Applications and Applied Mathematics: An International Journal (AAM)

Difference Cordial Labeling of Graphs Obtained from Triangular Snakes

R. Ponraj
Sri Paramakalyani College
S. S. Narayanan
Sri Paramakalyani College

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Ponraj, R. and Narayanan, S. S. (2014). Difference Cordial Labeling of Graphs Obtained from Triangular Snakes, Applications and Applied Mathematics: An International Journal (AAM), Vol. 9, Iss. 2, Article 21. Available at: https://digitalcommons.pvamu.edu/aam/vol9/iss2/21

Difference Cordial Labeling of Graphs Obtained from Triangular Snakes

R. Ponraj and S. Sathish Narayanan
Department of Mathematics
Sri Paramakalyani College
Alwarkurichi 627412, India
ponrajmaths@gmail.com; sathishrvss@ gmail.com

Received: June 10, 2013; Accepted: June 24, 2014

Abstract

In this paper, we investigate the difference cordial labeling behavior of corona of triangular snake with the graphs of order one and order two and also corona of alternative triangular snake with the graphs of order one and order two.

Keywords: Corona; triangular snake; complete graph
MSC 2010 No.: 05C78; 05C38

1. Introduction:

Throughout this paper we have considered only simple and undirected graph. Let $G=(V, E)$ be a (p, q) graph. The cardinality of V is called the order of G and the cardinality of E is called the size of G. The corona of the graph G with the graph $H, G \odot H$ is the graph obtained by taking one copy of G and p copies of H and joining the $i^{\text {th }}$ vertex of G with an edge to every vertex in the $i^{\text {th }}$ copy of H. Graph labeling are used in several areas like communication network, radar, astronomy, database management, see Gallian (2011). Rosa (1967) introduced graceful labeling of graphs which was the foundation of the graph labeling. Consequently Graham (1980)
introduced harmonious labeling, Cahit (1987) initiated the concept of cordial labeling, and kproduct cordial labeling by Ponraj et al. (2012). Recently Ponraj et al. (2012) introduced k- Total product cordial labeling of graphs. Ebrahim Salehi (2010) defined the notion of product cordial set. On analogous of this, the notion of difference cordial labeling has been introduced by Ponraj et al. (2013). Ponraj et al. (2013) studied the Difference cordial labeling behavior of quite a lot of graphs like path, cycle, complete graph, complete bipartite graph, bistar, wheel, web and some more standard graphs. In this paper we investigate the difference cordial labeling behavior of $T_{n} \odot K_{1}, T_{n} \odot 2 K_{1}, T_{n} \odot K_{2}, A\left(T_{n}\right) \odot K_{1}, A\left(T_{n}\right) \odot K_{2}$ and $A\left(T_{n}\right) \odot K_{2}$, where T_{n} and K_{n} respectively denotes the triangular snake and complete graph. Let x be any real number. Then $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for the smallest integer greater than or equal to x. Terms and definitions not defined here are used in the sense of Harary (2001).

2. Difference Cordial Labeling

Definition 2.1.

Let G be a (p, q) graph. Let f be a map from $V(G)$ to $\{1,2, \ldots, p\}$. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called difference cordial labeling if f is $1-1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph.

The triangular snake T_{n} is obtained from the path P_{n} by replacing each edge of the path by a triangle C_{3}. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$. Let

$$
V\left(T_{n}\right)=V\left(P_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n-1\right\}
$$

and

$$
E\left(T_{n}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}, v_{i} u_{i+1}: 1 \leq i \leq n-1\right\} .
$$

We now investigate the difference cordiality of corona of triangular snake T_{n} with $K_{1}, 2 K_{1}$ and K_{2}.

Theorem 2.2.

$T_{n} \odot K_{1}$ is difference cordial.

Proof:

Clearly, $T_{n} \odot K_{1}$ has $4 n-2$ vertices and $5 n-4$ edges. Let

$$
V\left(T_{n} \odot K_{1}\right)=V\left(T_{n}\right) \cup\left\{w_{i}: 1 \leq i \leq n\right\} \cup\left\{z_{i}: 1 \leq i \leq n-1\right\}
$$

and

$$
E\left(T_{n} \odot K_{1}\right)=E\left(T_{n}\right) \cup\left\{u_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} z_{i}: 1 \leq i \leq n-1\right\}
$$

Case 1. n is even
Define $f: V\left(T_{n} \odot K_{1}\right) \rightarrow\{1,2,3, \ldots, 4 n-2\}$ as follows:

$$
\begin{array}{rlr}
f\left(u_{2 i-1}\right)=\left\lceil\frac{5 n-6}{2}\right\rceil+2 i, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil, \\
f\left(u_{2 i}\right)=5 i-2, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil, \\
f\left(v_{2 i-1}\right)=5 i-3, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil, \\
f\left(v_{2 i}\right)=5 i-1, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil, \\
f\left(w_{2 i-1}\right)=\left\lceil\frac{5 n-4}{2}\right\rceil+2 i, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil, \\
f\left(w_{2 i}\right)=\left\lceil\frac{7 n-4}{2}\right\rceil+i, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil, \\
f\left(z_{2 i-1}\right)=5 i-4, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil, \\
f\left(z_{2 i}\right)=5 i . & f\left(u_{n}\right)=\frac{7 n-6}{2}, \\
f\left(u_{n-1}\right)=\frac{5 n-8}{2}, & f\left(w_{n}\right)=\frac{7 n-4}{2}, \\
f\left(w_{n-1}\right)=4 n-2, & f\left(z_{n-1}\right)=\frac{5 n-4}{2} .
\end{array}
$$

Case 2. n is odd

Label the vertices u_{i}, v_{i}, w_{i} and $z_{i}(1 \leq i \leq n-2)$ as in case (i). Now, define,

$$
\begin{array}{ll}
f\left(u_{n-1}\right)=\frac{5 n-9}{2}, & f\left(u_{n}\right)=\frac{7 n-5}{2} \\
f\left(w_{n-1}\right)=4 n-2, & f\left(w_{n}\right)=\frac{7 n-3}{2} \\
f\left(v_{n-1}\right)=\frac{5 n-7}{2} \text { and } & f\left(z_{n-1}\right)=\frac{5 n-5}{2}
\end{array}
$$

Table 1 shows that f is a difference cordial labeling.
Table 1. The edge conditions of difference cordial labeling of $T_{n} \odot K_{1}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{5 n-4}{2}$	$\frac{5 n-4}{2}$
$n \equiv 1(\bmod 2)$	$\frac{5 n-3}{2}$	$\frac{5 n-5}{2}$

Example. A difference cordial labeling of $T_{4} \odot K_{1}$ is given in Figure 1.

Figure 1. $T_{4} \odot K_{1}$

Theorem 2.3.

$T_{n} \odot 2 K_{1}$ is difference cordial.

Proof:

Clearly, the order and size of $T_{n} \odot 2 K_{1}$ are $6 n-3$ and $7 n-5$, respectively. Let

$$
V\left(T_{n} \odot 2 K_{1}\right)=V\left(T_{n}\right) \cup\left\{w_{i}, w_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{z_{i}, z_{i}^{\prime}: 1 \leq i \leq n-1\right\}
$$

and

$$
E\left(T_{n} \odot 2 K_{1}\right)=E\left(T_{n}\right) \cup\left\{u_{i} w_{i}, u_{i} w_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} z_{i}, v_{i} z_{i}^{\prime}: 1 \leq i \leq n-1\right\}
$$

Define an injective map from the vertices of $T_{n} \odot 2 K_{1}$ to the set $\{1,2,3, \ldots, 6 n-3\}$ as follows:

$$
\begin{array}{cll}
f\left(u_{i}\right)=3 i-1, & & 1 \leq i \leq n, \\
f\left(w_{i}\right)=3 i-2, & & 1 \leq i \leq n, \\
f\left(w_{i}^{\prime}\right)=3 i-1, & & 1 \leq i \leq n, \\
f\left(z_{i}\right)=3 n+3 i-2, & & 1 \leq i \leq\left\lfloor\frac{n-2}{2}\right\rfloor, \\
f\left(z_{\left\lfloor\frac{n-2}{2}\right\rfloor+i}\right)=3 n+3\left\lfloor\frac{n-2}{2}\right\rfloor+3 i-1, & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, \\
f\left(z_{i}^{\prime}\right) & =3 n+3 i, & \\
f\left(z_{\left\lfloor\frac{n-2}{\prime}\right\rfloor+i}^{\prime}\right)=3 n+3\left\lfloor\frac{n-2}{2}\right\rfloor+3 i, & & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rfloor, \\
f\left(v_{i}\right) & & 3 n+3 i-1, \\
f\left(v^{\prime}\right) \\
\left.\left\lfloor\frac{n-2}{2}\right\rfloor+i\right)=3 n+3\left\lfloor\frac{n-2}{2}\right\rfloor+3 i-2, & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil .
\end{array}
$$

Table 2. The conditions of difference cordial labeling of $T_{n} \odot 2 K_{1}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{7 n-6}{2}$	$\frac{7 n-4}{2}$
$n \equiv 1(\bmod 2)$	$\frac{7 n-5}{2}$	$\frac{7 n-5}{2}$

Theorem 2.4.
$T_{n} \odot K_{2}$ is difference cordial.

Proof:

Clearly, the order and size of $T_{n} \odot K_{2}$ are $6 n-3$ and $9 n-6$, respectively. Let

$$
V\left(T_{n} \odot K_{2}\right)=V\left(T_{n}\right) \cup\left\{w_{i}, w_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{z_{i}, z_{i}^{\prime}: 1 \leq i \leq n-1\right\}
$$

and

$$
E\left(T_{n} \odot K_{2}\right)=E\left(T_{n}\right) \cup\left\{u_{i} w_{i}, u_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} z_{i}, v_{i} z_{i}^{\prime}, z_{i} z_{i}^{\prime}: 1 \leq i \leq n-1\right\} .
$$

Case 1. n is even.
Define an injective map from the vertices of $T_{n} \odot K_{2}$ to the set $\{1,2,3, \ldots, 6 n-3\}$ as follows:

$$
\begin{array}{cl}
f\left(u_{2 i-1}\right)=6 i-3, & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(u_{2 i}\right)=6 i-2, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(w_{2 i-1}\right)=6 i-4, & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{2 i}\right)=6 i, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(w_{2 i-1}^{\prime}\right)=6 i-5, & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{2 i}^{\prime}\right)=6 i-1, & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(v_{i}\right)=3 n+3 i-3, & 1 \leq i \leq n-1, \\
f\left(z_{i}\right)=3 n+3 i-1, & 1 \leq i \leq n-1, \\
f\left(z_{i}^{\prime}\right)=3 n+3 i-2, & 1 \leq i \leq n-1, \\
f\left(u_{n}\right)=3 n-2, f\left(w_{n}\right)=6 n-3 \text { and } f\left(w_{n}^{\prime}\right)=3 n-1 .
\end{array}
$$

Case 2. n is odd
Label the vertices $u_{i}, w_{i}^{\prime}(1 \leq i \leq n)$ and $w_{i}(1 \leq i \leq n-1)$ as in case 1. Define,

$$
\begin{array}{cc}
f\left(v_{i}\right)=3 n+3 i-2, & 1 \leq i \leq n-1, \\
f\left(z_{i}\right)=3 n+3 i, & 1 \leq i \leq n-1, \\
f\left(z_{i}^{\prime}\right)=3 n+3 i-1, & 1 \leq i \leq n-1 . \\
\text { and } f\left(w_{n}\right)=3 n .
\end{array}
$$

Table 3. The edge conditions of difference cordial labeling of $T_{n} \odot K_{2}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{9 n-6}{2}$	$\frac{9 n-6}{2}$
$n \equiv 1(\bmod 2)$	$\frac{9 n-7}{2}$	$\frac{9 n-5}{2}$

Example.

The graph $T_{5} \odot K_{2}$ with a difference cordial labeling is shown in figure 2 .

Figure 2. $T_{5} \odot K_{2}$
An alternate triangular snake $A\left(T_{n}\right)$ is obtained from a path $u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to new vertex v_{i}. That is, every alternate edge of a path is replaced by C_{3}.

Theorem 2.5.
$A\left(T_{n}\right) \odot K_{1}$ is difference cordial.

Proof:

Case 1.

Let the first triangle start from u_{1} and the last triangle ends with u_{n}. Here, n is even. Let

$$
V\left(A\left(T_{n}\right) \odot K_{1}\right)=V\left(A\left(T_{n}\right)\right) \cup\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{i}: 1 \leq i \leq \frac{n}{2}\right\}
$$

and

$$
E\left(A\left(T_{n}\right) \odot K_{1}\right)=E\left(A\left(T_{n}\right)\right) \cup\left\{u_{i} x_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} w_{i}: 1 \leq i \leq \frac{n}{2}\right\} .
$$

In this case, the order and size of $A\left(T_{n}\right) \odot K_{1}$ are $3 n$ and $\frac{7 n-2}{2}$, respectively. Define a map $f: V\left(A\left(T_{n}\right) \odot K_{1}\right) \rightarrow\{1,2, \ldots, 3 n\}$ as follows:

$$
\begin{aligned}
f\left(v_{i}\right) & =2 n+2 i-1, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(w_{i}\right) & =2 n+2 i, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(x_{i}\right) & =4 i, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(u_{2 i}\right) & =4 i-1, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(u_{2 i-1}\right) & =4 i-2, & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor, \\
f\left(x_{2 i-1}\right) & =4 i-3, & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor, \\
f\left(u_{2}\left\lfloor\frac{n}{4}\right\rfloor-1+2 i\right) & =4\left\lfloor\frac{n}{4}\right\rfloor+4 i-3, & & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil, \\
\left.f\left(x_{2} \left\lvert\, \frac{n}{4}\right.\right\rfloor-1+2 i\right) & =4\left\lfloor\frac{n}{4}\right\rfloor+4 i-2, & & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil .
\end{aligned}
$$

Table 4. The conditions of difference cordial labeling of $A\left(T_{n}\right) \odot K_{1}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 4)$	$\frac{7 n-4}{4}$	$\frac{7 n}{4}$
$n \equiv 2(\bmod 4)$	$\frac{7 n-2}{4}$	$\frac{7 n-2}{4}$

Case 2.

Let the first triangle be starts from u_{2} and the last triangle ends with u_{n-1}. Here, also n is even. In this case, the order and size of $A\left(T_{n}\right) \odot K_{1}$ are $3 n-2$ and $\frac{7 n-8}{2}$, respectively. Label the vertices $v_{i}, w_{i}\left(1 \leq i \leq \frac{n-2}{2}\right)$ and $u_{2 i}, x_{2 i}\left(1 \leq i \leq \frac{n}{2}\right)$ and $u_{2 i-1}, x_{2 i-1}\left(1 \leq i \leq\left\lfloor\frac{n-2}{4}\right\rfloor\right)$ as in case 1 and define,

$$
\left.\begin{array}{ll}
f\left(u_{2}\left\lfloor\frac{n-2}{4}\right\rfloor-1+2 i\right.
\end{array}\right)=4\left\lfloor\frac{n-2}{4}\right\rfloor+4 i-3, \quad 1 \leq i \leq\left\lceil\frac{n+2}{4}\right\rceil, ~ 子 \begin{cases} & 1 \leq i \leq\left\lceil\frac{n+2}{4}\right\rceil \\
f\left(x_{2\left\lfloor\frac{n-2}{4}\right\rfloor-1+2 i}\right)=4\left\lfloor\frac{n-2}{4}\right\rfloor+4 i-2, & \end{cases}
$$

Table 5. The conditions of difference cordial labeling of $A\left(T_{n}\right) \odot K_{1}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 4)$	$\frac{7 n-8}{4}$	$\frac{7 n-8}{4}$
$n \equiv 2(\bmod 4)$	$\frac{7 n-10}{4}$	$\frac{7 n-6}{4}$

Case 3.

Let the first triangle be starts from u_{2} and the last triangle ends with u_{n}. Here, n is odd. In this case, the order and size of $A\left(T_{n}\right) \odot K_{1}$ are $3 n-1$ and $\frac{7 n-5}{2}$, respectively. Label the vertices $v_{i}, w_{i}\left(1 \leq i \leq \frac{n-1}{2}\right)$ and $u_{2 i}, x_{2 i}\left(1 \leq i \leq \frac{n-1}{2}\right)$ and $u_{2 i-1}, x_{2 i-1}\left(1 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor\right)$ as in case (i) and define,

$$
\left.\left.\begin{array}{ll}
f\left(u_{2}\left\lfloor\frac{n-1}{4}\right\rfloor-1+2 i\right.
\end{array}\right)=4\left\lfloor\frac{n-1}{4}\right\rfloor+4 i-3, \quad r \quad 1 \leq i \leq\left\lfloor\frac{n+1}{4}\right\rfloor+1, ~ 子 r i \leq \frac{n+1}{4}\right\rfloor+1 .
$$

Table 6. The conditions of difference cordial labeling of $A\left(T_{n}\right) \odot K_{1}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 1(\bmod 4)$	$\frac{7 n-7}{4}$	$\frac{7 n-3}{4}$
$n \equiv 3(\bmod 4)$	$\frac{7 n-5}{4}$	$\frac{7 n-5}{4}$

Theorem 2.6.

$A\left(T_{n}\right) \odot 2 K_{1}$ is difference cordial.

Proof:

Case 1.

Let the first triangle be starts from u_{1} and the last triangle ends with u_{n}. Here, n is even. Let

$$
V\left(A\left(T_{n}\right) \odot 2 K_{1}\right)=V\left(A\left(T_{n}\right)\right) \cup\left\{x_{i}, x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{w_{i}, w_{i}^{\prime}: 1 \leq i \leq \frac{n}{2}\right\}
$$

and

$$
E\left(A\left(T_{n}\right) \odot 2 K_{1}\right)=E\left(A\left(T_{n}\right)\right) \cup\left\{u_{i} x_{i}, u_{i} x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} w_{i}, v_{i} w_{i}^{\prime}: 1 \leq i \leq \frac{n}{2}\right\}
$$

In this case, the order and size of $A\left(T_{n}\right) \odot 2 K_{1}$ are $\frac{9 n}{2}$ and $5 n-1$, respectively. Define a map $f: V\left(A\left(T_{n}\right) \odot 2 K_{1}\right) \rightarrow\left\{1,2, \ldots, \frac{9 n}{2}\right\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-1, & 1 \leq i \leq n \\
f\left(x_{i}\right)=3 i-2, & 1 \leq i \leq n \\
f\left(x_{i}^{\prime}\right)=3 i . & 1 \leq i \leq n \\
f\left(v_{i}\right)=3 n+3 i-2 . & 1 \leq i \leq \frac{n}{2}, \\
f\left(w_{i}\right)=3 n+3 i-1, & 1 \leq i \leq \frac{n}{2}, \\
f\left(w_{i}^{\prime}\right)=3 n+3 i, & 1 \leq i \leq \frac{n}{2} .
\end{array}
$$

Since $e_{f}(1)=\frac{5 n}{2}$ and $e_{f}(0)=\frac{5 n-2}{2}, f$ is a difference cordial labeling of $A\left(T_{n}\right) \odot 2 K_{1}$.

Case 2.

Let the first triangle be starts from u_{2} and the last triangle ends with u_{n-1}. Here n is even. In this case, the order and size of $A\left(T_{n}\right) \odot 2 K_{1}$ are $\frac{9 n-6}{2}$ and $5 n-5$, respectively. Define a one-one map f from the vertices of $A\left(T_{n}\right) \odot 2 K_{1}$ to the set $\left\{1,2, \ldots, \frac{9 n-6}{2}\right\}$ as follows:

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =4 i-2, & & 1 \leq i \leq \frac{n}{2} \\
f\left(u_{2 i}\right) & =4 i-1, & & 1 \leq i \leq \frac{n}{2} \\
f\left(x_{2 i-1}\right) & =4 i-3, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(x_{2 i}\right) & =4 i, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(x_{i}^{\prime}\right) & =\frac{7 n-6}{2}+i, & & 1 \leq i \leq n \\
f\left(v_{i}\right) & =2 n+3 i-1, & & 1 \leq i \leq \frac{n-2}{2}, \\
f\left(w_{i}\right) & =2 n+3 i-2, & & 1 \leq i \leq \frac{n-2}{2}, \\
f\left(w_{i}^{\prime}\right) & =2 n+3 i, & & 1 \leq i \leq \frac{n-2}{2} .
\end{aligned}
$$

Since $e_{f}(1)=\frac{5 n-4}{2}$ and $e_{f}(0)=\frac{5 n-6}{2}, f$ is a difference cordial labeling of $A\left(T_{n}\right) \odot 2 K_{1}$.

Case 3.

Let the first triangle be starts from u_{2} and the last triangle ends with u_{n}. Here, n is odd. In this case, the order and size of $A\left(T_{n}\right) \odot 2 K_{1}$ are $\frac{9 n-3}{2}$ and $5 n-3$, respectively. Label the vertices $u_{2 i-1}, x_{2 i-1}, u_{2 i}$ and $x_{2 i}\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in Case 2 and define $f\left(u_{n}\right)=2 n-1, f\left(x_{n}\right)=2 n$, $f\left(x_{n}^{\prime}\right)=2 n+1$,

$$
\begin{array}{ll}
f\left(v_{i}\right)=2 n+3 i, & 1 \leq i \leq \frac{n-1}{2} \\
f\left(w_{i}\right)=2 n+3 i-1, & 1 \leq i \leq \frac{n-1}{2} \\
f\left(w_{i}^{\prime}\right)=2 n+3 i+1, & 1 \leq i \leq \frac{n-1}{2}
\end{array}
$$

Since $e_{f}(1)=e_{f}(0)=\frac{5 n-3}{2}, f$ is a difference cordial labeling of $A\left(T_{n}\right) \odot 2 K_{1}$.
Theorem 2.7.
$A\left(T_{n}\right) \odot K_{2}$ is difference cordial.

Proof:

Case 1.

Let the first triangle be starts from u_{1} and the last triangle ends with u_{n}. In this case n is even. Let

$$
V\left(A\left(T_{n}\right) \odot K_{1}\right)=V\left(A\left(T_{n}\right)\right) \cup\left\{x_{i}, x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{w_{i}, w_{i}^{\prime}: 1 \leq i \leq \frac{n}{2}\right\}
$$

and
$E\left(A\left(T_{n}\right) \odot 2 K_{1}\right)=E\left(A\left(T_{n}\right)\right) \cup\left\{u_{i} x_{i}, u_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{i} w_{i}, v_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime}: 1 \leq i \leq \frac{n}{2}\right\}$.
In this case, the order and size of $A\left(T_{n}\right) \odot K_{2}$ are $\frac{9 n}{2}$ and $\frac{13 n-2}{2}$, respectively. Define an injective map f from the vertices of $A\left(T_{n}\right) \odot K_{2}$ to the set $\left\{1,2, \ldots, \frac{9 n}{2}\right\}$ as follows:

$$
\begin{array}{rlrl}
f\left(v_{i}\right) & =3 n+3 i-2, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(w_{i}\right) & =3 n+3 i-1, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(w_{i}^{\prime}\right) & =3 n+3 i, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(u_{2 i}\right) & =6 i-2, & & 1 \leq i \leq \frac{n}{2}, \\
f\left(u_{2 i-1}\right) & =6 i-3, & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor, \\
f\left(x_{2 i-1}\right) & =6 i-4, & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor, \\
f\left(x_{2 i}\right) & =6 i, & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor, \\
f\left(x_{2 i-1}^{\prime}\right) & =6 i-5, & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor, \\
f\left(x_{2 i}^{\prime}\right) & =6 i-1, & & 1 \leq\left\lfloor\frac{n}{4}\right\rfloor, \\
f\left(u_{2}\left\lfloor\frac{n}{4}\right\rfloor-1+2 i\right) & =6\left\lfloor\frac{n}{4}\right\rfloor+6 i-5, & & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil, \\
f\left(x_{2}\left\lfloor\frac{n}{4}\right\rfloor-1+2 i\right) & =6\left\lfloor\frac{n}{4}\right\rfloor+6 i-4, & & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil, \\
f\left(x_{2}^{\prime}\left\lfloor\frac{n}{4}\right\rfloor-1+2 i\right) & =6\left\lfloor\frac{n}{4}\right\rfloor+6 i-3, & & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil, \\
f\left(x_{2}\left\lfloor\left.\frac{n}{4} \right\rvert\,+2 i\right)=6\left\lfloor\frac{n}{4}\right\rfloor+6 i-1,\right. & & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil, \\
f\left(x_{2}^{\prime}\left\lfloor\left.\frac{n}{4} \right\rvert\,+2 i\right)\right. & =6\left\lfloor\frac{n}{4}\right\rfloor+6 i, & & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil .
\end{array}
$$

Table 7. The conditions of difference cordial labeling of $A\left(T_{n}\right) \odot K_{2}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 4)$	$\frac{13 n-4}{4}$	$\frac{13 n}{4}$
$n \equiv 2(\bmod 4)$	$\frac{13 n-2}{4}$	$\frac{13 n-2}{4}$

Case 2.

Let the first triangle be starts from u_{2} and the last triangle ends with u_{n-1}. Here, n is even. In this case, the order and size of $A\left(T_{n}\right) \odot K_{2}$ are $\frac{9 n-6}{2}$ and $\frac{13 n-12}{2}$, respectively. Label the vertices $v_{i}, w_{i}^{\prime}, w_{i}\left(1 \leq i \leq \frac{n-2}{2}\right), u_{2 i}\left(1 \leq i \leq \frac{n}{2}\right)$ and $u_{2 i-1}, x_{2 i-1}, x_{2 i-1}^{\prime}, x_{2 i}, x_{2 i}^{\prime}\left(1 \leq i \leq\left\lfloor\frac{n-2}{4}\right\rfloor\right)$ as in case 1 and define

$$
\begin{aligned}
& f\left(u_{2\left\lfloor\frac{n-2}{4}\right\rfloor-1+2 i}\right)=6\left\lceil\frac{n-2}{4}\right\rceil+6 i-5, \quad 1 \leq i \leq\left\lceil\frac{n+2}{4}\right\rceil \text {, } \\
& f\left(x_{2}\left\lfloor\frac{n-2}{4}\right\rfloor-1+2 i\right)=6\left\lfloor\frac{n-2}{4}\right\rfloor+6 i-4, \quad 1 \leq i \leq\left\lceil\frac{n+2}{4}\right\rceil \text {, } \\
& f\left(x_{2}^{\prime}\left[\frac{n-2}{4}\right\rfloor-1+2 i\right)=6\left\lfloor\frac{n-2}{4}\right\rceil+6 i-3, \quad 1 \leq i \leq\left\lceil\frac{n+2}{4}\right\rceil \text {, } \\
& f\left(x_{2}\left\lfloor\frac{n-2}{4}\right\rfloor+2 i\right)=6\left\lfloor\frac{n-2}{4}\right\rfloor+6 i-1, \quad 1 \leq i \leq\left\lceil\frac{n+2}{4}\right\rceil \text {, } \\
& f\left(x_{2\left\lfloor\frac{n-2}{4}\right\rfloor+2 i}^{\prime}\right)=6\left\lfloor\frac{n-2}{4}\right\rfloor+6 i, \quad 1 \leq i \leq\left\lceil\frac{n+2}{4}\right\rceil \text {. }
\end{aligned}
$$

Table 8. The conditions of difference cordial labeling of $A\left(T_{n}\right) \odot K_{2}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 4)$	$\frac{13 n-12}{4}$	$\frac{13 n-12}{4}$
$n \equiv 2(\bmod 4)$	$\frac{13 n-14}{4}$	$\frac{13 n-10}{4}$

Case 3.

Let the first triangle be starts from u_{2} and the last triangle ends with u_{n}. Here, n is odd. In this case, the order and size of $A\left(T_{n}\right) \odot K_{2}$ are $\frac{9 n-3}{2}$ and $\frac{13 n-7}{2}$ respectively. Label the vertices $v_{i}, w_{i}^{\prime}, w_{i}, u_{2 i}\left(1 \leq i \leq \frac{n-1}{2}\right)$ and $u_{2 i-1}, x_{2 i-1}, x_{2 i-1}^{\prime}, x_{2 i}, x_{2 i}^{\prime}\left(1 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor\right)$ as in case (i) and define

$$
\begin{aligned}
& f\left(u_{2\left\lfloor\frac{n-1}{4}\right\rfloor-1+2 i}\right)=6\left[\frac{n-1}{4}\right\rfloor+6 i-5, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{4}\right\rfloor+1 \text {, } \\
& f\left(x_{2}\left[\frac{n-1}{4}\right\rfloor-1+2 i\right)=6\left\lfloor\frac{n-1}{4}\right\rfloor+6 i-4, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{4}\right\rfloor+1 \text {, } \\
& f\left(x_{2\left\lfloor\frac{n-1}{4}\right\rfloor-1+2 i}^{\prime}\right)=6\left\lfloor\frac{n-1}{4}\right\rfloor+6 i-3, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{4}\right\rfloor+1 \text {, } \\
& f\left(x_{2\left\lfloor\frac{n-1}{4}\right\rfloor+2 i}\right)=6\left\lfloor\frac{n-1}{4}\right\rfloor+6 i-1, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{4}\right\rfloor, \\
& f\left(x_{2\left\lfloor\frac{n-1}{4}\right\rfloor+2 i}^{\prime}\right)=6\left\lfloor\frac{n-1}{4}\right\rfloor+6 i, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{4}\right\rfloor .
\end{aligned}
$$

Table 9. The conditions of difference cordial labeling of $A\left(T_{n}\right) \odot K_{2}$

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 1(\bmod 4)$	$\frac{13 n-9}{4}$	$\frac{13 n-5}{4}$
$n \equiv 3(\bmod 4)$	$\frac{13 n-7}{4}$	$\frac{13 n-7}{4}$

Example.

A difference cordial labeling of $A\left(T_{4}\right) \odot K_{2}$ with the first triangle starts from u_{1} and the last triangle ends with u_{n} is given in Figure 3.

Figure 3. $A\left(T_{4}\right) \odot K_{2}$

3. Conclusions

In this paper we have studied about difference cordial labeling behavior of $T_{n} \odot K_{1}, T_{n} \odot 2 K_{1}$, $T_{n} \odot K_{2}, A\left(T_{n}\right) \odot K_{1}, A\left(T_{n}\right) \odot K_{2}$ and $A\left(T_{n}\right) \odot K_{2}$. Investigation of difference cordiality of join, union and composition of two graphs are the open problems for future research.

Acknowledgement

The authors thank to the referees for their valuable suggestions and commands.

REFERENCES

Ebrahim Salehi (2010). PC-labelings of a graph and its PC-sets, Bull. Inst. Combin. Appl., Vol 58.

Gallian, J. A. (2013). A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, Vol. 18.

Graham, R. L. and Sloane N. J. A. (1980). On additive bases and harmonious graphs, SIAM J.Alg. Discrete Math., Vol 1,

Harary, F. (2001). Graph theory, Narosa Publishing house, New Delhi.
Ponraj, R. Sathish Narayanan, S. and Kala, R. (2013). Difference cordial labeling of graphs, Global Journal of Mathematical Sciences: Theory and Practical, Vol. 5, No.3.
Ponraj, R. Sivakumar, M. and Sundaram, M. (2012). K-Product Cordial Labeling of Graphs, Int. J. Contemp. Math. Sciences, Vol 7, No. 15.

Ponraj, R. Sivakumar, M. and Sundaram, M. (2012). K-Total Product Cordial Labelling of Graphs, Applications and Applied Mathematics: An International Journal (AAM), Vol. 7, No. 2 .
Rosa, A. (1967). On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris.

