Applications and Applied Mathematics: An International Journal (AAM)

12-2014

Domination Integrity of Some Path Related Graphs

S. K. Vaidya
Saurashtra University
N. H. Shah
Government Polytechnic

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Vaidya, S. K. and Shah, N. H. (2014). Domination Integrity of Some Path Related Graphs, Applications and Applied Mathematics: An International Journal (AAM), Vol. 9, Iss. 2, Article 19.
Available at: https://digitalcommons.pvamu.edu/aam/vol9/iss2/19

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

Available at

Domination Integrity of Some Path Related Graphs

S. K. Vaidya
Department of Mathematics
Saurashtra University
Rajkot - 360005, Gujarat, India
E-mail: samirkvaidya@yahoo.co.in

N. H. Shah
Government Polytechnic
Rajkot-360003, Gujarat, India
E-mail: nirav.hs@gmail.com

Received: March 21, 2014; Accepted: August 22, 2014

Abstract

The stability of a communication network is one of the important parameters for network designers and users. A communication network can be considered to be highly vulnerable if the destruction of a few elements cause large damage and only few members are able to communicate. In a communication network several vulnerability measures like binding number, toughness, scattering number, integrity, tenacity, edge tenacity and rupture degree are used to determine the resistance of network to the disruption after the failure of certain nodes (vertices) or communication links (edges). Domination theory also provides a model to measure the vulnerability of a graph network. The domination integrity of a simple connected graph is one such measure. Here we determine the domination integrity of square graph of path as well as the graphs obtained by composition (lexicographic product) of two paths.

Keywords: Integrity; Domination Integrity; Square graph; Composition of Graphs
MSC 2010 No.: 05C38, 05C69, 05C76

1. Introduction

A graph structure is vulnerable if `any small damage produces large consequences'. The vulnerability implies a lack of resistance or weakness of graph network arising from deletion of vertices or edges or both. The design of any communication network should be such that it is not easily disrupted. Moreover it should remain stable even if it is attacked. Many graph theoretic parameters have been introduced to measure the vulnerability of communication networks. They
includ binding number [Woodall (1973)], toughness [Chvatal (1973)], scattering number [Jung (1978)], integrity [Barefoot et al. (1987)], tenacity [Cozzens et al. (1994)], edge tenacity [Piazza et al. (1995)] and rupture degree [Li et al. (2005)].

In the analysis of the vulnerable communication network two quantities play a vital role, namely (i) the number of elements that are not functioning (ii) the size of the largest remaining (survived) sub network within which mutual communication can still occur. In adverse relationship it is desirable that an opponent's network be such that the above referred two quantities can be made simultaneously small. Here the first parameter provides information about nodes which can be targeted for more disruption while the later gives the impact of damage after disruption. To estimate these quantities Barefoot et al. (1987) have introduced the concept of integrity and discovered many results on this newly defined concept.

Definition 1.1.

The integrity of a graph G is denoted by $I(G)$ and defined by

$$
I(G)=\min \{|S|+m(G-S): S \subset V(G)\},
$$

where $m(G-S)$ is the order of a maximum component of $G-S$.

Definition 1.2.

A subset S of $V(G)$ is said to be an I-set, if $I(G)=|S|+m(G-S)$.
Bagga et al. (1992) have reported many results on integrity in a survey article. Goddard (1989) has investigated many results on integrity of graphs. Some characterizations and interrelations between integrity and other graph parameters are reported in Goddard and Swart (1990) while Mamut and Vumar (2007) have determined the integrity of the middle graph of some graphs. It is also observed that the bigger the integrity of network, more reliable is the functionality of the network after any disruption caused by non-functional devices (elements). The connectivity is useful to identify local weaknesses in some respect while the integrity gives a brief account of the vulnerability of the graph network.

Throughout this work we consider simple, finite, connected and undirected graph G with vertex set $V(G)$ and edge set $E(G)$. For any undefined terminology and notation related to the concept of domination in graph we refer to Haynes et al. (1998) while for the fundamental concepts in graph theory we rely upon Balakrishnan and Ranganathan (2012). In the remaining portion of this section we will give a brief summary of the definitions and information which are related to the present work.

Definition 1.3.

A subset S of $V(G)$ is called a dominating set if for every $v \in V(G)-S$, there exists $u \in S$ such that v is adjacent to u.

The theory of domination plays a vital role in determining the decision making bodies of minimum strength or weakness of a network when certain parts of it is paralyzed. In the case of disruption of a network, the damage will be more when the vital nodes are under siege. This motivated the study of the domination integrity when the sets of non-functioning nodes are dominating sets. The concept of domination integrity of a graph was introduced by Sundareswaran and Swaminathan (2010) as a new measure of vulnerability which is defined as follows.

Definition 1.4.

The domination integrity of a connected graph G denoted by $D I(G)$ and defined as

$$
D I(G)=\min \{|X|+m(G-X): X \text { is a dominating set }\},
$$

where $m(G-X)$ is the order of a maximum connected component of $G-X$.
The domination integrity of some standard graphs has been investigated by Sundareswaran and Swaminathan (2010). In the same paper they have investigated domination integrity of Binomial trees and Complete k-ary trees while in (2010, p. 92) they have investigated the domination integrity of the middle graph of some standard graphs. Sundareswaran and Swaminathan (2011, 2012) also investigated the domination integrity of trees and powers of cycles. Vaidya and Kothari $(2012,2013)$ have discussed domination integrity in the context of some graph operations and also of the splitting graph of path P_{n} and cycle C_{n}. Vaidya and Shah $(2013,2014)$ and investigated the domination integrity of shadow graphs of $P_{n}, C_{n}, K_{m, n}$ and $B_{n, n}$ and of the total graphs of P_{n}, C_{n} and $K_{1, n}$.

Definition 1.5.

For a simple connected graph G the square of graph G is denoted by G^{2} and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^{2} if they are at a distance 1 or 2 apart in G.

Definition 1.6.

The composition of two graphs G and H is denoted as $G[H]$ (also known as lexicographic product) whose vertex set is $V(G) \times V(H)$ and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent if either u_{1} is adjacent, i.e., to u_{2} in G or $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} in H.

Here, it is important to mention that, unlike the union, join, Cartesian product, direct product and strong product of two graphs, the composition of two graphs is not commutative.

Many results on the integrity of graphs in the context of union, join, composition and product of two graphs have been reported by Goddard and Swart (1988). The present work is intended to investigate the domination integrity of a square graph of P_{n} and composition (lexicographic product) of two paths.

2. Main Results

Theorem 2.1

$$
D I\left(P_{n}^{2}\right)=\left\{\begin{array}{cc}
2, & n=2, \\
3, & n=3,4, \\
4, & n=5,6 .
\end{array}\right.
$$

Proof:

Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and P_{n}^{2} be the square graph of P_{n}. Then, $\left|V\left(P_{n}^{2}\right)\right|=n$ and $\left|E\left(P_{n}^{2}\right)\right|=2 n-3$. The proof is divided into following three cases:

Case 1: $n=2$
P_{2}^{2} is P_{2} itself. Consider $S=\left\{v_{1}\right\}$ which is a dominating set of P_{2}^{2}, then $m(G-S)=1$. Thus, $|S|+m(G-S)=2$. If we choose $S=\left\{v_{2}\right\}$, then also $|S|+m(G-S)=2$. Hence, $D I\left(P_{2}^{2}\right)=2$.

Case 2: $n=3,4$

For $n=3$ consider $S=\left\{v_{2}, v_{3}\right\}$ which is a dominating set for P_{3}^{2} and $m(G-S)=1$. Therefore, $|S|+m(G-S)=3$. For $S=\left\{v_{1}, v_{3}\right\}$ also $|S|+m(G-S)=3$. If $S=\left\{v_{1}\right\} \quad$ or $S=\left\{v_{2}\right\}$ or $S=\left\{v_{3}\right\}$ then $m(G-S)=2$ so $|S|+m(G-S)=3$. Hence, $D I\left(P_{3}^{2}\right)=3$.

For $n=4$ consider $S=\left\{v_{2}, v_{3}\right\}$ which is a dominating set of for P_{4}^{2} and $m(G-S)=1$. Therefore, $|S|+m(G-S)=3$. For $S=\left\{v_{1}, v_{3}\right\}$ or $S=\left\{v_{2}, v_{4}\right\}$ or $S=\left\{v_{1}, v_{2}\right\}$ or $S=\left\{v_{3}, v_{4}\right\}, m(G-S)=2$, then for these choices of S we get $|S|+m(G-S)=4$. If $S=\left\{v_{i}\right\}, i=1,2,3,4$, then $m(G-S)=3$ so $|S|+m(G-S)=4$. Hence, $D I\left(P_{4}^{2}\right)=3$.

Case 3: $n=5,6$
$S=\left\{v_{3}, v_{4}\right\}$ is a dominating set for P_{5}^{2} and P_{6}^{2}. Then, $m(G-S)=2$ and $|S|+m(G-S)=4$. It is easy to observe that there does not exist a dominating set S for which ${ }^{*} S^{*}+m(G-S) \leq 3$. Therefore, $D I\left(P_{n}^{2}\right)=4$ for $n=5,6$.

Hence, from above three cases, we have

$$
D I\left(P_{n}^{2}\right)=\left\{\begin{array}{cc}
2, & n=2, \\
3, & n=3,4, \\
4, & n=5,6 .
\end{array}\right.
$$

Theorem 2.2.

For $n=7$ to 15 ,

$$
D I\left(P_{n}^{2}\right)=\left\{\begin{array}{lll}
5+2 i, & \text { if } n=7+4 i, & \text { where } i=0,1,2 \\
6+2 i, & \text { if } n=7+4 i+k, & \text { where } k=1,2,3 \text { and } i=0,1
\end{array}\right.
$$

Proof:

Let $S=\left\{v_{3+4 j}, v_{4+4 j} / j=0\right.$ to $\left.i\right\} \cup\left\{v_{n}\right\} \quad$ when $\quad n=7+4 i, i=0,1,2$ (i.e., $n=7,11,15$). Then, $|S|=2 i+3 \quad$ and $\quad m(G-S)=2$. If $\quad S=\left\{v_{3+4 j}, v_{4+4 j} / j=0\right.$ to $\left.i+1\right\} \quad$ when $\quad n=7+4 i+k$, $k=1,2,3, i=0,1$ (i.e., $n=8,9,10,12,13,14$), then $|S|=2 i+4$ and $m(G-S)=2$. In both the cases S is a dominating set of P_{n}^{2} as $v_{1}, v_{2} \in N\left(v_{3}\right)$ and $v_{5+4 t}, v_{6+4 t} \in N\left(v_{4+4 t}\right)$, for $t=0,1,2, \ldots, i$, or $i-1$.

Now we claim that there does not exist any dominating set S_{1} such that $\left|S_{1}\right|=|S|$ and $m\left(G-S_{1}\right)<m(G-S)$. If S_{1} is a dominating set and $m\left(G-S_{1}\right)<m(G-S)=2$, then all the components will be K_{1}. Consequently, $\left|S_{1}\right|>|S|$. Hence, for any dominating set S_{1}, if $\left|S_{1}\right|=|S|$, then

$$
\begin{equation*}
m(G-S) \leq m\left(G-S_{1}\right) \tag{1}
\end{equation*}
$$

We also claim that there does not exist any dominating set S_{2} such that $\left|S_{2}\right|<|S|$ and $m\left(G-S_{2}\right)=m(G-S)=2$. But if S_{2} is a dominating set and $\left|S_{2}\right|<|S|$, then due to construction of $P_{n}^{2}, G-S_{2}$ will give rise to at least one component with the number of vertices more than two. This is because, each vertex of P_{n}^{2} is adjacent to the vertices which are at the distance two apart. This implies that there does not exist any dominating set S_{2} such that $\left|S_{2}\right|<|S|$ and, consequently,

$$
\begin{equation*}
m\left(G-S_{2}\right)=m(G-S)=2 \tag{2}
\end{equation*}
$$

Moreover if we consider any dominating set S_{3} of P_{n}^{2} such that $m\left(G-S_{3}\right)>2$, then

$$
\begin{equation*}
|S|+m(G-S) \leq\left|S_{3}\right|+m\left(G-S_{3}\right) . \tag{3}
\end{equation*}
$$

Therefore, from equations (1), (2) and (3) we have

$$
\begin{aligned}
|S|+m(G-S) & =\min \{|X|+m(G-X): X \text { is a dominating set }\} \\
& =D I\left(P_{n}^{2}\right) .
\end{aligned}
$$

Hence, for $n=7$ to 15

$$
D I\left(P_{n}^{2}\right)=\left\{\begin{array}{lll}
5+2 i, & \text { if } n=7+4 i, & \text { where } i=0,1,2, \\
6+2 i, & \text { if } n=7+4 i+k, & \text { where } k=1,2,3 \text { and } i=0,1
\end{array}\right.
$$

Theorem 2.3.

$$
D I\left(P_{n}^{2}\right)= \begin{cases}9, & n=16 \\ 10, & n=17,18\end{cases}
$$

Proof:

To prove this result we consider following two cases:
Case 1: $n=16$
If $S=\left\{v_{3}, v_{4}, v_{8}, v_{9}, v_{13}, v_{14}\right\}$, then $|S|=6$ and $m(G-S)=3$. Moreover, S is a dominating set as $v_{1}, v_{2} \in N\left(v_{3}\right), v_{5}, v_{6} \in N\left(v_{4}\right), v_{7} \in N\left(v_{8}\right), v_{10}, v_{11} \in N\left(v_{9}\right)$ and $v_{12} \in N\left(v_{13}\right), v_{15}, v_{16} \in N\left(v_{14}\right)$. If for some dominating set S_{1} of $P_{16}^{2}, m\left(G-S_{1}\right)=2$, then clearly

$$
\begin{equation*}
\left|S_{1}\right|>|S| \text { so }\left|S_{1}\right|+m\left(G-S_{1}\right)>|S|+m(G-S) \tag{4}
\end{equation*}
$$

It can be verified that for any other dominating set S_{2} of P_{16}^{2} for which $m\left(G-S_{2}\right)=4$. Then,

$$
\begin{equation*}
\left|S_{2}\right|+m\left(G-S_{2}\right) \geq|S|+m(G-S) . \tag{5}
\end{equation*}
$$

Thus, from equations (4) and (5) among all dominating set, $|\mathrm{S}|+m(\mathrm{G}-\mathrm{S})=6+3=9$ is minimum. Hence, $D I\left(P_{16}^{2}\right)=9$.

Case 2: $n=17,18$

If $S=\left\{v_{3}, v_{4}, v_{8}, v_{9}, v_{13}, v_{14}, v_{17}\right\}$, then $|S|=7$ and $m(G-S)=3$. Moreover, S is dominating set P_{17}^{2} and P_{18}^{2}. If for some dominating set S_{1} of $P_{n}^{2}, m\left(G-S_{1}\right)=2$, then clearly

$$
\begin{equation*}
\left|S_{1}\right|>|S| \text { so }\left|S_{1}\right|+m\left(G-S_{1}\right)>|S|+m(G-S) \tag{6}
\end{equation*}
$$

It can be verified that for any other dominating set S_{2} of P_{n}^{2} for which $m\left(G-S_{2}\right)=4$. Then

$$
\begin{equation*}
\left|S_{2}\right|+m\left(G-S_{2}\right) \geq|S|+m(G-S) \tag{7}
\end{equation*}
$$

Therefore, from equations (6) and (7), $|\mathbf{S}|+m(G-S)=7+3=10$ is minimum. Thus, $D I\left(P_{n}^{2}\right)=10$ for $n=17,18$.

Hence, from above two cases,

$$
D I\left(P_{n}^{2}\right)= \begin{cases}9, & n=16 \\ 10, & n=17,18\end{cases}
$$

Theorem 2.4

For $n \geq 19$,

$$
D I\left(P_{n}^{2}\right)=\left\{\begin{array}{ll}
11, & \text { if } n=19,20, \\
11+2 i, & \text { if } n=21+6 i, \\
12+2 i, & \text { if } n=21+6 i+k,
\end{array} \quad \text { where } i \in\{0\} \cup \mathbb{N}, ~ \text { where } k=2,3 \text { and } i \in\{0\} \cup \mathbb{N}, ~ 子 \text {, } k=4,5 \quad \text { and } i \in\{0\} \cup \mathbb{N} .\right.
$$

Proof:

To prove this result we consider following two cases:
Case 1: $n=19,20$

Consider $S=\left\{v_{3}, v_{4}, v_{9}, v_{10}, v_{15}, v_{16}, v_{19}\right\}$. Then, $|S|=7$ and $m(G-S)=4$. Clearly S is a dominating set of P_{n}^{2}, for $n=19,20$.

Case 2: $n \geq 21$
Let $S_{1}=\left\{v_{3}, v_{4}, v_{9}, v_{10}\right\}$.

- If $n=21+6 i$, where $i=0,1,2, \ldots$, (i.e., for $n=21,27,33, \ldots$), consider

$$
S=S_{1} \cup\left\{v_{15+6 j}, v_{16+6 j} / j=0 \text { to } i\right\} \cup\left\{v_{n}\right\}
$$

Then, $|S|=7+2 i$.

- If $n=21+6 i+k$, where $k=1,2,3$ and $i=0,1,2, \ldots$, (i.e., for $n=22,23,24,28,29,30 \ldots$), consider

$$
S=S_{1} \cup\left\{v_{15+6 j}, v_{16+6 j} / j=0 \text { to } i+1\right\}
$$

Then, $|S|=8+2 i$.

- If $n=21+6 i+k$, where $k=4,5$ and $i=0,1,2, \ldots$, (i.e., for $n=25,26,31,32, \ldots$), consider

$$
S=S_{1} \cup\left\{v_{15+6 j}, v_{16+6 j} / j=0 \text { to } i+1\right\} \cup\left\{v_{n}\right\} .
$$

Then $|S|=9+2 i$.
In all the above cases, S will be a dominating set for P_{n}^{2} as $v_{1}, v_{2} \in N\left(v_{3}\right), v_{5+6 t}, v_{6+6 t} \in N\left(v_{4+6 t}\right)$ and $v_{7+6 t}, v_{8+6 t} \in N\left(v_{9+6 t}\right)$, where $t \in \mathbb{N} \cup\{0\}$. Moreover, $m(G-S)=4$.

Thus, we have found dominating sets for P_{n}^{2}.
Now, we discuss the minimality of $|S|+m(G-S)$. If we consider any dominating set S_{1} of G such that, $\left|S_{1}\right|<|S|$, then due to the construction of P_{n}^{2} (i.e., to convert $G-S_{1}$ into disconnected graph, we must include at least two consecutive vertices in S_{1}), it generates large value of $m\left(G-S_{1}\right)$ such that,

$$
\begin{equation*}
|S|+m(G-S)<\left|S_{1}\right|+m\left(G-S_{1}\right) \tag{8}
\end{equation*}
$$

Let S_{2} be any dominating set of P_{n}^{2} such that $m\left(G-S_{2}\right)=3$. Then, for $n=19,20,21,22,23,28,31$,

$$
\begin{equation*}
|S|+m(G-S) \leq\left|S_{2}\right|+m\left(G-S_{2}\right) \tag{9}
\end{equation*}
$$

and for $n=24,25,26,27,29,30, n \geq 32$,

$$
\begin{equation*}
|S|+m(G-S)<\left|S_{2}\right|+m\left(G-S_{2}\right) . \tag{10}
\end{equation*}
$$

Moreover, if S_{3} is any dominating set of P_{n}^{2} with $m\left(G-S_{3}\right)=2$ or $m\left(G-S_{3}\right)=1$, then clearly,

$$
\begin{equation*}
|S|+m(G-S)<\left|S_{3}\right|+m\left(G-S_{3}\right) \tag{11}
\end{equation*}
$$

Therefore, from equations (8) to (11) we have,

$$
\begin{aligned}
|S|+m(G-S) & =\min \{|X|+m(G-X): X \text { is a dominating set }\} \\
& =D I\left(P_{n}^{2}\right) .
\end{aligned}
$$

Hence, for $n \geq 19$,

$$
D I\left(P_{n}^{2}\right)= \begin{cases}11, & \text { if } n=19,20, \\ 11+2 i, & \text { if } n=21+6 i, \quad \text { where } i \in\{0\} \cup \mathbb{N}, \\ 12+2 i, & \text { if } n=21+6 i+k, \\ 13+2 i, & \text { if } n=21+6 i+k, \text { where } k=1,2,3 \text { and } i \in\{0\} \cup \mathbb{N}, \\ 1,5 \quad \text { and } i \in\{0\} \cup \mathbb{N} .\end{cases}
$$

Theorem 2.5.

$$
D I\left(P_{2}\left[P_{n}\right]\right)=n+\lceil 2 \sqrt{n+1}\rceil-2 .
$$

Proof:

Let P_{2} be a path with vertices u_{1}, u_{2} and P_{n} with $v_{1}, v_{2}, \ldots, v_{n}$. Let G be the graph $P_{2}\left[P_{n}\right]$. Then,

$$
V(G)=\left\{\left(u_{i}, v_{j}\right) / 1 \leq i \leq 2,1 \leq j \leq n\right\}
$$

and

$$
E(G)=\left\{\left(u_{1}, v_{j}\right)\left(u_{2}, v_{k}\right) / 1 \leq j \leq n, 1 \leq k \leq n\right\} \cup\left\{\left(u_{1}, v_{j}\right)\left(u_{1}, v_{j+1}\right),\left(u_{2}, v_{j}\right)\left(u_{2}, v_{j+1}\right) / 1 \leq j \leq n-1\right\}
$$

For the sake of convenience, we denote the vertices $\left(u_{1}, v_{j}\right)=w_{1 j}, 1 \leq j \leq n$ and

$$
\left(u_{2}, v_{j}\right)=w_{2 j}, 1 \leq j \leq n .
$$

The graph of $P_{2}\left[P_{5}\right]$ is shown in Figure 1 for better understanding of the notations and arrangement of vertices. Moreover $K_{n, n}$ is a subgraph of G and $D I\left(K_{n, n}\right)=n+1, D I(G)>n+1$.

Consider $S_{1}=\left\{w_{2 j} / 1 \leq j \leq n\right\},\left|S_{1}\right|=n$. Then, S_{1} is a dominating set of G and $G-S_{1}=P_{n}$ so $m\left(G-S_{1}\right)=n$.

Figure 1: Arrangement of vertices in $P_{2}\left[P_{5}\right]$
Let $S_{2}=\left\{w_{1 k}=\left(u_{1}, v_{k}\right) / v_{k} \in I-\right.$ set of $\left.P_{n}\right\}$. Take $V_{1}=\left\{v_{k} / v_{k} \in I-\right.$ set of $\left.P_{n}\right\}$ so $\left|S_{2}\right|=\left|V_{1}\right|$. Consider $S=S_{1} \cup S_{2}$. Then, S is also dominating set of G as $S_{1} \subset S$. Here,

$$
|S|=\left|S_{1}\right|+\left|S_{2}\right|=\left|S_{1}\right|+\left|V_{1}\right| \text { and } G-S=P_{n}-V_{1} \text { so } m(G-S)=m\left(P_{n}-V_{1}\right) .
$$

Note that $I\left(P_{n}\right)=\lceil 2 \sqrt{n+1}\rceil-2$. So,

$$
\begin{aligned}
|S|+m(G-S) & =\left|S_{1}\right|+\left|V_{1}\right|+m\left(P_{n}-V_{1}\right) \\
& =\left|S_{1}\right|+I\left(P_{n}\right) . \\
& =n+\lceil 2 \sqrt{n+1}\rceil-2>n+1 .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
|S|+m(G-S)=n+\lceil 2 \sqrt{n+1}\rceil-2>n+1 . \tag{12}
\end{equation*}
$$

Now we discuss the minimality of $|S|+m(G-S)$. If S_{3} is any dominating set of G which is not containing S_{1} or S_{2} as a proper subset and $\left|S_{3}\right|=k<2 n$. Then, due to construction of G ($w_{1 j}$ is adjacent to $w_{2 k}$ for $\left.1 \leq i, k \leq n\right)$,

$$
\begin{equation*}
\left|S_{3}\right|+m\left(G-S_{3}\right)=k+2 n-k=2 n>|S|+m(G-S) . \tag{13}
\end{equation*}
$$

Let S_{5} be another dominating set of G such that $S_{5}=S_{4} \cup S_{2}$, where $S_{4} \subset S_{1}$ with $\left|S_{4}\right|<n$. In $G, w_{1 j}$ is adjacent to $w_{2 k}$ for $1 \leq i, k \leq n$. Therefore,

$$
m\left(G-S_{5}\right)=\left|S_{2}\right|+n-\left|S_{4}\right| .
$$

Hence,

$$
\begin{align*}
\left|S_{5}\right|+m\left(G-S_{5}\right) & =\left|S_{2}\right|+\left|S_{4}\right|+\left|S_{2}\right|+n-\left|S_{4}\right| \\
& =2\left|S_{2}\right|+n . \\
& >|S|+m(G-S) \tag{14}
\end{align*}
$$

Therefore, from the above discussion and equations (13) and (14) we have $|S|+m(G-S)$ is minimum. Hence, from equation (12) and the minimality of $|S|+m(G-S)$ we have,

$$
\begin{aligned}
D I\left(P_{2}\left[P_{n}\right]\right) & =\min \{|X|+m(G-X): X \text { is a dominating set }\} \\
& =|S|+m(G-S) . \\
& =n+[2 \sqrt{n+1}\rceil-2 .
\end{aligned}
$$

Theorem 2.6.

$$
D I\left(P_{n}\left[P_{2}\right]\right)= \begin{cases}4, & \text { if } n=2,3, \\ 6, & \text { if } n=4,5, \\ \frac{2 n}{3}+4, & \text { if } n \geq 6 \& n \equiv 0(\bmod 3), \\ \frac{2(n-1)}{3}+4, & \text { if } n \geq 6 \& n \equiv 1(\bmod 3), \\ \frac{2(n+1)}{3}+4, & \text { if } n \geq 6 \& n \equiv 2(\bmod 3)\end{cases}
$$

Proof:

Let P_{n} be a path with vertices $u_{1}, u_{2}, \ldots, u_{n}$ and P_{2} with v_{1}, v_{2}. Let G be the graph $P_{n}\left[P_{2}\right]$. Then,

$$
V(G)=\left\{\left(u_{i}, v_{j}\right) / 1 \leq i \leq n, 1 \leq j \leq 2\right\}
$$

and

$$
\begin{aligned}
E(G)=\left\{\left(u_{i}, v_{j}\right)\left(u_{i+1}, v_{j}\right) / 1 \leq i \leq n-1,1 \leq j \leq 2\right\} & \cup\left\{\left(u_{i}, v_{1}\right)\left(u_{i+1}, v_{2}\right) / 1 \leq i \leq n-1\right\} \\
& \cup\left\{\left(u_{i}, v_{2}\right)\left(u_{i+1}, v_{1}\right) / 1 \leq i \leq n-1\right\}
\end{aligned}
$$

Without loss of generality, we denote vertices $\left(u_{i}, v_{1}\right)=w_{i 1}, 1 \leq i \leq n$ and $\left(u_{i}, v_{2}\right)=w_{i 2}, 1 \leq i \leq n$. The graph of $P_{5}\left[P_{2}\right]$ is shown in Figure 2 for better understanding of the notations and arrangement of vertices.

Figure 2. Arrangement of vertices in $P_{5}\left[P_{2}\right]$
To prove this result we consider following two cases:
Case 1: $n=2$ to 5

For $n=2, P_{2}\left[P_{2}\right]$ is isomorphic to complete graph K_{4}. Hence, $D I\left(P_{2}\left[P_{2}\right]\right)=4$.

For $n=3$, consider $S=\left\{w_{21}, w_{22}\right\}$, which is a dominating set for $P_{3}\left[P_{2}\right]$ and $m(G-S)=2$. There, does not exist any dominating set S_{1} of G such that $\left|S_{1}\right|+m\left(G-S_{1}\right)<|S|+m(G-S)$. Hence, $D I\left(P_{3}\left[P_{2}\right]\right)=4$.

For $n=4$, consider $S=\left\{w_{21}, w_{22}, w_{42}\right\}$, which is a dominating set for $P_{4}\left[P_{2}\right]$ and $m(G-S)=3$. Moreover, for any dominating set S_{1} of G we have, $\left|S_{1}\right|+m\left(G-S_{1}\right)>|S|+m(G-S)$. Hence, $D I\left(P_{4}\left[P_{2}\right]\right)=6$.

For $n=5$, consider $S=\left\{w_{21}, w_{22}, w_{41}, w_{42}\right\}$, which is a dominating set for $P_{5}\left[P_{2}\right]$ and $m(G-S)=2$. Moreover for any dominating set S_{1} of G we have,

$$
\left|S_{1}\right|+m\left(G-S_{1}\right)>|S|+m(G-S) .
$$

Hence, $D I\left(P_{5}\left[P_{2}\right]\right)=6$.

Case 2: $n \geq 6$

Now we consider subset S of G as below:

- If $n \equiv 0(\bmod 3)$ (i.e., $n=3 k)$ and $n \equiv 2(\bmod 3)$ (i.e., $n=3 k-1)$, consider

$$
S=\left\{w_{(2+3 i) 1} \mid 0 \leq j \leq k-1\right\} \cup\left\{w_{(2+3 i) 2} \mid 0 \leq j \leq k-1\right\} \text { and }|S|=2 k .
$$

So

$$
|S|=\frac{2 n}{3} \text { for } n \equiv 0(\bmod 3) \text { and }|S|=\frac{2(n+1)}{3} \text { for } n \equiv 2(\bmod 3) .
$$

- If $n \equiv 1(\bmod 3)$ (i.e., $n=3 k+1)$, consider

$$
S=\left\{w_{(2+3 i) 1} \mid 0 \leq j \leq k-1\right\} \cup\left\{w_{(2+3 i) 2} \mid 0 \leq j \leq k-1\right\} \cup\left\{w_{n 1}\right\} \text { and }|S|=2 k+1=\frac{2(n-1)}{3} .
$$

In all the above cases S is a dominating set for G as $w_{(i-1) 1}, w_{(i+1) 1} \in N\left(w_{i 1}\right)$ and $w_{(i-1) 2}, w_{(i+1) 2} \in N\left(w_{i 2}\right)$. Moreover, $m(G-S)=4$.

Now we discuss the minimality of $|S|+m(G-S)$. If we consider any dominating set S_{1} of G such that $\left|S_{1}\right|<|S|$, then due to construction of G (i.e., to convert $G-S_{1}$ into disconnected graph we must include vertices $w_{i 1}$ and $w_{i 2}$ in $\left.S_{1}\right)$, It generates large value of $m\left(G-S_{1}\right)$ such that

$$
\begin{equation*}
|S|+m(G-S)<\left|S_{1}\right|+m\left(G-S_{1}\right) \tag{15}
\end{equation*}
$$

Let S_{2} be any dominating set of G such that $m\left(G-S_{2}\right)=3$. Then, for $n \geq 6$,

$$
\begin{equation*}
|S|+m(G-S)<\left|S_{2}\right|+m\left(G-S_{2}\right) \tag{16}
\end{equation*}
$$

Moreover, if S_{3} is any dominating set of G with $m\left(G-S_{3}\right)=2$ or $m\left(G-S_{3}\right)=1$, then clearly,

$$
\begin{equation*}
|S|+m(G-S)<\left|S_{3}\right|+m\left(G-S_{3}\right) \tag{17}
\end{equation*}
$$

Therefore, from above discussion and equations (15) to (17), $|S|+m(G-S)$ is minimum.

So, in both the cases we have,

$$
\begin{aligned}
|S|+m(G-S) & =\min \{|X|+m(G-X): X \text { is a dominating set }\} \\
& =D I(G)
\end{aligned}
$$

Hence,

$$
D I\left(P_{n}\left[P_{2}\right]\right)= \begin{cases}4, & \text { if } n=2,3, \\ 6, & \text { if } n=4,5, \\ \frac{2 n}{3}+4, & \text { if } n \& n \equiv 0(\bmod 3), \\ \frac{2(n-1)}{3}+4, & \text { if } n \geq 6 \& n \equiv 1(\bmod 3), \\ \frac{2(n+1)}{3}+4, & \text { if } n \geq 6 \& n \equiv 2(\bmod 3) .\end{cases}
$$

3. Conclusions

The vulnerability of a communication network is of prime importance for network designers and users. The domination integrity is one of the important parameters to measure vulnerability of graph network. We investigate the domination integrity of larger graph arising from graph operations like composition and square of a graph. Thus we have determined the vulnerability in the context of expansion of network. Investigation of the domination integrity for other graph products is an open area of research.

ACKNOWLEDGEMENT

Our thanks are due to the anonymous referees and Editor-in-Chieffor their careful reading and constructive suggestions for the improvement in the first draft of this paper.

REFERENCES

Balakrishnan, R. and Ranganathan, K., (2012). A text book of Graph Theory, 2/e, Springer, New York.
Bagga, K. S., Beineke, L. W., Goddard, W.D., Lipman, M. J. and Pippert, R. E., (1992). A survey of integrity, Discrete Appl. Math., 37/38, 13-28.
Barefoot, C. A., Entringer, R. and Swart, H., (1987). Vulnerability in Graphs-A Comparative Survey, J. Combin. Math. Combin. Comput., 1, 13-22.
Chvatal, V. (1973). Tough graphs and hamiltonian circuits, Discrete Mathematics, 5, 215-228.
Cozzens, M. B., Moazzami, D. and Stueckle, S. (1994). The tenacity of the Harary Graphs, J. Combin. Math. Combin. Comput., 16, 33-56.

Goddard, W. (1989). On the vulnerability of Graphs, Ph. D. thesis, University of Natal, Durban, S. A.

Goddard, W. and Swart, H.C. (1988). On the integrity of combinations of graphs, J. Combin. Math. Combin. Comput., 4, 3-18.
Goddard, W. and Swart, H.C. (1990). Integrity in graphs: bounds and basics, J. Combin. Math. Combin. Comput., 7, 139-151.
Haynes, T. W., Hedetniemi, S. T. and Slater, P. J. (1998). Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York.
Jung, H. A. (1978). On a class of posets and the corresponding comparability graphs, J. Combin. Theory Ser., B 24, 125-133.
Li, Y. K., Zhang, S. G. and Li,X. L. (2005). Rupture degree of graphs, International Journal of Computer Mathematics, 82 (7), 793-803.
Mamut, A. and Vumar, E. (2007). A note on the Integrity of Middle Graphs, Lecture Notes in Computer Science, Springer, 4381, 130-134.
Piazza, L. B., Roberts, F. S. and Stueckle, S. K. (1995). Edge-tenacious networks. Networks, 25, 7-17.
Sundareswaran, R. and Swaminathan, V. (2010). Domination Integrity of graphs, Proc. Of International conference on Mathematical and Experimental Physics, Prague, Narosa Publishing House, 46-57.
Sundareswaran, R. and Swaminathan, V. (2010). Domination Integrity of Middle Graphs, in: Algebra, Graph Theory and their Applications (edited by T. Tamizh Chelvam, S. Somasundaram and R. Kala), Narosa Publishing House, 88-92.
Sundareswaran, R. and Swaminathan, V. (2011). Domination Integrity of Powers of Cycles, International Journal of Mathematics Research, 3(3), 257-265.
Sundareswaran, R. and Swaminathan, V. (2012). Domination Integrity in trees, Bulletin of International Mathematical Virtual Institute, 2, 153-161.
Vaidya, S. K. and Kothari, N. J. (2012). Some New Results on Domination Integrity of Graphs, Open Journal of Discrete Mathematics, 2(3), 96-98. doi:10.4236/ojdm.2012.23018.
Vaidya, S. K. and Kothari, N. J. (2013). Domination Integrity of Splitting Graph of Path and Cycle, ISRN Combinatorics, vol. 2013, Article ID 795427, 7 pages. doi:10.1155/2013/795427.
Vaidya, S. K. and Shah, N. H. (2013). Domination Integrity of Shadow Graphs, In: Advances in Domination Theory II (Ed. V. R. Kulli), Vishwa International Publication, India, 19-31.
Vaidya, S. K. and Shah, N. H. (2014). Domination Integrity of Total Graphs, TWMS J. App. Eng. Math., 4(1), 117-126.
Woodall, D. R. (1973). The binding number of a graph and its Anderson number, J. Combin. Theory Ser., B29, 27-46.

