bijective manner and thus implies ri(x) at x = 1 gives the cardinality of

A. Note that members of A ending in a domino contain i − j − 2 squares, s − j + 1 dominos,

and j trominos for some 0 ≤ j ≤ s, while members of A ending is a tromino contain i− j − 3

squares, s− j dominos, and j + 1 trominos for some j. Summing over j then implies that ri(x)

is the distribution for the statistic 2δ + ν on A, as claimed.

By the interpretation for ri(x) just described, the product ri(x)Tn−2s−i(x) gives the total weight

of all members of Tn−1 containing at least s+1 longer pieces in which the (s+1)-st longer piece

ends at position i +2s since the final n− 2s− i− 1 positions of such a member of Tn−1 may be

covered by any tiling. Summing over all possible i then gives the total weight of all members of

Tn−1 containing strictly more than s longer pieces. Subtracting from Tn(x) thus gives the weight

of all members of Tn−1 containing at most s longer pieces and implies the following identity:

T (s)
n (x) = Tn(x)−

n−2s−1
∑

i=0

ri(x)Tn−2s−i(x), n ≥ 2s + 1. (13)

In order to find a closed form expression for Qs(z) using (13), we express Tn = Tn(x) as follows:

Tn = Tn−2sT2s+1 + Tn−2s−1(T2s−1 + xT2s) + Tn−2s−2T2s, n ≥ 2s + 1. (14)

We provide a combinatorial proof of (14) as follows. Note that (14) is clearly true if s = 0 or if

n = 2s + 1 since T0 = T−1 = 0, so we may assume s ≥ 1 and n ≥ 2s + 2. Observe first that the

Tn−2sT2s+1 term gives the weight of all members of Tn−1 in which there is no piece covering the

boundary between positions 2s and 2s + 1. On the other hand, the total weight of the members

of Tn−1 in which a domino covers this boundary is given by xTn−2s−1T2s. Finally, if a tromino

covers the boundary between positions 2s and 2s + 1, then that tromino covers either positions

2s − 1, 2s, and 2s + 1 or positions 2s, 2s + 1, and 2s + 2. In the former case, the weight of

the corresponding members of Tn−1 is Tn−2s−1T2s−1, while in the latter it would be Tn−2s−2T2s.

Combining all of the cases above gives (14).

Multiplying both sides of the equation

T (s)
n = Tn−2sT2s+1 + Tn−2s−1(T2s−1 + xT2s) + Tn−2s−2T2s −

n−2s−1
∑

i=0

riTn−2s−i
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by zn and summing over n ≥ 2s + 1 yields

Qs(z)

z2s
=

(

T2s+1 + (T2s−1 + xT2s)z + T2sz
2 −

∑

i≥0

riz
i

)

·
∑

n≥1

Tnz
n.

The proof is completed by noting

∑

i≥0

riz
i = z2

(

x + z

1 − x2z

)s+1

and
∑

n≥1

Tnz
n =

z

1 − x2z − xz2 − z3
,

the former being computed by the methods given in (Wilf, 2005, Section 4.3).

Taking x = 1 in the prior theorem yields the following result.

Corollary 0.10: Let qs(z) be the generating function for the incomplete tribonacci numbers t
(s)
n .

Then

qs(z)

z2s+1
=

t2s+1 + (t2s−1 + t2s)z + t2sz
2 − z2

(

1+z
1−z

)s+1

1 − z − z2 − z3
. (15)

Remark: Corollary 0.10 appears as (Ramı́rez and Sirvent, 2014, Theorem 8). We note however

that there was a slight misstatement of this theorem; in particular, the t2s − 2 factor multiplying

z2 in the numerator on the right-hand side of their formula should just be t2s.

5. Conclusion

In this paper, we have provided a combinatorial interpretation for the incomplete tribonacci

polynomials T
(s)
n (x) in terms of weighted linear tilings involving three types of tiles. This not

only allows one to supply combinatorial proofs of prior identities shown by algebraic methods but

also to establish new ones. Furthermore, combinatorial reasoning provides a way of discovering

new identities, some of which may be harder to find by purely algebraic means. We have also

made use of our combinatorial interpretation for T
(s)
n (x) in determining an explicit formula for

its ordinary generating function, as previously requested.

The generalized k-Fibonacci numbers f
(k)
n considered in (Knuth, 1973) satisfy the recurrence

f (k)
n =

k
∑

i=1

f
(k)
n−i, n ≥ k,

with initial values f
(k)
i = 0 for 0 ≤ i ≤ k − 2 and f

(k)
k−1 = 1. Note that the Fibonacci numbers

correspond to the case k = 2 of f
(k)
n , and the tribonacci numbers to the case k = 3. Perhaps

the results of this paper (and prior ones) can be extended once an appropriate analogue of the

incomplete tribonacci number (or polynomial) in the generalized k-Fibonacci setting has been

identified.
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